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As additive manufacturing (AM) matures, models are beginning to
take a more prominent stage in design and process planning.
A limitation frequently encountered in AM models is a lack of
indication about their precision and accuracy. Often overlooked,
model uncertainty is required for validation of AM models, quali-
fication of AM-produced parts, and uncertainty management. This
paper presents a discussion on the origin and propagation of
uncertainty in laser powder bed fusion (L-PBF) models. Four
sources of uncertainty are identified: modeling assumptions,
unknown simulation parameters, numerical approximations, and
measurement error in calibration data. Techniques to quantify
uncertainty in each source are presented briefly, along with esti-
mation algorithms to diminish prediction uncertainty with the
incorporation of online measurements. The methods are illus-
trated with a case study based on a thermal model designed for
melt pool width predictions. Model uncertainty is quantified for
single track experiments, and the effect of online estimation in
overhanging structures is studied via simulation.
[DOI: 10.1115/1.4034103]

1 Introduction

AM is the use of layer-based processes for producing parts
directly from computer models, without part-specific tooling [1].
Since its introduction in the mid-1980 s, AM has become popular
because of its ability to produce complex geometries that were
impossible with traditional manufacturing techniques. Despite
growing popularity, AM technologies still present some unre-
solved challenges that hinder their widespread adoption. Among
these challenges are high process variability, unsatisfactory part
quality, and lack of standards; all of which originate from the lim-
ited knowledge of this relatively new set of processes. Many have
looked toward modeling to achieve a deeper understanding of the

physics of AM processes and to assist in the qualification of
AM-produced components, which currently relies exclusively on
experiments. Although most models published in the literature
have been compared with experimental measurements, they often
ignore process variability and lack measures of the precision and
accuracy of their deterministic predictions. Some of the few
examples of uncertainty quantification (UQ) in AM models can be
found in the papers by Moser et al. [2] and Ma et al. [3], both of
which studied model sensitivity to uncertainty in input parame-
ters; and Kamath [4], who discussed uncertainty in data-driven
surrogate models.

In general, knowledge of uncertainty in AM models is required
for: (a) model validation, which compares simulation results and
experimental data accounting for uncertainty in both sources; (b)
decision-making, where model predictions and their probabilities
may be used to make informed decisions, such as the qualification
and certification of designs and manufacturing plans; and (c)
uncertainty management, to identify the sources with the largest
relative contributions to the overall prediction error.

Model-based qualification in the specific case of L-PBF will
require control of several qualities, such as reduction of over-
and undermelting defects, desired microstructure and mechanical
properties, and reduction of residual stresses. In this paper, we
use melt pool dimensions as key performance indicators (KPIs)
due to their direct relationship with the thermal processes that
define such qualities [5]. Out of the set of melt pool dimensions,
melt pool width is chosen as the primary KPI because it can
be traced both during and after the build. Other approaches,
intended only for preprocess optimization, may focus on
different KPIs (e.g., cross-sectional area and length-to-depth
ratio) [6].

This paper provides: (a) a discussion on methods for UQ in
L-PBF models; (b) an example of UQ in which all the sources of
error are considered; and (c) a method for quantifying unmodeled
process perturbations with potential applications in feedback
control.

2 Identifying Uncertainty in L-PBF Models

In engineering, computational models are designed as approxi-
mations of physical reality and, as such, are subjected to a cascade
of errors and uncertainties. Figure 1 illustrates recognized sources
of modeling errors [7], which we have adapted for an AM applica-
tion. Four sources of uncertainty can be observed: modeling
errors, errors in simulation inputs, numerical errors, and measure-
ment errors.

L-PBF involves multiple physical phenomena occurring at
different times and length scales. Due to the complexity of the
process, most computational models limit their scope to a subset

Fig. 1 Cascade of sources of error in computer models of AM
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of physical phenomena at a given scale, neglecting dynamics not
captured by them and introducing modeling uncertainty. Some
common sources of modeling uncertainty in L-PBF can be found
in: (a) particle-level dynamics neglected in continuum models
[8,9], (b) inaccurate distributions for laser power acting on the
powder bed, or (c) an inadequate choice of boundary conditions
that neglects track-to-track and layer-to-layer interactions
[3,5,10].

Input uncertainty is the result of inaccurate simulation parame-
ters, adopted in lieu of more precise knowledge or as result of
uncertainty in the training data. In the case of L-PBF models,
common sources can be found in: (a) absorption coefficient,
which quantifies the amount of irradiated laser power that heats
up the powder bed [11]; (b) thermal conductivity in loose powder,
which depends on the distribution of powder particles [3]; (c) ther-
mophysical parameters at high temperatures [10]; (d) convection
and radiation coefficients [10]; and (e) enhancing coefficients
occasionally used to account for the effect of advection in
the liquid [12].

Commercial modeling packages, mostly based on finite element
methods, are often the preferred tools to solve AM mathematical
models, but other methods (e.g., discrete element methods and lat-
tice Boltzmann methods) are rapidly capturing the attention of the
AM community. Commercial packages used for L-PBF models
often include convergence studies to ensure that numerical error is
small, but its magnitude is seldom reported.

Measurement uncertainty depends solely on the methods and
instruments used to gather test data. The choice of appropriate
measurement techniques for L-PBF is an unsolved issue, and it
depends on the KPI of interest [13].

3 UQ

A comprehensive discussion on uncertainty sources in heat
transfer and fluid mechanics models can be found in the standard
ASME V&V 20 [14]. The fact that AM involves thermally acti-
vated consolidation processes makes this standard suitable for this
application. Figure 2 illustrates the process of prediction and vali-
dation followed in UQ with ASME V&V 20. The process starts
with a known set of processing parameters and material proper-
ties, which are fed to the model to obtain a simulation result S. In-
formation about the grid is used to estimate the numerical error
dnum that results from the numerical method. Meanwhile, an
assumed probability distribution of simulation parameters is
propagated through the model to estimate the error due to inaccu-
rate inputs dinput. Finally, simulation results S are confronted with
measurements D and measurement error dD. The difference
between model prediction and measurement determines the bias
E, which acts as an estimate of modeling error dmodel. All the
sources of error are merged in the calculation of prediction uncer-
tainty, which is reported along with the bias.

Process variability in AM models is accounted for as uncer-
tainty due to unknown inputs, if it can be traced back to simula-
tion parameters, or as modeling uncertainty otherwise. Herein, we

describe an application of Bayesian estimation to reduce modeling
error by mapping sources of variability to random simulation
parameters that are identified in real time. In the case of L-PBF,
the set of identified parameters may include random variables that
attempt to model the variable thermal characteristics of the mate-
rial that surrounds the melt pool.

The process for online estimation is illustrated in Fig. 3. In this
case, a simulation is performed for a given set of parameters and
an initial state with its associated uncertainty, which originate
from a previous simulation. The propagated state and process
uncertainty (modeling, numerical, and input) are then compared
with the measurement and its uncertainty to obtain estimates
of the state at the next time-step, its uncertainty, and an updated
estimate of process uncertainty.

4 Case Study: Uncertainty in a Stochastic

Model for L-PBF AM

In this section, we present a case study describing how different
sources of uncertainty can be identified and subsequently incorpo-
rated into a predictive model. We choose a thermal model devel-
oped for laser cladding [15] but adjusted for use in L-PBF. The
model provides a set of ordinary differential equations (ODEs)
that describe the motion of isotherms on the surface of the powder
bed. If one of these isotherms is assigned to the melting tempera-
ture, the model can be used to dynamically track the location of
the solidification front and predict melt pool width.

The set of ODEs is modified with the inclusion of diffusion
efficiency (l), a random variable that multiplies thermal diffusiv-
ity and is used to correct for variable sideways thermal diffusion
due to unmodeled process perturbations. Its value is set to one in
nominal cases, when the melt pool is surrounded by fully dense
material. In the case of overhanging structures, for example, a
decrease of thermal diffusivity toward the bottom improves heat
transfer to the sides, increasing the value of l.

The proposed model is fast, returning a melt pool width predic-
tion in 0.1 s when solved with MATLAB R2014b’s ode23 function
running on an Intel Core i7-3770 CPU.

4.1 UQ. Uncertainty is quantified by comparing simulation
results for fully dense material (l¼ 1) with melt pool width meas-
urements gathered from an alloy 625 plate, as described by Mont-
gomery et al. [16]. Single bead tests were performed using
different combinations of laser power and scan speed. In
this study, error is approximated within the interval dmodel

2 ½E� uval;Eþ uval� centered around E ¼ S� D. Validation
uncertainty uval, which accounts for uncertainty from all the sour-

ces, can be computed following uval ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

num þ u2
input þ u2

D

q
under

the assumption that all the error sources are independent.
The first steps toward quantification of modeling error are code

and solution verification. Code was verified with a manufactured
solution and it was observed that the method converges to analyti-
cal solutions for constant material properties and infinitely fine

Fig. 2 V&V and UQ in computational models as suggested in
ASME V&V 20 Fig. 3 Online estimation in predictive models
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grid. Similar convergence studies were performed for predictions
of melt pool width using temperature-dependent material proper-
ties. Successive grid refinement was used to identify an order of
accuracy of p¼ 1.9, which was lower than the formal order of
accuracy (p¼ 3), presumably due to the effect of nonlinearities in
the temperature-dependent properties. Numerical uncertainty was
quantified using Roache’s grid convergence index [14] for a grid
of ten isotherms. The numerical prediction for melt pool width for
195 W and 800 mm/s was found at ð127:3 6 2:7Þ lm (62.12%).

The second source of uncertainty comes from imperfect knowl-
edge of input parameters. Six factors were selected for a Monte
Carlo study to determine the propagation of uncertainty in inputs:
laser power, scan speed, absorption coefficient, latent heat, melt-
ing temperature, and thermal diffusivity. All the factors were
assumed to be normally distributed and are given in Table 1.
Nominal values for temperature-dependent material properties
were obtained from the TCN16 thermodynamic database [17],
while nominal absorptivity was identified experimentally. The
variability assumed for most input parameters was based on the
work of Ma et al. [3], except for that of absorptivity which was
enhanced. A Monte Carlo approximation of the probability distri-
bution of melt pool width was obtained for 4000 samples. The
result had a normal distribution and a 95% confidence interval
found in ð131:6637:3Þ lm.

The last source of uncertainty comes from validation
experiments performed with a Zeiss AxioVision AX10 optical
microscope. Each image was measured 15 times along the width
at approximately equal spacing. Results were averaged and
showed a standard deviation of 5.2 lm, suggesting a 6 10.4 lm
confidence interval.

Measured melt pool widths were compared to predictions
obtained from the model, only for data points close to nominal
operating conditions (195 W and 800 mm/s). The region
of calibration for this model was delimited between 150 W and
195 W, and 600 mm/s and 1000 mm/s. Assuming that all the error
sources are independent, validation uncertainty was estimated at
ð127:3 6 38:8Þ lm (630.5%) for nominal operating conditions.

It can be observed that modeling uncertainty is relatively large,
as expected due to the simplification of the thermal problem by
assuming a point source instead of a distributed one. The absence
of other physical phenomena considered important for melt pool
dynamics, such as surface tension, also contributes to modeling
error. Numerical uncertainty, however, was negligible even for a
coarse grid. On the other hand, input parameters have a significant
contribution to model uncertainty, partially due to the large uncer-
tainty assumed for the absorption coefficient. Extrapolation of the
modeling error to the other points in the region of calibration
matched the obtained measurements, as observed in Fig. 4.

The relatively large prediction uncertainty is compensated by
the speed of the model. The model, in its current form, can be
used as a first step toward process planning by providing users
with computationally inexpensive predictions to explore the
effects of laser power and speed in melt pool geometry.

4.2 Bayesian Estimation. Diffusion efficiency may be
allowed to vary in time to account for unmodeled track-to-track
and layer-to-layer interactions. In this section, we present an

example that illustrates how online thermographic monitoring
could potentially be used to identify unmodeled dynamics and
decrease uncertainty in melt pool width predictions. The case
study is designed to represent a horizontal overhanging plane
which is scanned in a direction perpendicular to the solid-to-
powder transitions. This case study, designed and published by
Kruth et al. [5], showed that melt pool area increases threefold
when going through this kind of overhangs. Synthetic data were
generated to mimic this event by artificially perturbing l and
assuming that it varies instantaneously from 1 to 2.2 when melting
on top of loose powder. In this study, it has been assumed that the
isotherms between 576 �C and 1072 �C can be detected with
thermographic sensors. To simulate measurement uncertainty,
noise was added to the measured isotherm widths following a
standard deviation of 26 lm, which corresponds to half the pixel
width in a similar thermographic setting.

Process estimation, using a linear stochastic version of the
model and a Kalman filter [18], results in the estimates shown in
Fig. 5, where the null hypothesis of normal operation (no

Table 1 Assumed distributions for normally distributed input
parameters

Input Nominal Standard deviation (% nominal)

Power 195 W 2.5%
Speed 0.800 m/s 1.5%
Absorption coefficient 0.6 25%
Latent heat 2.97� 105 J/kg 5.0%
Melting temperature 1320 �C 5.0%
Thermal diffusivity Function of Ti 10.0%

Fig. 4 Melt pool width predictions (continuous line) and meas-
urements (points) for single track scans with alloy 625

Fig. 5 Estimated diffusion efficiency and melt pool width. Pre-
dictions are plotted as continuous lines and 95% confidence
intervals are given in dashed lines.

Journal of Mechanical Design NOVEMBER 2016, Vol. 138 / 114502-3

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



overhang, H0 : l ¼ 1) is rejected in favor of the alternative hy-
pothesis of an anomaly (HA : l 6¼ 1) in the shaded region.
Response speed and accuracy and uncertainty in the estimates are
expected to be dependent on the process and measurement uncer-
tainty used for estimation, which were assumed in this example
and will have to be adjusted in an experimental study.

An important point to be observed is the low uncertainty in the
melt pool width prediction even in the region of anomalous opera-
tion. Without online measurements, models would have to
account for the potential variation in diffusion efficiency using
large uncertainties for l, and increasing uncertainty in melt pool
width predictions. For example, if the study to determine sensitiv-
ity to input parameters is repeated letting l vary following
l � Unif½1:0; 2:5�, the obtained prediction is ð193:6 6 106:6Þ lm
(655.1%), which is much wider than the confidence intervals
reported in Fig. 5 (64.0 lm).

5 Conclusions

As metal-based AM gains popularity, closer attention has been
paid to the computational models developed to predict quality in
manufactured components. Such predictions could be used to aid
design and process planning by allowing engineers to make
adjustments for improved quality. One aspect that has been tradi-
tionally ignored in these models is that, if they are to be used in
model validation or for certification of parts, one must know how
accurate these models are. UQ presents a set of challenges that
have often been ignored both by manufacturing and modeling
engineers.

A method to decrease modeling error, by mapping it to random
simulation inputs that are identified in real time, is illustrated.
Inclusion of random inputs requires that the assumed randomness
is validated and adjusted, which can be done with adaptive filter-
ing. The proposed estimation method could potentially be used for
real-time control to maintain desired melt pool geometries in
L-PBF even when process perturbations are detected.

Though the case study presented in this paper is based on a
low-order model, the same ideas can be extended to high-order
models. The algorithms used for UQ, however, are different. For
instance, the high computational cost of Monte Carlo methods
prevents their application in the propagation of uncertainty in
input parameters.
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