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Abstract

The vacuum oscillation (VO) solution to the solar anomaly requires an extremely

small neutrino mass splitting, ∆m2

sol
<
∼ 10−10 eV2. We study under which circum-

stances this small splitting (whatever its origin) is or is not spoiled by radiative

corrections. The results depend dramatically on the type of neutrino spectrum.

If m2
1 ∼ m2

2
>
∼ m2

3, radiative corrections always induce too large mass splittings.

Moreover, if m1 and m2 have equal signs, the solar mixing angle is driven by

the renormalization group evolution to very small values, incompatible with the

VO scenario (however, the results could be consistent with the small-angle MSW

scenario). If m1 and m2 have opposite signs, the results are analogous, except

for some small (though interesting) windows in which the VO solution may be

natural with moderate fine-tuning. Finally, for a hierarchical spectrum of neu-

trinos, m2
1 ≪ m2

2 ≪ m2
3, radiative corrections are not dangerous, and therefore

this scenario is the only plausible one for the VO solution.
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‡On leave of absence from Instituto de Matemáticas y F́ısica Fundamental, CSIC, Madrid (Spain)
§E-mail: alejandro@makoki.iem.csic.es
¶E-mail: ignacio@makoki.iem.csic.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357385531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-ph/9906281v1


1 Introduction

There are three main explanations of the solar neutrino flux deficits, requiring oscilla-

tions of electron neutrinos into other species. Namely, the small and large angle MSW

solutions, and the vacuum oscillation (VO) solution. In this paper we focus on the

latter, which requires the relevant mass splitting and mixing angle in the range [1]

5 × 10−11 eV2 < ∆m2

sol < 1.1 × 10−10 eV2,

sin2 2θsol > 0.67 . (1)

On the other hand, Superkamiokande observations [2] of atmospheric neutrinos require

neutrino oscillations (more precisely νµ−ντ oscillations if we do not consider oscillations

into sterile species) driven by a mass splitting and a mixing angle in the range [1]

5 × 10−4 eV2 < ∆m2

atm < 10−2 eV2 ,

sin2 2θatm > 0.82 . (2)

Let us remark the enormous hierarchy of mass splittings2 between the different species

of neutrinos, ∆m2

sol ≪ ∆m2

atm, which is apparent from eqs.(1, 2).

It has been argued that the extreme tinyness of ∆m2

sol in this scenario could be

related to some continuous or discrete symmetry at high energy [4]. However, inde-

pendently of the origin of the small splittings, it must be required that their size is

not spoiled by radiative corrections, the dominant part of which can be accounted by

integrating the renormalization group equations (RGEs) between the scale at which the

effective mass matrix is generated and low energy. The aim of this paper is to analyze

under which circumstances this is in fact the case. As a result, we obtain important

theoretical restrictions on the VO scenario.

Let us introduce now some notation. We define the effective mass term for the three

light (left-handed) neutrinos in the flavour basis, νT = (νe, νµ, ντ ), as

L = −1

2
νTMνν + h.c. (3)

The mass matrix, Mν , is diagonalized in the usual way, i.e. Mν = V ∗D V †, where

D = diag(m1e
iφ, m2e

iφ′

, m3) and V is a unitary ‘CKM’ matrix, relating flavour to mass

2It has been pointed out [3] that disregarding Cl data on solar neutrinos, vacuum oscillations with
much larger mass splitting could account for the solar anomaly.
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eigenstates






νe

νµ

ντ





 =







c2c3 c2s3 s2e
−iδ

−c1s3 − s1s2c3e
iδ c1c3 − s1s2s3e

iδ s1c2

s1s3 − c1s2c3e
iδ −s1c3 − c1s2s3e

iδ c1c2













ν1

ν2

ν3





 . (4)

Here, si and ci denote sin θi and cos θi, respectively, and in the rest of the paper we will

neglect CP-violating phases. In the following, we label the mass eigenstates νi in such

a way that |∆m2

12
| < |∆m2

23
| ∼ |∆m2

13
|, where ∆m2

ij ≡ m2

j − m2

i (m2

ν3
is thus the most

split eigenvalue). Consequently, ∆m2

sol, θsol correspond to ∆m2

12
, θ3, while ∆m2

atm,

θatm correspond to ∆m2

23
∼ ∆m2

13
, θ1 respectively. In our notation ∆m2

sol, ∆m2

atm

denote always the “experimental” splittings of eqs.(1, 2), while ∆m2

12
, ∆m2

23
denote

the computed splittings once the radiative corrections are incorporated. Concerning

the θ2 angle, according to the most recent combined analysis of SK + CHOOZ data

(last paper of ref. [1]) it is constrained to have low values, sin2 2θ2 < 0.36 (0.64) at 90%

(99%) C.L.

We assume along the paper that the effective mass matrix for the left-handed neu-

trinos, Mν , is generated at some high energy scale, Λ, by some unspecified mechanism.

Below Λ, we consider two possibilities: either the effective theory is the Standard

Model (SM) or the minimal supersymmetric Standard Model (MSSM) with unbroken

R−parity. In the first case, the lowest dimension operator producing a mass term of

this kind is uniquely given by [5]

− 1

4
κνT νHH + h.c. (5)

where κ is a matricial coupling and H is the ordinary (neutral) Higgs. Obviously,

Mν = 1

2
κ〈H〉2. The effective coupling κ runs with the scale from Λ to MZ , with a

RGE given by [6]

16π2
dκ

dt
=

[

−3g2

2
+ 2λ + 6Y 2

t + 2TrY†
e
Ye

]

κ − 1

2

[

κY†
e
Ye + (Y†

e
Ye)

T κ
]

, (6)

where t = log µ, and g2, λ, Yt,Ye are the SU(2) gauge coupling, the quartic Higgs

coupling, the top Yukawa coupling and the matrix of Yukawa couplings for the charged

leptons, respectively. The last term of eq.(6) is the most important one for our purposes,

since it modifies the texture of Mν. It is worth noticing that the modification of a

mass eigenvalue is always proportional to the mass eigenvalue itself. In the MSSM

case, things are very similar but with an important difference. Namely, the term that
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modifies the texture in the RGEs has the same form as in eq.(6) but with coefficient

+1 instead of −1

2
. Moreover, in the MSSM the Ye couplings are 1/ cos β larger than

the SM ones. All this implies that the effect of the RGEs in the supersymmetric case

is 2/ cos2 β = 2(1+tan2 β) times larger (for tanβ = 2 this already represents one order

of magnitude). It should be mentioned that in the supersymmetric case there are two

stages of running: from Λ to MSUSY with the MSSM RGEs, and from MSUSY to MZ

with the SM ones (the latter is normally much less important than the former).

In order to study the quantitative effect of the RGEs on the mass splittings and mix-

ing angles, it is convenient to consider separately the following three possible scenarios

[7]

A : |m3| ≫ |m1,2|,

B : |m1| ∼ |m2| ∼ |m3|, (7)

C : |m1| ∼ |m2| ≫ |m3|.

In case A, radiative corrections are generically not dangerous. The reason is that,

as stated before, the mass eigenvalues renormalize proportionally to themselves, i.e.

∆RGE mi = (K0 +Ki)mi, where K0 is the universal contribution for all the eigenvalues

and |Ki| ≪ 1. Thus, unless m2

1,2 ≫ ∆m2

12
, the running cannot spoil the initial smallness

of the solar mass-splitting (this is in particular the case of a hierarchical spectrum

m2

1
≪ m2

2
≪ m2

3
). Roughly speaking, the mass splittings generated radiatively get

larger than the allowed range of eq. (1) for m2

1,2 ∼ 10−4 eV2, although the precise value

depends on several details, in particular on the values of the mixing angles.

On the other hand, case B [cosmologically relevant for mi = O(eV)], has been

shown to be inconsistent with the VO solution in refs. [8,9,10]. Namely the mass

splittings ∆m2

ij generated through the running are several orders of magnitude larger

than the required VO splitting, even for Λ very close to MZ . According to the previous

discussion, the supersymmetric case works even worse. The only way-out would be an

extremely artificial fine-tuning between the initial values of the mass splittings (and

mixing angles) and the effect of the RG running, something clearly unacceptable.

Finally, the impact of the radiative corrections on a spectrum of the type C has

not been considered yet in the literature. Since in this case the large ∆m2

sol ≪ ∆m2

atm

hierarchy forces m2

1,2 ≫ ∆m2

12
, one can expect important radiative effects. The analysis
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of this scenario is performed in section 2, where we study in two separate subsections

the possibilities that m1 and m2 have equal or opposite signs. The conclusions are

presented in section 3.

2 The case m2
1 ∼ m2

2 ≫ m2
3

As explained in the Introduction, radiative corrections play an important rôle when

m2

1
∼ m2

2
≫ m2

3
, case in which the mass splitting relevant for solar oscillations is

the one between the heavier neutrinos. In this framework, radiative corrections can

actually make ∆m2

12
≫ ∆m2

sol in contradiction with observations. This effect will be

stronger the heavier is the overall neutrino mass scale: the most conservative case thus

corresponds to m2

1
∼ m2

2
∼ ∆m2

atm and m2

3
∼ 0 (masses smaller than this cannot

accommodate atmospheric oscillations of the required frequency).

The rationale is then the following: at some high-energy scale Λ one assumes that

new physics generates a dimension-5 operator leading to non-zero neutrino masses and

fixes Mν(Λ) such that, with good approximation m2

1
= m2

2
and m2

3
= 0. The most

important radiative corrections to this tree-level masses are proportional to ln(Λ/MZ)

and can be included using standard RG techniques, that is, running Mν down from

Λ to MZ using the relevant RGEs. The latter depends on what is the effective theory

below Λ. As we said, we consider two cases: SM and MSSM, and the RGEs relevant

for these two effective theories can be found e.g. in ref. [6].

The analytical integration of the RGEs is straightforward in the leading-log ap-

proximation and the additional simplification that m3 ∼ 0 at all scales permits us

to concentrate on the two other masses alone. The results are qualitatively different

depending on the relative sign between m1 and m2 and we consider the two cases

separately in the next subsections.

2.1 m1 ≃ m2

After integration from Λ to MZ , the radiatively corrected Mν(MZ) has eigenvalues

which in first approximation are given by

m1 = mν ,

m2 = mν [1 + 2ǫτ (1 − c2

1
c2

2
)] ,

m3 = 0.

(8)
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These expressions include the leading-log radiative corrections to the mass differences

and are obtained under the approximation that the initial 1-2 mass splitting is zero. In

eq.(8), the family-universal renormalization effect (not important for our discussion)

has been absorbed in mν , which is fixed to give the proper value for ∆m2

31
∼ ∆m2

atm.

The θ1, θ2, θ3 angles have been kept as free parameters. Our numerical results are

always obtained integrating numerically the RGEs and confirm that the analytical

expressions we write represent an excellent approximation. For our numerics we choose

both the lower and upper limits of the allowed range for ∆m2

atm, thus fixing mν = 2.2×
10−2 eV or 0.1 eV (corresponding to ∆m2

31
= 5× 10−4 eV2 and 10−2 eV2, respectively).

The parameter ǫτ depends on what is the effective low-energy theory below Λ [9,10]:

ǫτ =
h2

τ

32π2
log

Λ

MZ

(SM), (9)

ǫτ =
h2

τ

32π2

[

− 2

cos2 β
log

Λ

MSUSY

+ log
MSUSY

MZ

]

(MSSM), (10)

where MSUSY sets the mass scale for the supersymmetric spectrum (we take MSUSY ∼
1 TeV). As usual, the size of ǫτ grows logarithmically with the scale of new physics Λ

(a conservative estimate we often make is to choose a low value Λ = 1 TeV). Also, for

sufficiently large Λ/MZ , the size of ǫτ is enhanced by a factor 2/ cos2 β = 2(1+tan2 β) in

the MSSM with respect to the SM (already a factor 10 for tanβ = 2) so that radiative

corrections are more important in this case.

The typical size of ǫτ is ∼ 8 × 10−7 (∼ 8 × 10−6) for Λ = 103 GeV (Λ = 1012 GeV)

in the SM and ∼ −8×10−5 for Λ = 1012 GeV in the MSSM with tan β = 2. According

to Eq. (8) this would lead to

∆m2

sol

m2
ν

=
∆m2

sol

∆m2
atm

= 4ǫτ (1 − c2

1
c2

2
), (11)

too large compared with the observed value unless there is a cancellation in (1− c2

1
c2

2
),

which requires sin2 2θ1,2 ∼ 0. This is far from the best-fit values mentioned in the

Introduction. Choosing sin2 2θ1 ≃ 1 and sin2 2θ2 ≃ 0 we must conclude that ∆m2

12

turns out to be too large for vacuum oscillations of solar neutrinos.

The precise results are given in Figure 1, which shows the predicted ∆m2

12
in eV2

(solid lines) as a function of c2

1
c2

2
for the SM case with Λ = 103 GeV and ∆m2

atm =

5 × 10−4 eV2 (lower curve) and 10−2 eV2 (upper curve). The experimental constraints

5
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Figure 1: ∆m2

12
/eV2 (solid lines) as a function of c2

1
c2

2
for ∆m2

atm
= 10−2 eV2 (upper curve) and

5 × 10−4 eV2 (lower). The experimentally allowed region for c2

1
c2

2
is delimited by the dashed lines

(the dashed regions are forbidden) and the ∆m2

sol
needed for the VO solution is given by the range

between the dotted lines. This plot corresponds to the SM with Λ = 103 GeV.

on θ1,2 leave open the windows 0 ≤ c2

1
c2

2
≤ 0.142 and 0.232 ≤ c2

1
c2

2
≤ 0.71, as indicated.

The neutrino mass splitting required by VO solar oscillations is marked by the hori-

zontal dotted lines. As was clear from the previous discussion, there is no overlapping

between the ∆m2

12
predicted and the ∆m2

sol required. Indeed, ∆m2

12
is always much

larger than the allowed range. In the MSSM (or for larger Λ) the situation is even

worse because in both cases ∆m2

12
increases significantly in the way discussed above.

Let us turn in more detail to the mixing angles in this scenario. At the scale Λ

one has some mixing angles θi which will be different in general at the scale MZ after

radiative corrections to Mν have been included. At the same level of approximation

as in Eqs. (8), the eigenvectors of the perturbed neutrino mass matrix are of the form

V ′
1

=
1√

α2 + β2
(αV1 + βV2), V ′

2
=

1√
α2 + β2

(−βV1 + αV2), V ′
3

= V3, (12)
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where Vi are the eigenvectors corresponding to Mν(Λ)

V1 =









c2c3

−c1s3 − s1s2c3

s1s3 − c1s2c3









, V2 =









c2s3

c1c3 − s1s2s3

−s1c3 − c1s2s3









, V3 =









s2

s1c2

c1c2









. (13)

From this, we deduce that the relationships between θi(MZ) and θi(Λ) are

sin2 2θ1(MZ) = sin2 2θ1(Λ),

sin2 2θ2(MZ) = sin2 2θ2(Λ),

sin2 2θ3(MZ) = sin2 2θ3(Λ) +
2

(1 + r)2
[
√

r(1 − r) sin 4θ3(Λ) + 2r cos 4θ3(Λ)] ,

(14)

where r ≡ α2/β2. In leading-log approximation we have

α

β
≃ s1c3 + c1s2s3

s1s3 − c1s2c3

, (15)

with all angles evaluated at the scale Λ.

If we substitute this in (14) we find the simpler expression

sin2 2θ3(MZ) =
sin2 θ2 sin2 2θ1

(1 − cos2 θ1 cos2 θ2)2
. (16)

For the bimaximal mixing case (s2 ∼ 0, c1 ∼ s1 ∼ 1/
√

2) we end up with sin2 2θ3(MZ) ∼
0, which is not acceptable (observations require sin2 2θ3 ≥ 0.67).

In conclusion, the scenario m1 ∼ m2 ≫ m3 is very contrived from the theoretical

point of view. It is not natural to expect in this framework the values of mass splittings

and mixing angles which are suggested by experiment. As mentioned in the Introduc-

tion, the only way-out would be an extremely artificial fine-tuning between the initial

values of the mass splittings (and mixing angles) and the effect of the RG running. If

one insists on this possibility, starting for example with ∆m2

atm = 5 × 10−4 eV2, s2 ∼ 0,

c1 ∼ s1 ∼ 1/
√

2, Λ = 103 GeV (a conservative choice for the fine-tuning problem), one

is forced to take the initial mass splitting and mixing angle within the narrow ranges

|m2

1
−m2

2
| ∼ (1.82±0.02)×10−7 eV2 and θ3 ∼ π/2±5.5×10−3 in order to compensate

the effect of the RGEs and reproduce the required pattern of masses and mixings at

MZ [these numbers cannot be extracted from the previous eq.(11), as in this case the

approximation of initial degenerate eigenvalues does not hold]. One cannot certainly

expect such a conspiracy between totally unrelated effects. If one slightly separates

from these narrow ranges the low-energy mass splitting would be much larger than the

7



required one. Of course, as ∆m2

atm or Λ are raised, or one goes to the supersymmetric

case, the fine-tuning becomes much stronger.

Finally, it is interesting to note that for sizeable values of the cut-off (Λ >
∼ 1012 GeV)

and/or a supersymmetric scenario, the values of ∆m2

12
are naturally 1-3 orders of

magnitude larger than those represented in Fig.1, falling in the small-angle MSW range

(3 × 10−6 eV2 < ∆m2

sol < 10−5 eV2). This is appealing since, as has been discussed

in this section, starting with θ1,2 mixing angles in agreement with experiment (s2 ∼ 0,

c1 ∼ s1 ∼ 1/
√

2) the RGEs drive sin2 2θ3(MZ) ∼ 0, independently of its initial high-

energy value, see eq.(14). This is exactly what is needed for a successful small-angle

MSW solution to the solar neutrino problem.

2.2 m1 ≃ −m2

In this case, the neutrino mass eigenvalues at MZ are, in leading-log approximation

m1 = mν [1 + 2ǫτ (s1s3 − c1s2c3)
2] ,

m2 = −mν [1 + 2ǫτ (s1c3 + c1s2s3)
2] ,

m3 = 0,

(17)

with ǫτ as given by Eqs. (9) and (10). The mixing angles are, in first approximation,

equal at MZ and Λ. We fix again mν ∼
√

∆m2
atm. In order not to spoil the size of the

required solar mass splitting, the radiative corrections should generate ∆m2

12
≤ ∆m2

sol.

The prediction from (17) is

∆m2

12

m2
ν

=
∆m2

12

∆m2
atm

= 4ǫτ

[

(cos2 θ1 sin2 θ2 − sin2 θ1) cos 2θ3 − sin 2θ1 sin θ2 sin 2θ3

]

. (18)

Getting a sufficiently small number for this quantity requires some (in general delicate)

correlation between the mixing angles, in such a way that

tan 2θ3 ≃
cos2 θ1 sin2 θ2 − sin2 θ1

sin θ2 sin 2θ1

. (19)

It is remarkable that the bimaximal values of the mixing angles (sin2 2θ1 ∼ sin2 2θ3 ∼ 1

and sin2 2θ2 ∼ 0) do satisfy (19).

Figures 2a,b show, for the SM case, the regions in the plane (sin2 2θ2, sin
2 2θ3) where

the correlation (19) takes place, giving ∆m2

12
≤ 1.1 × 10−10 eV2 (the upper limit on

∆m2

sol). The width of these allowed regions is controlled by ∆m2

sol/(ǫτ∆m2

atm). The

larger ǫτ∆m2

atm (or the smaller ∆m2

sol), the thinner these regions get [because a more

8
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Figure 2: Allowed regions (in which ∆m2
12 ≤ 1.1 × 10−10 eV2) in the plane (sin2 2θ2, sin

2 2θ3)
for the SM case for sin2 2θ1 = 1 (upper plot) and 0.82 (lower). The area between the outermost
(innermost) lines corresponds to a cut-off scale Λ = 103 GeV (1012 GeV). The dashed lines delimit
the experimentally allowed values for sin2 2θ2 and sin2 2θ3.
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delicate cancellation must take place in (19)]. In figure 2a we have fixed sin2 2θ1 = 1 and

∆m2

atm = 5× 10−4 eV2, and we give the allowed areas for the two choices Λ = 103 GeV

(thick region, delimited by the outermost lines) and 1012 GeV (thin region). If we

choose ∆m2

atm = 10−2 eV2 instead, the two regions would shrink significantly and

will be somewhere inside the thin region shown for Λ = 1012 GeV. The dashed lines

delimit the allowed region for the two mixing angles θ2 and θ3 (0 ≤ sin2 2θ2 ≤ 0.64

and 0.67 ≤ sin2 2θ3 ≤ 1). Figure 2b corresponds to the case sin2 2θ1 = 0.82 (the

lower experimental limit) and the same values of other parameters as in figure 2a. The

results are similar except for a shift towards smaller sin2 2θ2 values in the region of

interest. Note in particular that the upper limit sin2 2θ2 ∼ 0.64 is never reached in this

scenario. We see that in the most conservative case, with ∆m2

atm = 5 × 10−4 eV2 and

Λ = 103 GeV, a significant portion of parameter space could accommodate a ∆m2

12
of

the right order of magnitude (including the bimaximal mixing solution). It is interesting

to note that inside this region, starting with degenerate m1, m2 would lead to a correct

∆m2

sol at low energy, thus providing a dynamical origin for this small number. Notice

however that as soon as ∆m2

atm or Λ are raised the required fine-tuning becomes much

stronger. This occurs in particular if the lower bound ∆m2

atm = 5× 10−4 that we have

used is increased according to the analyses of the most recent data [11].

The situation is worse in the MSSM case. Roughly speaking, for tan β = 3 radiative

corrections are 20 times larger than in the SM (with the same Λ). The cancellation

between mixing angles in (19) is thus much more delicate in the supersymmetric case,

as expected.

3 Conclusions

The vacuum oscillation (VO) solution to the solar neutrino problem requires an ex-

tremely small mass splitting, ∆m2

sol
<
∼ 10−10 eV2. We have studied in this paper under

which circumstances this smallness (whatever its origin) is or is not spoiled by radia-

tive corrections, in particular by the running of the renormalization group equations

(RGEs) between the scale at which the effective neutrino mass matrix is generated

(Λ) and low energy. We consider the cases where the effective theory below Λ is

the Standard Model (SM) or the Minimal Supersymmetric Standard Model (MSSM).

The results depend dramatically on the type of neutrino spectrum. In particular, if
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m2

1
≪ m2

2
≪ m2

3
, radiative corrections are always relatively small and do not cause

any significant change in the splittings. On the other hand, if m2

1
∼ m2

2
∼ m2

3
, ra-

diative corrections always induce mass splittings that are several orders of magnitude

larger than the required ∆m2

sol. Hence, this type of spectrum is not plausible for the

VO solution. The only way-out would be an extremely artificial fine-tuning between

the initial values of the mass splittings (and mixing angles) and the effect of the RG

running, something clearly unacceptable.

Most of the paper is devoted to the third possible type of spectrum, m2

1
∼ m2

2
≫

m2

3
, which requires m2

1,2 ∼ ∆m2

atm (or larger). Here again, the radiatively generated

splittings are in general too large, making the scenario unnatural. As a general rule, this

gets worse as ∆m2

atm or Λ grow. Also, the supersymmetric scenario works worse than

the SM one, especially as tanβ incresases. More precisely, if m1 and m2 have equal

signs, the RGE-induced splittings are always too large, even for the most favorable

case. In addition, the solar mixing angle is driven by the RGEs to very small values,

sin2 2θ3(MZ) ∼ 0, which is incompatible with the VO solution. It is however worth

noticing that such a small angle is what is needed for a successful small-angle MSW

solution to the solar neutrino problem. Moreover, for Λ >
∼ 1012 GeV and/or for the

MSSM scenario the values of ∆m2

12
may fall naturally in the small-angle MSW range,

∼ 10−5 eV2.

If m1 and m2 have opposite signs, the results are analogous, but now the splitting

generated by the RGEs can vanish if the mixing angles are correlated in a particular way

(which remarkably is always satisfied by the exact bimaximal case). This correlation

or tuning of parameters is acceptable in the SM scenario, provided the cut-off scale Λ

is not much larger than ∼ 1 TeV and if ∆m2

atm is in the low side of its experimentally

preferred range (∼ 5 × 10−4 eV2). Interestingly, this could provide a dynamical origin

for the smallness of ∆m2

sol. For larger Λ and/or ∆m2

atm (or equivalently, for the MSSM

scenario) radiative corrections grow in size and the required tuning of mixing angles

becomes quickly unacceptable. This occurs in particular if the lower bound ∆m2

atm =

5×10−4 that we have used is increased according to the most recent data analyses [11].

In conclusion, apart from the mentioned small windows, a completely hierarchical

spectrum of neutrinos (i.e. as the spectrum of quarks and charged leptons), m2

1
≪

m2

2
≪ m2

3
, seems to be the only plausible one for the VO solution to the solar neutrino

problem.
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