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Abstract

We propose a classical procedure to calculate the poten-
tial energy of electrons in the ground state of atoms and ions
similar to them. It is assumed that the electron-proton and
electron-electron interactions are described not by the Coulomb
law, but by more complicated binomial potentials.
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1 Introduction

The interest in the theoretical determination of the energy of elec-
trons in atoms and ions similar to them arose from the time moment
when Rutherford proposed the model of an atom as a particle consist-
ing of the nucleus and electrons positioned from it at some distances.
This interest is conditioned by the hope for that the obtained the-
oretical results fitting the experimental data will help to reach the
understanding the structure of many-electron atoms and ions similar
to them.

At present, a lot of different methods of calculations of the binding
energies of electrons in atoms is known. One of the examples of such
calculations is given by works [1, 2]. However, the attempts to spread
the semiclassical and quantum-mechanical methods of calculations
used there on the systems with three and more electrons have brought
no required results. As an example of such attempts to calculate
the energy of electrons in many-electron systems, we mention work
[3]. In that work, the quasiclassical and quantum-mechanical ideas
were used in the attempt to calculate the ionization energies of 10
lightest elements. Though their numerical values were obtained, a
clear model of the electron structure of atoms was not constructed.
The structure of the applied formulas and their parameters do not
explain the physical, in the common sense of this word, essence of
the processes running in an atom.

We consider that we must change our ideas of the nature of the
interaction of electrons with a nucleus in order to be successful in
the theoretical simulations of many-electron systems. In our opinion,
the interaction of electrons with a nucleus in an atom obeys a more
complicated law than the Coulomb one. The former is a binomial
potential. Just with its help, one can develop such models of atoms,
to which the classical methods of calculations will be also applied.

As the basis for such calculations, we take a potential of the bi-
nomial form earlier proposed by us in [4, 5] for the interaction of an
electron with a proton:

V = −e2

r
+

Γ
r2

. (1)

.
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By using this potential in the study of both the motion of an elec-
tron in a hydrogen atom and the scattering of electrons by protons,
we were lucky to get the basically new results which change signif-
icantly our ideas of the intra-atomic phenomena [4, 6]. Therefore,
there is a sense to spread the usage of the binomial potential on the
study of many-electron structures. As a result, we will demonstrate
the calculation of the ground state energies for six lightest atoms and
ions similar to them which are in reasonable agreement with exper-
imental data. By this, we will confirm the correctness of the chosen
binomial potentials and models of atoms.

2 Substantiation of the binomial potential of in-
teraction of an electron with a proton

As a basis for the substantiation of the binomial potential [4, 5] of
interaction of an electron with a proton, we take the indisputable fact
that an electron in an atom is constantly located at some distance
from the nucleus. Omitting the discussion of the physical essence
of this phenomenon, we can represent the potential energy of the
interaction of an electron with a proton in a hydrogen atom by the
following function:

V = −e2

r
+

Γ
rx

. (2)

Here, the first and second terms on the right-hand side correspond,
respectively, to the Coulomb interaction and to a hypothetical inter-
action which counteracts the Coulomb attraction.

In the general case, formula (2) is widely used in the solid-state
theory on the description of the interaction of atoms in molecules and
crystals [7]. But it was not applied for some reasons to the analysis
of the interaction of electrons in an atom. In what follows, we will
demonstrate that formula (2) can be very useful also in the modeling
of the structure of atoms.

In formulas of the type (2), the constant Γ and the exponent x are
unknown, as a rule. But their numerical values can be determined
by solving the system of two algebraic equations related to a certain
state of the system, for which some experimental data are available
[7]. For a hydrogen atom, we can consider its ground state, for which
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we obtain the equations

−e2

r0
+

Γ
rx
0

= E0 ,
e2

r2
0

− x Γ
rx+1
0

= 0 , (3)

where E0 is the energy of the ground state of a hydrogen atom; r0

is its equilibrium radius, and e is the electron charge. The second
equation in (3) represents the sum of forces acting on the electron.

Rewriting (3) as

−e2

r0
+

Γ
rx
0

= E0 ,
e2

xr0
− Γ

rx
0

= 0 (4)

and summing the equations, we get the equality

−e2

r0
+

e2

xr0
= E0 (5)

which can be written as

1
x
− 1 =

E0r0

e2
. (6)

Substituting the numerical values of E0, r0, and e2 in (6), we get
x = 2. For this value of x, the second equation of system (3) yields

Γ =
e2r0

2
. (7)

Thus,

Γ = 6.10276× 10−28 CGSE units and x = 2 . (8)

Let us paid attention to the right-hand side of formula (6)

E0r0

e2
=

1
2

. (9)

Rewriting relation (9) as

E0 =
e2

2r0
, (10)
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it becomes clear that the last formula defines the ground state energy
of a hydrogen atom.

We recall that the Bohr theory gives also the analogous relation
[7] but on the basis of the other starting premises: the equality of the
centrifugal force and the force of Coulomb attraction.

It is also known that the analogous relation for the ground state
energy of a hydrogen atom follows from the solution of the Schrödinger
equation. In addition, the Schrödinger equation gives also the rela-
tion r0 = ~2/me2 . By substituting the last formula in (7), we get
Γ = ~2/2m.

The above consideration was performed in order to show the log-
ical connection of the binomial potential with the Bohr theory and
the Schrödinger theory of a hydrogen atom. In the previous theo-
ries, the positive addition to the Coulomb law was also implied, but
as some centrifugal force, on the basis of the postulate on a motion
of the electron around the nucleus. As known, the hypothesis of the
rotational motion of the electron in a hydrogen atom leads to the fun-
damental difficulties on the interpretation of models of many-electron
structures. But our hypothesis of the presence of the repulsive inter-
action removes the difficulties and is quite suitable in the explanation
of many-electron structures.

Let us consider some specific features of results (8). First, we
emphasize the small value of the constant Γ relative to e2 (23.06112×
10−20). Therefore, the contribution of the positive term in (2) to the
total interaction energy at distances in the scope of two equilibrium
radii is negligibly small. Secondly, the integer value of the exponent x
(x = 2) allows one to carry out analytically, without any difficulties,
the integration of equations with this potential. Thirdly, the constant

Γ =
~2

2m
, (11)

where ~ is the Planck constant and m is the electron mass, corre-
sponds to the coefficient of proportionality postulated by Schrödinger
for his equation.

We also note that formula (2) repeats exactly the potential pro-
posed by Weisskopf [8]. But Weisskopf obtained his formula on the
basis of quantum-mechanical premises of the Schrödinger theory, by
taking the incompressibility of an atom into account. Such an as-
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sumption is also involves the existence of a repulsive force between
an electron and a proton. Hence, two basically different approaches
(the classical and quantum-mechanical ones) led to the same inter-
action potential between an electron and a proton. This fact is a
corroboration of the logical connection between the theory based on
the binomial potential and quantum theory. Therefore, the binomial
potential can be considered as a coordinating link between classical
theory and quantum mechanics.

But quantum mechanics interprets the positive addition to the
Coulomb law as the minimum kinetic energy [8], whereas the classi-
cal approach considers it as some counteracting field. The answer to
the question about what is more natural will be given by the con-
sideration of many-electron systems. As was mentioned above, the
postulation of circular motion of an electron creates the basic difficul-
ties for the theory of many-electron systems. But the assumption on
some counteracting potential removes them and opens the possibility
to model many-electron systems in the framework of classical me-
chanics. The positive results of such modeling would be considered
as a confirmation of the validity of the interpretation of the new pos-
itive term in the electron-proton potential as a certain counteracting
potential.

Generally saying, by introducing the binomial potential, we re-
place, in fact, the postulate of some motion of an electron around the
nucleus, which is foreign to classical mechanics, by a more natural
hypothesis of the presence of some repulsive potential. We especially
emphasize the fact that the proposed binomial potential (1) does not
contradict the foundations of quantum mechanics [4, 5] and opens
the way for classical mechanics into many-electron systems.

In Fig.1, we show the dependence of the binomial potential of
the interaction of an electron with a proton on the distance between
them. It is obvious that the Coulomb component dominates in the
total interaction energy already at distances of about 2 equilibrium
radii (∼ 1 × 10−8 cm). But, at small distances less than a half of
the equilibrium radius (∼ 0.25 × 10−8 cm), the positive term in (1)
becomes dominant, manifesting the character of a short-range force.
Apparently just in such a way, we can explain the circumstance why
no deviations from the Coulomb law were noticed at macrodistances,
where this law was mainly studied.
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As an experimental confirmation of potential (2), we mention the
angular distribution on the scattering of electrons by protons [9]. The
results of our calculations [10] on the basis of potential (1) coincide
completely (Fig.2) with the experimental data [9]. Therefore, we may
assert that potential (2) has a direct experimental confirmation.

3 Binomial potential of hydrogen-like ions

Above we have obtained the parameters of the binomial potential
(2) (the constant Γ and the exponent x = 2) on the basis of only
the experimental data on the hydrogen atom. It is natural that the
question can arise about how these parameters will agree with the
data on hydrogen-like ions. As known, it was experimentally estab-
lished that the binding energy E0z of an electron with a nucleus in
these ions is connected with that of an electron with the proton in a
hydrogen atom by the relation

E0z = Z2E0 , r0z =
r0

Z
, (12)

where Z is the atomic number, E0 is the binding energy of an electron
in the ground state of a hydrogen atom, r0z is the distance of an
electron from the nucleus in a hydrogen-like ion, and r0 is the Bohr
radius.

We write the first equation in (3) in the form

E0z = Z2

[
−e2

r0
+

Γ
r2
0

]
, (13)

where the expression in the square brackets is the binomial potential
in the ground state of a hydrogen atom, or as

E0z = −Zee
r0

Z

+
Γ(r0

Z

)2 . (14)

Formula (14) implies that, in order to calculate the binding en-
ergy of an electron with a nucleus in a hydrogen-like ion, we must
substitute the nucleus charge Ze and the distance of an electron from
the nucleus r0z = r0/Z in the formula for the binomial potential of
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a hydrogen atom in the ground state. Hence, potential (2) remains
invariable also on the definition of the binding energy of electrons in
hydrogen-like ions.

We can convince themselves in this in another way. Consider the
formula

Ez = −Ze2

rz
+

Γ
rx
z

. (15)

We assume that the constant Γ and the exponent x are unknown.
For their determination, we construct the system of two algebraic
equations corresponding to the equilibrium state of a hydrogen-like
ion, by following [7]:

E0z = −Ze2

r0z
+

Γ
rx
0z

, 0 =
Ze2

r2
0z

− x Γ
rx+1
0z

. (16)

By substituting the experimental values of the energy and the
radius from relation (12) in (16), we obtain the system

E0 = −e2

r0
+

Γ
rx
0

, 0 =
e2

r2
0

− x Γ
rx+1
0

, (17)

analogous to system (4) for a hydrogen atom. Hence, the second
method has shown that the parameters of the binomial potential
obtained by the experimental values for a hydrogen atom remain
valid also for hydrogen-like ions.

It is worth noting one peculiarity of the binomial potential. As
follows from (15), the contribution of the positive addition in the
binomial potential to the total interaction energy of an electron with
a nucleus is independent of the electric charge of a nucleus, i.e. on
the number of protons in a nucleus, but depends only on the distance
of an electron from the nucleus.

4 The energy of the binding of electrons in two
and three electronic atoms

Earlier we determined the law of interaction of one electron with
a nucleus. But in order to consider the interaction of two and more
electrons with a nucleus, this result is not sufficient. As known, an
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electron possesses not only electric properties, but also magnetic ones.
Therefore, in the analysis of the systems with at least two electrons,
we must take the magnetic interaction into account, in addition to
the electrostatic interaction, in order to determine the interaction
energy of electrons with one another.

Hence, if we represent a He atom and ions similar to it as the
systems consisting of a nucleus and two electrons positioned on a
straight line from the nucleus, then the formula for the energy of the
binding of the system consisting of two electrons and the nucleus Ez2

takes the form

Ez2 = −2Ze2

r
+

2Γ
r2

+
e2

R
+

A
R2

, (18)

where Z is the atomic number. On the right-hand side of formula
(18), the terms represent, respectively, the Coulomb interaction of
electrons with a nucleus, our hypothetic interaction of electrons with
a nucleus, the Coulomb interaction of electrons with one another, and
the magnetic interaction of electrons, R = 2r, and A is the constant
characterizing the magnetic interaction.

A lithium atom and ions similar to it can be represented in the
form of an equilateral triangle, whose vertices are occupied by elec-
trons, and the nucleus is located at the geometric center. Then the
energy of the binding Ez3 of this system is

Ez3 = −3Ze2

r
+

3Γ
r2

+
3e2

R
+

3A
R2

, (19)

where R =
√

3, and the terms on the right-hand side are analogous
to those in (18).

We determined the constant A in (18) and (19) by using the ex-
perimental values of the energies of atoms of He and Li. By averaging
the obtained values, we take

A = 3.107× 10−28 CGSE units. (20)

The results of the comparison of experimental data [11] with the
values calculated by formulas (18) and (19) for He, Li, and ions similar
to them with regard for constant (20) are given in Table 1.

The validity of formulas (18) and (19) is supported by the follow-
ing examples.
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It is known that there exist negative ions of hydrogen. We will try
to explain the physical nature of this fact with the help of formulas
(18) and (19). Let us take a proton and add successively electrons
to it. After the next addition, we will construct the curve of the
interaction potential of these electrons with the proton. It is seen in
Fig. 3 that the proton with two electrons is a stable system, because
these potential well is deeper than that of the hydrogen. But the po-
tential wells with three and four electrons become shallower than the
potential well of the hydrogen atom. Therefore, two electrons with a
proton can else create a stable structure in the form of a negative ion,
and the next electrons will be rejected. Thus, our evaluations have
shown in agreement with the experimental data that the negative ion
of a hydrogen atom is energetically admissible and can be realized
with the negative charge equal 1.

We should like to emphasize the difference between the curves
of the potential wells of a hydrogen atom and a one-charge negative
hydrogen ion. This difference corresponds to the experimental value
of the binding energy of an electron with a hydrogen atom which is
equal to 0.75eV . So our result is exactly equal to the experimental
value [12], which also confirms the validity of formulas (18) and (19).

The second example of the efficient application of formulas (18)
and (19) can be the explanation of the chemical inactivity of a He
atom. In Fig. 4, we show the process of successive addition of elec-
trons to the nucleus of He. As seen, the nucleus of He with three
electrons is an energetically unstable structure as compared with the
”nucleus of He – two electrons” system. The difference in the posi-
tion of their potential wells is 7.7eV . This means physically that the
presence of the third electron near the nucleus of He is unfavorable
by energy. For this reason, the atoms of He do not participate in
chemical reactions, which explains its chemical inertness.

Thus, we have proved that formulas (18) and (19) represent quite
properly the potential energy of the system including a nucleus and
two and three electrons.

5 The energy of the binding of electrons in atom
of beryllium and ions similar to it

A Be atom has four electrons. Therefore, the choice of the form of
a geometric figure formed by the electrons and the nucleus is a some-
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what more complicated problem than in the case of a He or Li atom.
Four electrons can be positioned in a plane in the form of a rhomb
and in space in the form of a three-dimensional tetrahedron. We will
compare these two versions by making calculations of the depth of
potential wells. That version will be preferable, whose potential well
will be deeper.

Let us represent a Be atom in the form of a tetrahedron, whose
vertices are occupied by electrons, and the nucleus is located at its
geometric center. In this model, the potential energy of a Be atom is
given by the formula

Ez4t = −4Ze2

r
+

4Γ
r

+
6e2

R
+

6A

R2
, (21)

where Z is the atomic number, R is the length of a tetrahedron edge,
i.e. the distance between electrons, and r is the distance of electrons
from the nucleus, r = 0.612R.

If we represent a Be atom in the form of a rhomb, whose vertices
are occupied by electrons, and the nucleus is located at its center,
then its potential energy is

Ez4r = −2Ze2

r1
+

2Γ
r2
1

−2Ze2

r2
+

2Γ
r2
2

+
4e2

R
+

e2

2r1
+

e2

2r2
+

4A

R2
+

A

(2r1)
2 +

A

(2r2)
2 ,

(22)
where R is the length of a rhomb edge, r1 and r2 are two possible
distances of electrons from the nucleus. Here, the following relations
hold: r1 = R sinα, r2 = R cos α, where α is the angle between a
rhomb edge and its bisectrix.

The calculations of the potential energies by formulas (21) and
(22) have shown that the model of a Be atom in the form of a rhomb
with an angle of 300 at a vertex is preferable. Figure 5 makes it
obvious. The potential well of curve 2 calculated by formula (22)
with an angle α of 150 is by 2 eV deeper than that of the potential
curve of a tetrahedron.

Moreover, the configuration of a Be atom in the form of a rhomb
agrees also with the modern quantum-mechanical ideas. Two first
electrons (1s) are positioned significantly closer to the nucleus than
two other (2s) electrons. That is, we have obtained a curious situa-
tion, where the classical model supplements the quantum-mechanical
one.
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In Table 1, we present the potential energies of a Be atom and
ions similar to it and the relevant experimental data [10]. The good
agreement of the calculated values with the experimental data can
be considered as a confirmation of the validity of the chosen model
of a Be atom.

6 The energy of the binding of electrons of atoms
of boron and carbon

As the starting premise for the choice of a geometric model of
atoms of boron and carbon, we take the crystal form of these sub-
stances into account. Assuming that atoms of B and C admit a close
packing, it is natural to assume that these atoms are in the forms of
a hexahedron and an octahedron, respectively.

Let us consider a B atom as a hexahedron, whose vertices are
occupied by electrons, and the nucleus is located at the geometric
center. In such a model, the potential energy is as follows:

Ez5 = −3Ze2

r1
+

3Γ
r2
1

− 2Ze2

r2
+

2Γ
r2
2

+
9e2

R
+

e2

1.633R
+

9A

R2
+

A

(1.633R)2
,

(23)
where Z is the atomic number, R is the length of a hexahedron edge,
r1 is the distance of the electrons positioned on the base plane of a
hexahedron from the nucleus, r1 = R/

√
3, and r2 is the distance of

the electrons, which are located at the vertices opposite from the base
of a hexahedron, from the nucleus, r2 = R/

√
2/3.

Let us consider a C atom as a octahedron, whose vertices are
occupied by electrons, and the nucleus is located at the geometric
center. The potential energy reads

Ez6 = −6Ze2

r
+

6Γ
r2

+
12e2

R
+

3e2

√
2R

+
12A

R2
+

3A(√
2R

)2 , (24)

where Z is the atomic number, R is the length of a octahedron edge,
r is the distance of the electrons from the nucleus, r = R/

√
2.

The results of calculations by formulas (23) and (24) are presented
in Table 1. We think that the attained accuracy allows us to assert
that the proposed models of atoms of boron and carbon are quite
adequate to the real situation.
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7 Conclusions

The purpose of the given work was to show that if the interac-
tion of electrons in an atom with a nucleus and between themselves
is represented in the form of binomial potentials, then the atoms
can be modeled by geometric figures (planar or three-dimensional
ones), which would give the possibility to calculate the energies of
the ground states of atoms and ions.

The results of calculations presented in Table 1 convince us in
the validity of the chosen geometric models and the above-presented
formulas. The comparison of the theoretical results and experimental
data allows us to believe that the proposed approach based on the
use of binomial potentials reflects correctly the interactions and the
spatial structure of electrons in atoms.

Our formulas allow one to calculate the curve of potential energy
for specific systems. This gives the possibility to determine the equi-
librium distances between particles and, by comparing the potential
wells, to give preference to that or another model. As an example,
we mention the choice of the configuration of electrons of a Be atom
or the search for the stable negative hydrogen ions.

The energy of the binding of an electron with a hydrogen atom
calculated by our formulas coincides exactly with the experimental
value (0.75 eV ).

The disagreements seen in Table 1 are apparently conditioned by
the neglect of both the interactions of nuclear magnetic moments
with electrons and the orientation of electrons as magnets relative to
the nucleus and to one another in the calculations. But these errors
can be referred to the second-order effects in view of their absolute
values.

On the whole, we believe that the purpose of our work is attained.
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Figure 1: Electron-proton interaction energy versus the distance be-
tween particles for the binomial potential (1) ——, for the Coulomb
potential - - - , and for their sum − − −.
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Figure 2: Comparison of the calculated effective scattering cross-
sections of electrons with energies of 400 and 188 MeV (the contin-
uous curve) with the experimental data (points) taken from [9].
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Figure 3: Negative hydrogen ion. The potential energy of one (1),
two (2), three (3), and four (4) electrons.
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Figure 4: Atom of helium. The potential energy of one (1), two (2),
three (3), and four (4) electrons.
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Figure 5: Potential energies of electrons interacting with the nucleus
and with one another in an atom of beryllium: 1 - the model of a
tetrahedron, 2 - the model of a rhomb with an angle of 300 at a
vertex.
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Comment on
THE ENERGY OF THE BINDING OF

MULTIELECTRONIC
STRUCTURES IN THE FIELD OF BINOMIAL

POTENTIAL

 Lukasz Bratek
H. Niewodniczański Institute of Nuclear Physics

Kraków, Poland

The Gudym and Andreeva model belongs to the class of models
devised to explain a very narrow set of physical facts. Their model
gives binding energies of several atoms and their ions.

Sometimes it may be useful to have a prescription for quick calcu-
lation of certain physical characteristics of some system – generalized
Balmer’s formula for the emission spectrum of hydrogen is an exam-
ple – especially when it can be derived from a simple unifying idea
with minimum number of free parameters. Some of such ideas may
be more or less bizarre, sometimes quite interesting, like for exam-
ple the Kepler’s model described in his Mysterium Cosmographicum
[1], but usually they have no physically important content. Other
ideas, such as the Newton’s law of gravitation or the Bohr’s ’quan-
tum condition’, were important for the development of science and
our understanding of nature. I am thoroughly convinced that the
Gudym and Andreeva phenomenological model belongs to the first
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kind of funny toy models which are interesting as such, and, at the
same time, carry no interesting message for today’s physics.

Gudym and Andreeva propose a classical procedure of modelling
binding energies of electrons in the six lightest atoms and their pos-
itively charged ions. In my opinion, the Authors’ argumentation in
many places is vague or thoroughly wrong, at least from the point of
view of our understanding of contemporary physics. I discussed some
of my objections in my comment to the Authors’ previous paper [2]
and I refer the interested reader there. I showed that the binomial po-
tential cannot be treated seriously as a replacement for the Coulomb
proton-electron interaction: among other things, the predicted emis-
sion spectrum of hydrogen atom with the binomial potential would
be drastically different from that observed.

I have alluded above to the Kepler model not without cause. In
some respects the Gudym and Andreeva model resembles it much.
They start their paper with discussion of hydrogen. They consider
binomial potential for the interaction of electron with proton, and
determine two free parameters of the potential by finding its mini-
mum corresponding to Bohr’s atomic units, assuming simultaneously
the ground state electron to be at rest with respect to the nucleus.
The physical nature of the binomial potential is not explained by the
authors. To me, the only reason for using it, is to have the elec-
tron’s potential energy with a minimum at rest and with the same
asymptotics as Coulomb potential. For the other five atoms, by in-
cluding also Coulomb and ’magnetic’ interactions between electrons,
and introducing additional two free parameters, they assume that
electrons are located at rest on vertices of certain geometric figures
that allow for static configurations with minimum energy. These are
respectively, a line segment for helium (+1 free parameter measur-
ing ’magnetic’ coupling of two electrons), an equilateral triangle for
lithium, a rhombus that is energetically more preferred than tetra-
hedron for beryllium (+ 1 free parameter measuring the rhombus’
inclination), hexahedron for boron and octahedron for carbon. In
each case the nucleus is located in the center of symmetry and sizes
of these atoms are determined by the minimum of energy. The ’mag-
netic’ coupling constant of the ’magnetic’ potential is determined by
averaging the respective values obtained by comparison with exper-
imental binding energies of electrons in helium and lithium. This
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potential has nothing to do with interaction of magnetic dipoles, and
has no counterpart in Maxwell’s electromagnetic theory. However,
this pure phenomenology gives binding energies of electrons in these
atoms and ions, which are comparable with the experimental values.

The fact that by a minimization of some ansatz potentials with
several free parameters (plus symmetry arguments), one may recon-
struct with finite accuracy some set of numbers, should not astonish.
That such procedure approximates binding energies of few simple
atoms is rather an interesting observation. The Authors have not
constructed ground states of other atoms, they tabulated only some
numbers for nitrogen and oxygen. It is natural that one would want to
see some comparison of prediction of the model with binding energies
of other atoms and, more importantly, with their emission spectra.
Only such comparison can decide about predictive power of a model.
I have an impression that this will be impossible without introducing
a very large number of other effective potentials with free parameters
– counterparts of ’epicycles’.

From the point of view of quantum chemistry the problem of find-
ing binding energies of electrons in atoms and ions is equivalent to
finding energy spectrum of suitable Hamiltonians. The ’only’ prob-
lem in finding the spectra is of computational nature rather than
conceptual. Therefore, there is no need of inventing new physics of
ionization energies. At the same time one should not forget that
quantum electrodynamics solves these and many other problems of
atomic physics with unprecedented precision, and that the only free
parameters it requires are: the fine structure constant, two dimen-
sional constants ~ and c, and masses of the proton and electron (if
other kinds of particles are not taken into account).
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determine ratios of the spheres’ radii – quite convincing idea,
isn’t it?
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