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Plane-Strain Surface Waves in a 
Laminated Composite 
Elastic wave propagation in plane strain in a periodically layered half space is 
considered, with the layering parallel to the bounding traction-free plane. Attention 
is focused on surface waves of the Rayleigh-type propagating parallel to the 
bounding plane. It is found that such waves are highly dispersive and that higher 
branches may be discontinuous. 

Introduction 
We are concerned here with a periodically layered half 

space which is formed by an infinite number of cells and 
bounded by a traction-free plane which is parallel to the 
layering, whose location with respect to the cell structure, 
however, is arbitrary. Each cell consists of two layers of 
different materials and different thicknesses, perfectly 
bonded together, which are, however, assumed to be 
homogeneous, isotropic, and linearly elastic. 

In considering propagation of horizontally polarized shear 
waves (i.e., SH waves involving a state of antiplane strain) it 
has been recently shown [1-3] that there exist a new class of 
surface waves which, like Love waves, propagate along the 
free plane of the layered composite described in the foregoing. 
A method was presented for deriving these horizontally 
polarized shear-wave solutions from plane-wave solutions by 
applying Floquet's theorem to an infinite periodically layered 
medium [4]. 

It is the purpose of the present work to consider the 
propagation of compressional and vertically polarized shear 
waves (i.e., P and SF waves involving a state of plane strain). 
The work is based on results of recent analyses of wave 
solutions in plane strain obtained for an infinite layered 
medium, again by applying Floquet's theorem [5-7] and 
summarized in the next section. 

Emphasis is placed on determining properties of Rayleigh-
type surface waves propagating parallel to the bounding 
plane. For this purpose, an infinite periodically layered 
medium is considered first and the associated dispersion 
equation is briefly discussed. Next, the condition is imposed 
that some plane parallel to the layering be traction-free, which 
leads to the problem of reflection at a free boundary. Dif­
ferent types of waves in a half-space are discussed in the 
folowing section, and then narrowed down to a consideration 
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of surface waves. The presentation concludes with an analysis 
of the properties of the lowest, and thus most interesting 
branch of the surface wave spectrum. 

Periodically Layered Medium 
The system considered consists of an infinite sequence of 

two alternating layers, each of which is linearly elastic, 
homogeneous, isotropic, and perfectly bonded to the ad­
joining layers. A unit cell is defined as the union of any two 
adjacent layers. The properties of two lamellae of a typical 
unit cell will be distinguished by using simple (unprimed) and 
primed notation: Lame's elastic constants X, n; X', fi', 
thicknesses 2h, 2h' and densities p\ p' (Fig. 1). 

In the sequel, the numerical values assigned to these con­
stants will be such that the phase velocities in the primed layer 
will be greater than in the unprimed layer. For this reason the 
primed layer will be called the fast layer, while the unprimed 
layer will be called the slow layer. 

The most general two-dimensional motion in such a 
medium uncouples in motions in plane strain and in antiplane 
strain. Each of these has been discussed recently in [4-7], and 
the dispersion equations have been derived. In the following, 
steps leading to the derivation of the dispersion equation in 
plane strain are summarized first. 

Let us consider a typical unit (Mh) cell and write the 
equations of motion for each layer in its own local coor-

2h 
d~T~ 
I 2 h ' 

*-M !$)-*» M 

Fig. 1 Nth unit cell 
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dinates. For the unprimed M h layer we have the 
displacements 

u = u(x,yN,t) -h<yN<h 

v = v(x,yN,t) 

In terms of the displacement potential <p and \j/ 

dip d\p 

ax dyN 

dip dip 

dyN dx 

The equations of motion are 

/ d'ip d'-ip \ 

* ( 

dx2 dyl 

d2\P d2\P 

pip 

) = P * dx2 dy% 

and their solution may be written as 

<p= (C, e'^NM+Ci e'^N'21') 

exp (fv — c2QO P waves 

,/,= ( c 3 e'™yN/2h + C4 e-'™W2A j 

exp (fr — c20r) SKwaves 

where 

2/i to 
fl = 

IT C2 

2h 
t=~kx 
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/3=J/Q 2 - f 2 
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(o>/c2)
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(w/Cl)
2~k2

x 

/= 
\-2v 

2 ( 1 - K ) 

(1) 

(2) 

(3) 

(4) 

(5) 

2/) 
( J X - c 2 0 0 ] 

Here u> is the frequency; kx is the wave number in the x 
direction; C,, . . . , C4 are arbitrary constants; f is the 
nondimensional wave number in the x direction; and a and /3 
are nondimensional wave numbers in the y direction for SV 
and P waves, respectively; v is Poisson's ratio. 

The expressions for displacements and the two needed 
components of stress are 

u= — (fC, e,v'Jw/2/! + fC, e-»PyNnh 
2h \ 

+ a C 3 e"
ayN'2h - a C 4 e " '™->w'2>< J exp | ^ - (p t - c2 QO | 

v= — (/3C, e"&yNi2h + $C2 e-iv(iyN'2» 
2h \ 

- JC3 e '™«/2 ' ' - fC4 e-/,ra'>'A'/2Mexp 

Tj(:y= ^ - ^ ^ C ^ f e " ^ ' 2 ' ' ^ ^ ^ ' ^ ^ 2 ' ' 

+ C3¥J, e ' ^ / ^ ' + O , e- ; , r aw / 2 ' ^exp| ^ ( f r -c 2Qf) 1 

r = ^ / (c{ip, e^N'2" + C2to, e-"^'2" 

- 2 a f C 3 eim^/2" + 2afC4 e-'w'Ujexp ^ - (fur-c2fiC) 1 

(6) 

where ^ = a2 - f2-
A similar procedure for the fast layer produces the 

corresponding solution for that layer. The expressions for the 
displacements and tractions are similar to those derived in the 
foregoing with the corresponding primed parameters 
replacing the unprimed ones. The continuity of the 
displacements and tractions across the interface of the two 
layers within a cell and across the interface of the two ad­
jacent cells supply eight equations. Periodicity of the coef­
ficients of the wave equations enable us to make use of the 
Floquet theorem and relate the solution in two adjacent cells. 
In this way the eight equations can be written only in terms of 
parameters of the M h unit cell. These are eight equations in 
eight unknowns, which, in this case, are the arbitrary con­
stants appearing in the general solution to the wave equations 
in each layer. They may be written in matrix notation as 

S - 0 -

$B_ 

2Y0fB-

yipB__ 
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(3B + 

2lKB+ 
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where 

A±~-

B±-

<pz 

T-

s\ ± -

B±-

<P' = 

6 = 

7 = 

2 
a = 

V = 

V = 

P = 

a' = 

= exp [ ± iira/2] 

=.exp[±/0/2] 

--*2-? 
= exp[;p??] 

= exp [ ± iira/2] 

= exp [ ± /7TjS/2] 

=«' 2 -r 2 

h' 

~T 
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v-' 
UP' C\ 

IX'P C'2
2 

\-2v' 

2 ( 1 - * ' ) 

= i r ( l+e ) 

= J « 2 Q 2 - i a = : 2/! 
7T 

/ 3 ' = J a 2 Q 2 / ' - r 2 = - J(o>/c{)2-kl (8) 

where ky is the Floquet wave number. 
For a nontrivial solution to exist, the determinant of the 

system must be zero, thus leading to the dispersion equation. 
This determinant has been expanded and is given in closed 
form in reference [7] as 

2T2[-L\{cacls+ca'c0,) + L2sasfi(\-ca'cll') 

+ Lisa'S/j' (1 —caCp) —L}caSgCa'Sp' —L6sac0sa' Cp' 

~Lscasl3sa' Cp' — LgsaCf)Ca>Sg' +(Llt + Ll2)caCgCa' Cp' 

+ 2-Lio'sVs/3'VV] + T(T2 + l ) x [ - Z 4 ( c a c a ' + ceCp>) 

+ Lsses^> +L6sasa' +L-,(caC0' +clJca>) + Lssfisa> 

+ Lgsasp>]+2T2Lu+(T* + l)Ln=0 (9) 

where 
ca = cos wet 

Cp = COS 7T/3 

ca' =cos 7ra'e 

Cp' = cos 7r/3'e 

s„ = sin 7ra 

Sp = sin irfi 

sa' =sin •KOL' t 

Sg> =sin 7r/3'e (10) 

Ll=2a^a'fi'P]P2P,P5 

L2 = a'l3'[(al3PlP2)
2 + (P4P5)

2} 

Z 3 =a/3[ (P 1 P 4 ) 2 +( a ' ^ ' J P 2 P 5 ) 2 ] 

L 4 =2 a /3a ' /3 'P ,P 5 P 3 ^6 

Z,5=aa'P3P6[(P,/3)2 + (P5/3')2] 

L6 = ^ ' P 3 P 6 [ ( P , a ) 2 + ( P 5 a ' ) 2 ] 

Z,7=2c*frx'/3'P3P6P2P4 

L 8 =a/3 'P 3 P 6 [ (P 2 /3a ' ) 2 +P 2 ] 

,Z.9=j3«' i '3P6[( / '2ai8. ' )2+^] 

Lw = (al3)2Pj+(aPa'l3')2Pi+Pi+(a'^)2Pi 

+ (P3P6)2[(a/3')2 + (a'ffl2] 

L1 1=a /3a')3 ' [(P1P5)2+(P2P4)2] 

L12 = a0a ' /3 ' (P 3 P 6 ) 2 
(11) 

and 

p ,= ( j 2 n 2 + 2 f 2 ( 7 - i ) 

P 2 = - 2 f ( 7 - l ) 

P 3 = 7fl2 

A = n2r 2 (7 - i )+f i 2 ( f f 2 -T>] 

P 5 = 7 f i 2 - 2 f 2 ( 7 - l ) 

P 6 = a2Q2 

T2 = cos 2pri + / sin 2/7ij 

T3 +T=2cos/77j(cos2/7r) + /sin2p?)) 

T4 + 1 = 2 cos 2prj (cos 2pt\ + i sin 2p?;) 

r2 +1 =2cosj9j)(cospij + /sinp'i7) 

(r2 + l)2=4cos2p?;(cos2/?Tj + /sin2/?j/) (12) 

Discussion of the Dispersion Equation 

Equation (9) is the dispersion equation for the propagation 
of harmonic waves in a periodically layered infinite medium, 
which relates the frequency Q to the two wave numbers f and 
17. It is a fourth-order equation in r = e'1"1 and therefore has 
four roots in T. AS can be seen from this relation the roots for 
17 are periodic, such that if TJ is a root, 17 + In/ (1 + e) (« = 1, 
2, 3, . . . ) is also a root. The basic period is, therefore, 
2/(1 + e). The four nondimensional Floquet wave numbers 
obtained for a pair of fi, f can be categorized as 

(0 1/1, - vi, 12. - ^2 
171,172 real numbers 
0 < 17, < 1/(1 + e), 0 < T?2 < 1/(1 + e) 

(ii) 171, - »/i, T72, »72 

J71 real number, ?72 complex number 
0 < 17, < 1/(1 + e) 
real part of 17 2 = Oor 1/(1 + e) 

("0 Vi,V\<V2, V2 
r/i, »72 complex numbers 
real part of 171 = Oor 1/(1 + e) 
real part of ?j2 = 0 or 1/(1 + e) 

(iv) ri, -1}, 17, - 17 
7] complex 
0 < real part of 17 < 1/(1 + e) (13) 

A bar designates the complex conjugate quantity. 
Consider a harmonic wave traveling in the layered medium 

in the state of plane strain with frequency Q and let the x 
component of the wave number be f. Equation (9) then gives 
the component of the wave number in the direction normal to 
the layers (the Floquet wave number 77). There are four 
Floquet wave numbers for a pair of Q, f numbers. In the case 
of wave propagation in a homogeneous medium it is known 
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that for a pair of Q, f numbers there are four wave number 
components in they direction, i.e., a, -a, ft - f t This shows 
the similarity between the two media with regard to harmonic 
wave propagation. 

Reflection of Waves at a Free Boundary 

To study the propagation of harmonic waves in a 
periodically layered half space we must derive the general 
expressions for rxy, ryy in infinite space and set them equal to 
zero at some plane parallel to the layering. Imagine that for a 
pair of numbers 0, J", (equation (9)) is solved and the four 
wave numbers in the direction normal to the layers are ob­
tained. The system (7) can be solved for each triplet 0 - f - r/ 
and the expressions for rxy, ryy can derived. 

The general expressions for rxy and ryy will be the super­
position of the four solutions, each corresponding to one 
Floquet wave number. In the soft layer we obtain 

rxy = (Cft + Df, +Ef5 +Ff1) e x p [ ^ - ( f r - c 2 f t o ] 

Tyy = (C/2 + DfA + Ef6 + Ff8) exp 
ITT 

~2h 
(&-c2nt) ] (14) 

where C, D, E, and Fa re arbitrary constants and/} = /} (ft, f, 
-V). J - 1, 8. In the stiff layer/} must be replaced by/- . 

The expressions for tractions at a cell a distance nd {n = 1, 
2, 3, . . . ) away from the cell in which the solution was 
obtained are, considering the Floquet theorem, 

Txy = \cf\ e'""1" +Dfi e-'Pii" +Efs e
iprw> 

+Ff1 e-*>w) e x p [ ^ - (Jx-c 2Qf)] 

lyy = \Cf2 e*"i" +DfA e-'Pii" +Ef6 eipv 

+FA e-**») e x p [ ^ - (fr-c2Qt)] (15) 

The expressions for T'xy and ryy can be obtained for replacing 
fj by fj. Thus having the solution in one cell is tantamount to 
having the solution in all cells. 

Imagine now that at a certain location yN = y% in the slow 
layer the tractions vanish 

Cff+Dff+Eff+Fff^O 

Cf2*+Df:+Ef6*+Ff£=0 (16) 

w h e r e / ; = /}(ft, f, y%), j = 1, 8. By setting E = 0 the 
following wave system can be envisaged. An incident wave 
with the y component of the wave number r)l and amplitude C 
is reflected as two waves having T;,, 172 a s wave number 
components in the y direction and D and F as their am­
plitudes, respectively. 

C / ; + Z > / 3 * + F / 7 ' = O 

Cf2*+Df4*+Ffi=0 

mi -MI „ 
D = 

F= 

3/8 ~JIJA 

fm-ftft 
c (17) 

JlJS -J1J4 

By setting C = 0, another system of waves can be envisaged 
which can be similarly described. An incident wave with y 
component of the wave number TJ2 and amplitude E is 
reflected as two waves having 1/,, u2 as y components of the 
wave numbers and D and Fas amplitudes, respectively. 

Dff+m = 

Df;+Fft = 

-Ef5* 

D=-
5J8 ~JeJi 

J3J8 ~~JIJA 

J3J8 ~"JlJ4 
(18) 

Consider the equation 

/ 3*/ 8*-/7*/ ;=o (19) 

The expression on the left-hand side of this equation is the 
determinant of the system of equation (17) or (18). For a 
solution to exist it must be nonzero. If it is zero, however, by 
setting C and E equal to zero in the systems (17) and (18), 
respectively, we obtain the following homogeneous system of 
equations 

Df3*+Ff7*=0 

Df4*+Ffi=0 (20) 

F=- IL 
fi* 

D 

T , , = (D/3 + ^ / 7 > e x p [ ^ - ( t * - c 2 Q o ] (21) 

T ^ = ( £ » / 4 + F / 8 ) e x p [ ^ - ( f r - c 2 0 0 ] 

For the wave represented by the preceding system to decay 
away from the surface, both 77, and rj2 must have imaginary 
parts. It has been found that in the domains of the ft— f plane 
where equation (19) is valid, the foregoing condition is 
satisfied, which means system (20) represents a surface wave 
traveling in the layered medium. Equation (19) is the 
dispersion relations for that wave. 

Types of Waves in a Half Space 

In the case of harmonic wave propagation in the 
homogeneous half space, it is noted that the ft— f plane can be 
divided into three regions, in each of which certain types of 
waves travel. The regions are separated by the P line ((3 = 0) 
and by the SV line (a = 0). A similar division can be in­
troduced in the ft— f plane for the layered half space. Here the 
lines of division are given by 77, =0,171 = 1/(1 + e)» V2 = 0, 
772 = 1/(1 + e). These curves represent wave motions in the 
infinite layered medium parallel to the layers. The four types 
of such curves correspond to the symmetry or antisymmetry 
with respect to the centerline of the displacements u and u' in 
the soft or fast layers, respectively. With respect to the roots 
of equation (7) region / corresponds to the category (/) of 
roots, region 7/ corresponds to the category (it), and region III 
corresponds to categories {Hi) and {iv). Region Ilia 
corresponds to category {Hi) of the roots of equation (7) and 
region 111b corresponds to category {iv) of these roots. As can 
be seen from Fig. 2 between the boundaries of region Illb and 
II there may be regions that correspond to category (/) of 
roots. On the boundaries of region lllb the two Floquet wave 
numbers are equal. 

The computation was carried out for the flowing values of 
the parameters 

7 = 0.02 

a2=0.06 

e = 4 

v = 0.3 

e '=0.35 
In the layered half space for points in region /(Fig. 2), both 

Floquet wave numbers 77! and TJ2 are real which means 
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a REGION I 

E l REGION II 

D REGION Ilia 

• REGION Ml b 

Fig. 2 Regions of SI - f plane 

propagation of bulk waves in the half space. For points in 
region // either rjj orij2 has an imaginary part, which means 
an incident bulk wave reflects as a bulk wave and as a surface 
wave. For points in region III both t)x and -q2

 n a v e imaginary 
parts. Therefore, an incident wave grows away from the 
surface while the two reflected waves decay. The reflection 
patterns described in the foregoing are governed by systems of 
equations (17) or (18). 

It is only in region III, where the two reflected waves decay 
that we expect the determinant of the systems (17) or (18) to 
vanish along some curves so that a system of surface waves 
may result, similar to Rayleigh waves in a homogeneous 
medium. As seen from Fig. 2, the regions II and 77/ have 
multiple boundaries and since surface waves can exist only in 
region III we expect the dispersion curve for such surface 
waves to start and end on the boundaries of the two regions. 

Surface Waves in Layered Medium 
The system of equations (17) and (18) is solvable if the 

determinant of the coefficients does not vanish. However, if it 
vanishes the situation is similar to the vanishing of the 
determinant of systems in a homogeneous medium which 
resulted in Rayleigh waves. The Rayleigh line represents 
points along which the determinant vanishes. 

In the present investigation curves were sought along which 
a similar phenomenon occurs in the layered half space. 
Equation (19) was solved numerically and the dispersion curve 
thus obtained is shown in Fig. 3, and on a magnified scale in 
Fig. 4. The dispersion curve shown in this figure is for a 
traction-free plane atyN = —h. 

As can be seen from Fig. 3, there is an infinite number of 
branches for the dispersion curve. Whenever the dispersion 
branches reach region II they come to an end. The deter­
minant is then no longer zero and the system of waves 
governed by equations (17) or (18) prevails. As one moves 
along a dispersion branch, the closer one gets to the end points 
the weaker is the decay rate and the deeper does the wave 
penetrate into the half space. At the end point itself a tran­
sition from surface waves to bulk waves occurs as region II is 
reached. 

For f = 0 the system of plane strain waves traveling in the 
layered half space and described by equation (7) decouples 

o. /. ' " 2. " 3. {" 

Fig. 3 Dispersion curve for surface waves. Slow layer at the surface. 

SURFACE WAVES 

0. .1 .2 .3 A .5 .ef 

Fig. 4 Dispersion curve for surface waves. Magnified view of part of 
Fig. 3. 

into its constituent parts, i.e., a P and as SV wave traveling 
normal to the layers. At such frequencies the traction-free 
surface repeats itself periodically. Therefore there is an in­
finite number of traction-free surfaces in contrast to the 
general case for nonzero f where there is only one traction-
free surface. 

As the frequency fi and the wave number f tend to zero the 
system of equations (7) must be solved in the vicinity of the 
origin. The phase velocity (which is the slope of the tangent to 
the dispersion curve at the origin) computed in this manner 
agrees with the one predicted by the effective modulus theory 
for a homogeneous, transversely isotropic medium [8-9]. For 
the parameters chosen in this paper, the slope at the origin is 
fi/f = 1.32. As f becomes large, depending on the location of 
the free surface, the lowest branch will tend to the Rayleigh 
line for the layer in which the free surface resides. As men­
tioned, Fig. 3 is for the case when the slow layer is the 
bounding top layer. Results for calculations when the fast 
layer is the bounding top layer are not given here, but may be 
found in reference [10]. 
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Fig. 5 Horizontal and vertical displacements of the first cell for SJ = Fig. 7 Horizontal and vertical displacements of the first cell for fi 
0.2 (point A in Fig. 3) 1.2 (point C in Fig. 3) 
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SLOW LAYER 
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Fig. 6 Horizontal and vertical displacements of the first cell for 11 
0.65 (point Bin Fig. 3) 

Analysis of the Lowest Surface Wave Branch 
To gain some insight into the features of the lowest branch 

of the surface wave, whose dispersion is given in Fig. 3, it is 
helpful to calculate the mode shapes and attempt to obtain the 
reasons for the dispersive behavior. To begin with, it is ob­
served from Fig. 3 that this lowest branch is continuous in the 
complete range 0 < £ < oo and is composed essentially of 
three segments. Typical points on each of the three segments 
are denoted by A, B, and C, respectively. Mode shapes for the 
top two layers, i.e., the top unit cell, are given in Figs. 5-7, for 
points A, B, and C, respectively. It is noted that at point A the 
fast layer appears to undergo simple bending, while at points 
B and C all motion is essentially confined to the top slow layer 
and the fast layer remains essentially undisplaced. 

These properties of modes of the lowest branch of the 

1. 2. 3. ^ 
Fig. 8 The superposition of dispersion curve of clamped-free, slow 
layer and free-free, fast layer 

surface wave suggest an analysis of dispersive properties of 
two much simpler systems in the expectation that these would 
be similar to those of the layered half space under discussion 
in the present paper. The two simple systems consists of: (A) a 
plate with traction-free faces, thickness 2h', and properties of 
the fast layer; (B) a plate of thickness 2h, one face traction-
free, the other face clamped, and the properties of the slow 
layer. Dispersion curves for these two plates are sketched in 
Fig. 8. It is noted that the lowest continuous curve, consisting, 
as £ increases, first of the lowest curve A and then of the 
lowest curve B, already greatly resembles the lowest 
dispersion curve of the layered half space, Fig. 3. The 
behavior near the origin is represented in magnified form in 
Fig. 9. Here the second mode of system A, namely, the lowest 
symmetric mode, as well as the second and third branches of 
the surface wave in the semi-infinite layered medium have also 
been included. 

This figure illustrates not only the closeness of the lowest 
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surface wave branch and the lowest asymmetric (bending) 
mode of the free-free stiff plates for low frequencies up to the 
first cut-off frequency of a surface wave branch (occurring 
for the third-lowest branch), but also the feature that the 
second lowest arid the third lowest branches of the surface 
wave are uncoupled by the lowest symmetric mode of the free-
free fast plate and the lowest mode of the clamped-free slow 
plate. 

Returning to Fig. 8 it is observed that the lowest curve B 
itself appears to consist of two parts separated by the ap­
proximate value of f = 0.5. It is thus tempting to investigate 
more closely the properties of those two regimes. With this 
aim in mind it is noted that system B, i.e., clamped-free layer 
of thickness 2h, inherently lacks symmetry, and thus its 
modes cannot be grouped into symmetric and asymmetric 
ones. To alleviate this undesirable feature we consider a 
substitute system consisting of a slow layer of thickness 4h 
clamped at both faces. This permits one to consider the lowest 
symmmetric and the lowest asymmetric modes of this plate, 
whose dispersion is plotted as curves 2 and 3 in Fig. 10. The 
lowest asymmetric mode of the free-free stiff plate is replotted 
in this figure, as well as the Rayleigh line for the slow 
material. It is observed that curves 2 and 3 represent, to a 
good accuracy, the uncoupled dispersion curves of the two 
lowest modes of system B of Fig. 8, as given by the two lowest 
curves in that figure. 

The lowest dispersion curve for surface waves in the layered 
medium has also been reproduced in Fig. 10 and it is seen that 
the desired result has been achieved to a larger extent: the 
behavior of the fundamental surface wave can now be 
physically understood over the whole range of wave number. 
For very long waves and while the wave length is larger than 
approximately twice the cell thickness d = 2h + 2h', the 
system behaves essentially as a free-free plate of thickness 
2h'. If the wave length is reduced further, to approximately 
the cell thickness d, the system is in the intermediate regime 
denoted by point B in Fig. 3 as discussed in the foregoing. For 
small wave lengths the system behaves first as one of the 
lowest modes of system B and then asymptotically approaches 
the Rayleigh line of the slow, top layer. 
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