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Abstract. The paper deals with Bianchi type III cosmological models filled

with perfect fluid and dark energy components. The two sources are assumed to

interact minimally so that their energy momentum tensors are conserved sepa-

rately. The exact solution of Einstein’s field equations is obtained by assuming

the expansion θ in the model is proportional to the shear (σ). This condition

leads to A = Bm, where A and B are metric coefficients and m is a constant.

The physical and geometrical behaviors of the models are also discussed.

PACS codes: 98.80.Cq, 04.30.Nk, 98.70Vc

1 Introduction

In the 1990’s two teams of astronomers, the Supernova Cosmology Project

(Lawrence Berkeley National Laboratory) and the High-Z Supernova Search

(international), were looking for distant Type Ia supernovae in order to measure

the expansion rate of the universe with time. They expected that the expansion

would be slowing, and it would be indicated by the supernovae being brighter

than their red shifts indicate. Instead, they found the supernovae to be fainter

than expected. Hence, the expansion of the universe was accelerating. In addi-

tion, measurements of the cosmic microwave background indicate that the uni-

verse has a flat geometry on large scales. Because there is not enough matter in

the universe either ordinary or dark matter to produce this flatness, the difference

must be attributed to a “dark energy” (DE). This same dark energy causes the ac-

celeration of the expansion of the universe. In addition, the effect of dark energy

seems to vary with the expansion of the universe slowing down and speeding

up over different times. The accelerating expansion of the universe is driven by

mysterious energy with negative pressure known as Dark Energy (DE). This was

observed with SNe [1], WMAP [2], SDSS [3, 4] and X-ray [5]. This accelera-

tion is triggered by more than 70% of dark energy. There are many proposals
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to explain the dark energy (DE). The nature of dark energy as well as of dark

matter is unknown, and many radically different models have been proposed,

such as: a tiny positive cosmological constant, quintessence [6-8], DGP branes

[9,10], the non-linear E(R) models [11,12], and dark energy in brane worlds,

among many authors [13-29]; the review articles [30,31]. Since the observa-

tion of small anisotropy in the microwave background radiation (CMB) [32] and

the large scale structures [3] it becomes clear that a pure Friedmann-Lemaitire-

Robertson-Walker (FLRW) cosmology could not explain all the properties of

the universe. It is, therefore, natural to consider anisotropic cosmological mod-

els that allow FLRW universes as special cases. Many cosmologists believe that

the simplest candidate for the DE is the cosmological constant (Λ) or vacuum

energy since it fits the observational data well. During the cosmological evolu-

tion, the Λ-term has the constant energy density and pressure p(de) = −ρ(de),

where the superscript (de) stands for DE. However, one has the reason to dislike

the cosmological constant since it always suffers from the theoretical problems,

such as the “fine-tuning” and “cosmic coincidence” puzzles [30]. That is why,

the different forms of dynamically changing DE with an effective equation of

state (EoS), ω(de) = p(de)/ρ(de) < −1/3 have been proposed in the literature.

Other possible forms of DE include quintessence, ω(de) > −1 [8], phantom,

[ω(de) < −1 [33], etc. While the possibility ω(de) ≪ −1 is ruled out by cur-

rent cosmological data from SN Ila (Supernovae Legacy Survey, Gold sample

of Hubble Space Telescope) [34,35], CMBR (WMAP, BOOMERANG) [36,37]

and large scale structure (Sloan Digital Sky Survey) data [38], the dynamically

evolving DE crossing the phantom divide line (PDL), ω(de) = −1, is mildly

favored. SN Ia data collaborated with CMBR anisotropy and galaxy cluster-

ing statistics suggest that −1.33 < ω(de) < −0.79 (see [4]). For instance,

quintessence models involving scalar fields give rise to time dependent EoS pa-

rameter ω(de) [39]. Recently dark energy model with variable EoS parameter

has been intensively studied [40-43].

In this paper, we have investigated the Bianchi type III models with perfect fluid

and DE components. This paper is organized as follows: In Section 2 the metric

and field equations. Section 3 deals with the exact solutions of the field equa-

tions, in Section 4 geometrical and physical behavior of the model are discussed.

Finally, concluding remarks have been given in Section 5.

2 The Metric and Field Equations

We consider the Bianchi type III space-time in the form

ds2 = dt2 −A2dx2 −B2e−2αx dy2 − C2dz2, (1)

where A, B and C are the scale factors (metric tensors) and functions of the

cosmic time t, α 6= 0 is a constant. The Einstein field equations in natural units

(8πG = c = 1) are
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Rij −
1

2
gijR = −Tij , (2)

where Tij = T
(m)
ij + T

(de)
ij is the overall energy momentum tensor with T

(m)
ij

and T
(de)
ij as a energy momentum tensor of ordinary matter and DE, respectively.

These are given by

T
(m) i
j = diag[ρ(m),−p(m),−p(m),−p(m)]

= diag[1,−ω(m),−ω(m),−ω(m)]ρ(m) (3)

T
(m) i
j = diag[ρ(de),−p(de),−p(de),−p(de)]

= diag[1,−ω(de),−ω(de),−ω(de)]ρ(de) , (4)

where ρ(m) and p(m) are respectively the energy density and pressure of the

perfect fluid component or ordinary baryonic matter while ω(m) = p(m)/ρ(m)

is its EoS parameters. Similarly, ρ(de) and p(de) are respectively the energy

density and pressure of the DE component while ω(de) = p(de)/ρ(de) is the

corresponding EoS parameters.

In a co-moving co-ordinate system, the Einstein field equations (2), with (3) and

(4) for the metric (1) subsequently lead to the following system of equations:

ȦḂ

AB
+
ȦĊ

AC
+
ḂĊ

BC
− α2

A2
= ρ(m) + ρ(de), (5)

...
B

B
+
C̈

C
+
ḂĊ

BC
= −ω(m)ρ(m) − ω(de)ρ(de), (6)

...
A

A
+
C̈

C
+
ȦĊ

AC
= −ω(m)ρ(m) − ω(de)ρ(de), (7)

Ä

A
+

...
B

B
+
ȦḂ

AB
− α2

A2
= −ω(m)ρ(m) − ω(de)ρ(de), (8)

α
( Ȧ
A

− Ḃ

B

)
= 0. (9)

Here, and in what follows, a dot indicated ordinary differentiation with respect

to t. The energy conservation equation T ij;j = 0 yields

ρ̇(m) + 3(1 + ω(m))ρ(m)H + ρ̇(de) + 3(1 + ω(de))ρ(de)H = 0, (10)

where H is the Hubble parameter.

The average scale factor R of Bianchi type III model is defined as

R = (ABCeαx)1/3. (11)

A volume scale factor is given by

R = (ABCeαx). (12)
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We define the generalized mean Hubble ’s parameter H as

H =
1

3
(H1 +H2 +H3), (13)

where H1 = Ȧ/A, H2 = Ḃ/B and H3 = Ċ/C are the directional Hubble

parameters Hi in the direction of x, y, and z, respectively. From (11)-(13), we

obtain

H =
1

3

V̇

V
=
Ṙ

R
=

1

3

( Ȧ
A

+
Ḃ

B
+
Ċ

C

)
. (14)

The physical quantities, i.e. the scalar expansion θ, the anisotropy parameter

Am, the shear scalar σ and the deceleration parameter q are defined as

θ = 3H, (15)

Am =
1

3

3∑

i=1

(∆Hi

H

)2

, (16)

where ∆Hi = Hi −H (i = 1, 2, 3),

σ2 =
1

2

( 3∑

i=1

H2
i − 3H2

)
=

3

2
AmH

2, (17)

q =
d

dt

( 1

H

)
− 1. (18)

3 Solution of the Field Equations

From equation (9), we get

A = mB, (19)

where m is a positive constant of integration. Using (19) in equations (5)–(9),

we obtain

Ḃ2

B2
+ 2

ḂĊ

BC
− α2

m2B2
= ρ(m) + ρ(de), (20)

B̈

B
+
C̈

C
+
ḂĊ

BC
= −ω(m)ρ(m) − ω(de)ρ(de), (21)

2
B̈

B
+
Ḃ2

B2
− α2

m2B2
= −ω(m)ρ(m) − ω(de)ρ(de). (22)

Now we have initially six variables (B, C, ω(m), ω(de), ρ(m), ρ(de)) and three

linearly independent equations (20)–(22). The system is thus initially undeter-

mined and we need additional constraints to close the system.
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First, we assume that perfect fluid and DE components interact minimally.

Therefore, the energy conservation equation of the two sources may be con-

served separately.

The energy conservation equation T
(m) ij

;j = 0 of the perfect fluid yields

ρ̇(m) + 3(1 + ω(m))ρ(m)H = 0, (23)

whereas the energy conservation equation T
(de) ij

;j = 0 of the DE component

yields

ρ̇(de) + 3(1 + ω(de))ρ(de)H = 0. (24)

The EoS parameter of the perfect fluid has been assumed to be constant.

ω(m) =
p(m)

ρ(m)
= const. (25)

Here ω(m) is a constant and lies in the interval ω(m) ∈ [0, 1]. Depending on its

numerical value, the ω(m) describes the following types of universe:

ω(m) = 0 (Dust), (25a)

ω(m) =
1

3
(Radiation universe), (25b)

ω(m) ∈ (1/3, 1) (Hard universe), (25c)

ω(m) = 1 (Zeldovich universe or Stiff matter). (25d)

Whereas ω(de) is allowed to be a function of the cosmic time, since the current

cosmological data from SN Ia, CMB and the large scale structures mildly favor

dynamically evolving DE crossing the PDL as mentioned in Section 1. Hence,

since ω(de)(t) has not been constrained, we still need one more constraint to

close the system. We assume that the expansion (θ) in the model is proportional

to the shear (σ). This condition leads to

B = Cn, (26)

where n (> 0) is a constant. According to Thorne [44], the observations of the

velocity red-shift relation for extragalactic sources suggest that Hubble expan-

sion of the universe is isotropic within about 30% range approximately [45,46]

and red-shift studies place the limit
σ

H
≤ 0.3 of the ratio of shear σ to Hub-

ble H in the neighborhood of our galaxy today. Collins [47] has discussed the

physical significance of this condition for perfect fluid and barotropic EoS in a

more general case. In many papers [42,48-50] this condition has been proposed

to find the exact solutions of cosmological models.

Subtracting Eq. (21) from (22), we get

B̈

B
− C̈

C
+
Ḃ2

B2
− ḂĊ

BC
− α2

m2B2
= 0. (27)
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Using (26), we get

(n− 1)
C̈

C
+ 2n(n− 1)

Ċ2

C2
− α2

m2C2n
= 0. (28)

Let Ċ = f(C), which implies that

C̈ = ff ′, (29)

where f ′ = df/dC.

Using (29), Eq. (28) becomes

d

dC
(f2) + 4n

f2

C
=

2α2

m2(n− 1)
C1−2n. (30)

After integration, (30) is reduced to

f =
(dC
dt

)
=
( α2

m2(n2 − 1)
C2(1−n) + l0C

−4n
)1/2

, (31)

where l0 is an integrating constant. From (31), we obtain

t =

∫
dC√

α2

m2(n2 − 1)
C2(1−n) + l0C−4n

. (32)

Thus the metric (1) is reduced to

ds2 =
dC2

α2

m2(n2 − 1)
C2(1−n) + l0C−4n

−m2C2ndx2−C2ne−2αxdy2−C2dz2.

(33)

After using the suitable transformation of co-ordinates the above metric is writ-

ten as

ds2 =
dT 2

α2

m2(n2 − 1)
T 2(1−n) + l0T−4n

−m2T 2ndx2−T 2ne−2αxdy2−T 2dz2,

(34)

where C = T and

dt =
dT

α2

m2(n2 − 1)
T 2(1−n) + l0T−4n

.

The solution of (34) is not tenable for n = 1.
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4 Geometrical and Physical Significance of the Model

The rate of expansion in the direction of x, y and z is given by

Hx = Hy = n
( α2

m2(n2 − 1)
T−2n + l0T

−2(2n+1)
)1/2

, (35)

Hz =
( α2

m2(n2 − 1)
T−2n + l0T

−2(2n+1)
)1/2

. (36)

Hence the average generalized Hubble’s parameter (H) is given by

H =
2m+ 1

3

( α2

m2(n2 − 1)
T−2n + l0T

−2(2n+1)
)1/2

. (37)

We see that the dynamicalH , Hx, Hz are infinite for earlier time and converges

to zero as T → ∞.

The energy density (ρ(m)) of perfect fluid, DE density (p(de)) and Eos parameter

(ω(de)) of DE, for model (34) are found to be

ρ(m) = l1T
−(2n+1)(1+ω(m)), (38)

ρ(de) =
(2n+1)α2

m2(n2 − 1)
T−2n+n(n+2)l0T

−2(2n+1) − l1T
−(2n+1)(1+ω(m)), (39)

ω(de) =

( −α2

m2(n2 − 1)

)
T−2n+n(n+2)l0T

−2(2n+1) − l1ω
(m)T−(2n+1)(1+ω(m))

(2n+1)α2

m2(n2 − 1)
T−2n+n(n+2)l0T−2(2n+1) − l1T−(2n+1)(1+ω(m))

.

(40)

It is noted that the parameters ρ(m) and ρ(de) start off with extremely large values

and continue to decrease with expansion of the universe. From equation (40)

with ω(m) = 1, we observe that at cosmic time

T =
[ −nα2

m2(n2 − 1)(n(n+ 2)l0 − l1)

]2(n+1)

, ω(de) = −1, (41)

(i.e., cosmological constant dominated universe), when

T <
[ −nα2

m2(n2 − 1)(n(n+ 2)l0 − l1)

]2(n+1)

, ω(de) > −1, (42)

(i.e. quintessence) and when

T >
[ −nα2

m2(n2 − 1)(n(n+ 2)l0 − l1)

]2(n+1)

, ω(de) < −1, (43)
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(i.e. super quintessence or phantom fluid dominated universe), representing the

different phases of universe throughout the evolving process.

By using Eqs. (15)–(18), we can express the physical quantities

V = me−αxT 2n+1, (44)

θ = (2n+ 1)
( α2

m2(n2 − 1)
T−2n + l0T

−2(2n+1)
)1/2

, (45)

Am =
2(n− 1)2

(2n+ 1)2
, (46)

σ2 =
(n− 1)2

3

( α2

m2(n2 − 1)
T−2n + l0T

−2(2n+1)
)
. (47)

From Eqs. (46) and (47), we obtain

σ

θ
=

n− 1√
3(2n+ 1)

. (48)

From the above results, it can be seen that the spatial volume V is zero at initial

epoch and increases as T → ∞. The expansion and shear scalar are infinite at

T = 0 and decreases with the increase in time. Thus the universe starts evolving

with zero volume at initial epoch with infinite rate of expansion which slows

down for the late time of the universe. Since σ/θ = const. (from early to late

time), the model does not approach isotropy through the whole evolution of the

universe.

The value of deceleration parameter (q) is found to be

q = −1 −
3
[ nα2

m2(n2 − 1)
T−2n + (2n+ 1)l0T

−2(2n+1)
]

(2n+ 1)
[ α2

m2(n2 − 1)
T−2n + l0T−2(2n+1)

] . (49)

From (49), we conclude the following three cases:

(i) For T =
[ l0m2(1 − n2)(2n+ 1)

nα2

] 1
2(n+1)

, q = −1, (50)

i.e., we get the largest rate of acceleration of the universe;

(ii) For T <
[ l0m2(1 − n2)(2n+ 1)

nα2

] 1
2(n+1)

, q < 0, (51)

i.e., we get the accelerating model of the universe.

(iii) For T >
[ l0m2(1 − n2)(2n+ 1)

nα2

] 1
2(n+1)

, q > 0, (52)

i.e., we get the a model is in decelerating phase.
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5 Conclusion

We have investigated the role of DE with variable EoS parameter in the evo-

lution of Bianchi type III space-time by taking into account that the expansion

scalar (θ) is proportional to shear (σ). We have discussed some physical and

geometrical aspects of the model in detail. The universe does not approach to

isotropy. Also our model does not stand for n = 1. We obtain the accelerating

model of the universe.
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