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In this paper, an indirect adaptive fault-tolerant𝐻
∞
controller designmethod is proposed for networked systems in the presence of

actuator saturation. Based on the on-line estimation of eventual faults, the parameters of controller are being updated automatically
to compensate the fault effects on systems.The designs are given in linearmatrix inequalities (LMIs) approach, which can guarantee
the disturbance tolerance level and adaptive𝐻

∞
performances of networked systems in the cases of actuator saturation and actuator

failures. An example is given to illustrate the efficiency of the design method.

1. Introduction

With the rapid developments in network technologies, more
and more communication networks are used in control
systems; especially, the stability analysis for systems with
time delays have become an active research area. However,
networked control systems with actuator saturation and time
delays are often encountered in many practical systems such
as electrical heaters and long transmission lines in pneumatic,
hydraulic, and rolling mill systems. Since the existence of
time delay and actuator saturation in a physical system often
induces instability of poor performance, research on time
delay systems with actuator saturation is a topic of great
practical and theoretical importance. If the saturation and
time delay are ignored in system analysis and design, the
performance of the overall system can be degenerated. More
seriously, saturation and time delay can cause instability of
the overall system. Therefore, over the last several decades,
many researchers have considered various control problems
of disturbance rejection for linear systems subject to actuator
saturation [1–11]. Papers [4, 5] carried out the 𝐿

2
gain

analysis and minimization. Although there are plenty of
papers that are devoted to dealing with different problems
for systems with actuator saturation, the main difference and
difficulty lie in their treatment of saturation nonlinearity.
In paper [2], authors gave a method for maximization of

an ellipsoid which is invariant under input saturation, but
persistent disturbances. The works of [1, 3, 6–8] consider
the situation where disturbance are bounded in energy. The
works of [1, 6, 7] formulated and solved the problem of
stability analysis and design. In [9, 10], authors presented
LMI-based methods for regional stability and performance
of linear antiwindup compensators for linear control systems.
[12] presents a method for the analysis and control design
of linear systems in the presence of actuator saturation and
𝐿
2
disturbances. During the last few years, problems about

actuator saturation have been extended to many other fields
of automatic control, such as singular systems [13], systems
with parameters uncertainty [14], Markovian jump systems
[15], decentralized control systems [16], and Hamiltonian
systems [17].

Time delays are frequently encountered in almost all
networked systems. Since the existence of a delay in a phys-
ical system often induces instability of poor performance,
research on time-delay systems is a topic of great practical and
theoretical importance. During the last decade, the control
problem of systems with time delay has received considerable
attention.Themain methods can be classified into two types:
delay-independent ones and delay-dependent ones.

On the other hand, fault tolerant has become a hot
research area because of its importance in practical
engineering [18–28]. And the design approach can be
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broadly classified into two types: Passive approach andActive
approach. A passive fault-tolerant controller commonly has
a simple structure and is easily implemented [18–22].
The system performances in normal and fault modes can
be optimized. Some of these active fault-tolerant control
methods may readjust controller parameters or change
controller structure to compensate the fault effects on
systems. Some of these methods include a strategy involving
a fast subsystem for fault detection and isolation (FDI) and a
supervisory system that chooses the corresponding controller
for a particular type of fault. Most of the results in adaptive
fault-tolerant control are based on model reference adaptive
control (MRAC) [29–31], but the disturbance attenuation
performances of systems have not been addressed yet within
the MRAC framework. Paper [32] considered the problem of
adaptive reliable controller via state feedback and dynamic
output feedback, respectively, for linear time-delay systems
against actuator faults. However, when actuator saturation
problem is considered, the methods of [32] cannot be used.

As we all know, actuator faults and saturation always hap-
pen at the same time for networked systems. However, noting
all above results, there is nowork that deals with this problem.
There are only a few papers that considered the problems
about systems with actuator saturation and faults [13, 33, 34].
Motivated by the above observations, this paper studies the
problem of designing adaptive fault-tolerant 𝐻

∞
controllers

for networked systems with actuator saturation. The designs
are developed in the framework of LMIs approach, which can
guarantee the disturbance tolerance level and adaptive 𝐻

∞

performances of networked systems in the cases of actuator
saturation and actuator failures. The difference between this
paper and some existing results is that in this paper the
fault tolerant and saturation are considered at same time for
networked systems.

The remainder of this paper is organized as follows.
Section 2 introduces notation to be used in the paper, and
problem statement is given in it. An adaptive fault-tolerant
𝐻
∞

controller design method is described for networked
system in Section 3. In Section 4, an example is given to
illustrate the efficiency of the design method. The paper will
be concluded in Section 5.

2. Problem Statement and Preliminaries

In this paper, the following LTI plant will be considered:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵

1
𝜔 (𝑡) + 𝐵

2
𝜎 (𝑢) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷 sat (𝑢) ,

𝑥 (𝑡) = 𝜙 (𝑡) 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 and 𝑥

𝑡
is the plant state at time 𝑡 defined

by 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0], sat(𝑢) ∈ 𝑅

𝑚 is the saturated
control input, 𝑧(𝑡) ∈ 𝑅

𝑠 is the regulated output, and 𝜔(𝑡) ∈

𝑅
𝑑 is an exogenous disturbance in 𝐿

2
[0,∞], respectively.

𝐴, 𝐴
1
, 𝐵

1
, 𝐵

2
, 𝐶, and 𝐷, are known constant matrices of

appropriate dimensions. For simplicity only, we take single
delay 𝜏(𝑡). The results of this paper can be easily applied to
the case of multiple delays.

The following case for time-varying delay 𝜏(𝑡) is consid-
ered. That is, 𝜏(𝑡) is differentiable funcion

0 ≤ 𝜏 (𝑡) ≤ ℎ, �̇� (𝑡) ≤ 𝑑 < 1, satisfying ∀𝑡 ≥ 0, (2)

where 𝑑 is an upper bound on the derivative of 𝜏(𝑡).
In this paper, we formulate the fault-tolerant control

problem by using the following model form which is consid-
ered in [19, 22]:

𝑢
𝐹

𝑗𝑞
(𝑡) = (1 − 𝜌

𝑞

𝑗
) 𝜎 (𝑢

𝑗
(𝑡)) , 0 ≤ 𝜌

𝑞

𝑗

≤ 𝜌
𝑞

𝑗
≤ 𝜌

𝑞

𝑗
,

𝑗 ∈ I [1, 𝑚] , 𝑞 ∈ I [1, 𝐿] ,
(3)

where 𝑢𝐹
𝑗𝑞
(𝑡) represents the signal from the 𝑗th actuatorwhich

has failed in the 𝑞th fault mode, 𝜌𝑞
𝑗
is an unknown constant,

the 𝐿 is the total fault modes, and 𝜌
𝑞

𝑗

and 𝜌
𝑞

𝑗
represent the

lower and upper bounds of 𝜌𝑞
𝑗
, respectively. Denote that

𝑢
𝐹

𝑞
(𝑡) = [𝑢

𝐹

1𝑞
(𝑡), 𝑢

𝐹

2𝑞
(𝑡), . . . , 𝑢

𝐹

𝑚𝑞
(𝑡)]

𝑇

= (𝐼 − 𝜌
𝑞

) 𝜎 (𝑢 (𝑡)) ,

(4)

where 𝜌
𝑞

= diag[𝜌𝑞
1
, 𝜌
𝑞

2
, . . . , 𝜌

𝑞

𝑚
], 𝑞 ∈ I[1, 𝐿]. Considering

the lower and upper bounds 𝜌𝑞
𝑗

and 𝜌
𝑞

𝑗
, the following set can

be defined:

𝑁
𝜌
𝑞 ={𝜌

𝑞

𝜌
𝑞

= diag [𝜌
𝑞

1
, 𝜌
𝑞

2
, . . . , 𝜌

𝑞

𝑚
] , 𝜌

𝑞

𝑗
= 𝜌

𝑞

𝑗

or 𝜌
𝑞

𝑗
=𝜌

𝑞

𝑗
} .

(5)

For convenience, the following uniform actuator fault
model is exploited:

𝑢
𝐹

(𝑡) = (𝐼 − 𝜌) sat (𝑢 (𝑡)) , 𝜌 ∈ {𝜌
1

⋅ ⋅ ⋅ 𝜌
𝐿

} , (6)

where 𝜌 is described by 𝜌 = diag[𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑚
]. The

following definitions and lemmas will be used in the sequel.

Definition 1 (see [33]). Consider the following system:

�̇� (𝑡) = 𝐴
𝑎
(�̂� (𝑡) , 𝜌) 𝑥 (𝑡) + 𝐵

𝑎
(�̂� (𝑡) , 𝜌) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑎
(�̂� (𝑡) , 𝜌) 𝑥 (𝑡) , 𝑥 (0) = 0,

(7)

where 𝜌 is parameter vector and �̂�(𝑡) is a time-varying
parameter vector to be chosen. Let 𝑟 > 0 be a given
constant, then system (7) is said to be with an adaptive 𝐻

∞

performance index no larger than 𝑟 if for any 𝜀 > 0, there
exists a �̂�(𝑡) such that the following inequality holds:

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ 𝑟
2

∫

∞

0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡 + 𝜀. (8)

Definition 2. For a matrix 𝐶
𝑐𝑙

∈ 𝑅
𝑚×𝑛, denote the 𝑗th row of

𝐶
𝑐𝑙
as 𝐶

𝑐𝑙𝑗
, and define

℘ (𝐶
𝑐𝑙
) = {𝑥 ∈ 𝑅

𝑛

:






𝐶
𝑐𝑙𝑗
𝑥






≤ 1, 𝑗 ∈ I [1, 𝑚]} . (9)
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Lemma 3 (see [32]). If there exists a symmetric matrixΘwith

Θ = [

Θ
11

Θ
12

Θ
𝑇

12
Θ
22

] (10)

and Θ
11
, Θ

22
∈ 𝑅

𝑁𝑛×𝑁𝑛 such that the following inequalities
hold:

Θ
22𝑗𝑗

≤ 0, 𝑗 ∈ I [1,𝑁] ,

Θ
11

+ Θ
12
Δ (𝛿) + (Θ

12
Δ (𝛿))

𝑇

+ Δ (𝛿)Θ
22
Δ (𝛿) ≥ 0,

𝛿 ∈ Δ V,

[

𝑄 𝐸

𝐸
𝑇

𝐹

] + 𝑈
𝑇

𝑈 + 𝐺
𝑇

Θ𝐺 < 0,

𝜌 ∈ {𝜌
1

⋅ ⋅ ⋅ 𝜌
𝐿

} , 𝜌
𝑞

∈ 𝑁
𝜌
𝑞 ,

(11)

then inequality

𝐿 (𝛿) = 𝑄 +

𝑁

∑

𝑗=1

𝛿
𝑗
𝐸
𝑗
+ (

𝑁

∑

𝑗=1

𝛿
𝑗
𝐸
𝑗
)

𝑇

+

𝑁

∑

𝑗=1

𝑁

∑

𝑝=1

𝛿
𝑗
𝛿
𝑝
𝐹
𝑗𝑝

+ (𝑈
0
+

𝑁

∑

𝑗=1

𝛿
𝑗
𝑈
𝑗
)

𝑇

× (𝑈
0
+

𝑁

∑

𝑗=1

𝛿
𝑗
𝑈
𝑗
) < 0

(12)

holds for all 𝛿
𝑗
∈ [𝛿

𝑗
𝛿
𝑗
], where 𝑄 = 𝑄

𝑇

∈ 𝑅
𝑛×𝑛 and 𝐹

𝑝𝑗
=

𝐹
𝑇

𝑝𝑗
∈ 𝑅

𝑛×𝑛

, 𝐸
𝑗
∈ 𝑅

𝑛×𝑛

Δ (𝛿) = diag [𝛿
1
𝐼
𝑛×𝑛

⋅ ⋅ ⋅ 𝛿
𝑁
𝐼
𝑛×𝑛

] ,

𝐸 = [𝐸
1

𝐸
2

⋅ ⋅ ⋅ 𝐸
𝑁
] , 𝑈 = [𝑈

0
𝑈
1

⋅ ⋅ ⋅ 𝑈
𝑁
] ,

𝐹 =
[

[

𝐹
11

⋅ ⋅ ⋅ 𝐹
1𝑁

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹
𝑁1

⋅ ⋅ ⋅ 𝐹
𝑁𝑁

]

]

, 𝐺 =

[

[

[

[

[

[

𝐼
𝑛×𝑛

⋅ ⋅ ⋅

𝐼
𝑛×𝑛

]

]

0

0 𝐼
𝑁𝑛×𝑁𝑛

]

]

]

]

.

(13)

Let D be a set of 𝑚 × 𝑚 diagonal matrices whose diagonal
elements are either 1 or 0. There are 2

𝑚 elements in D, and
one denotes its elements as 𝐷

𝑖
, 𝑖 ∈ I[0, 2𝑚 − 1], where for

𝑖 = 𝑧
1
2
𝑚−1

+ 𝑍
2
2
𝑚−2

+ ⋅ ⋅ ⋅ + 𝑧
𝑚
with 𝑧

𝑗
∈ {0, 1}, the diagonal

elements of𝐷
𝑖
are {1−𝑧

1
, 1−𝑧

2
, . . . , 1−𝑧

𝑚
}. Denote𝐷−

𝑖
= 𝐼−𝐷

𝑖
.

It is easy to see that 𝐷−

𝑖
∈ D. Then, one has the following.

Lemma 4 (see [35]). For two vectors 𝑢, V ∈ 𝑅
𝑚. Suppose that

‖V‖
∞

≤ 1. Then,

sat (𝑢) ∈ co {𝐷
𝑖
𝑢 + 𝐷

−

𝑖
V : 𝑖 ∈ [0, 2

𝑚

− 1]} , (14)

where co denotes the convex hull.

For a networked system, the performance of closed-
loop system can be measured by the 𝐿

2
gain. However, this

gain cannot be well defined for closed-loop system, since a
sufficiently large disturbance may lead to unstable closed-
loop system. For this reason, we need to consider a class of
disturbances whose energy is bounded by a given value; that
is,

M
𝛿
:= {𝜔 : 𝑅

+
→ 𝑅

𝑑

: ∫

∞

0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡 ≤ 𝛿} . (15)

In this paper, we will consider the following problems.
The first question is, what is the maximal value of 𝛿 such that
the state will be bounded for all 𝜔 ∈ M

𝛿
for systems with

time delay? This question can be referred to as disturbance
tolerance level. The system performance can be measured by
the restricted 𝐿

2
gain overM

𝛿
. In this paper, 𝐿

2
gain andM

𝛿

will be considered at same time for networked system.

3. Main Results

The dynamics with actuator faults (6) and saturation are
described by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵

1
𝜔 (𝑡)

+ 𝐵
2
(𝐼 − 𝜌) sat (𝑢 (𝑡)) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷 (𝐼 − 𝜌) sat (𝑢 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) 𝑡 ∈ [−ℎ, 0] .

(16)

Rewrite (16) as

�̇� (𝑡) = 𝑦 (𝑡) ,

𝑦 (𝑡) = (𝐴 + 𝐴
1
) 𝑥 (𝑡) + 𝐵

1
𝜔 (𝑡)

+ 𝐵
2
(𝐼 − 𝜌) sat (𝑢 (𝑡)) − 𝐴

1
∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑑𝑠,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷 (𝐼 − 𝜌) sat (𝑢 (𝑡)) .

(17)

The controller structure is given as

𝑢 (𝑡) = 𝐾 (�̂� (𝑡)) 𝑥 (𝑡) = (𝐾
0
+ 𝐾

𝑎
(�̂� (𝑡)) + 𝐾

𝑏
(�̂� (𝑡))) 𝑥 (𝑡) ,

(18)

where �̂�(𝑡) is used to estimate 𝜌,𝐾
𝑎
(�̂�(𝑡)) = ∑

𝑚

𝑗=1
𝐾
𝑎𝑗
�̂�
𝑗
(𝑡) and

𝐾
𝑏
(�̂�(𝑡)) = ∑

𝑚

𝑗=1
𝐾
𝑏𝑗
�̂�
𝑗
(𝑡).

By Lemma 3, the following equality is given, with 𝑥 ∈

℘(𝐻(�̂�)):

sat (𝐾 (�̂� (𝑡)) 𝑥 (𝑡))

=

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[𝐷

𝑖
𝐾(�̂� (𝑡)) + 𝐷

−

𝑖
𝐻(�̂� (𝑡))] 𝑥 (𝑡) ,

(19)
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for some scalars 0 ≤ 𝜂
𝑖

≤ 1, 𝑖 ∈ I[0, 2𝑚 − 1], such that
∑
2
𝑚
−1

𝑖=0
𝜂
𝑖
= 1, and the following equality holds:

(𝐼 − 𝜌) sat (𝑢 (𝑡))

=

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[(𝐼 − 𝜌)𝐷

𝑖
𝐾
0
+ 𝐷

𝑖
𝐾
𝑎
(𝜌)

− 𝜌𝐷
𝑖
𝐾
𝑎
(�̂�) + (𝐼 − �̂� (𝑡))𝐷

𝑖
𝐾
𝑏
(�̂� (𝑡))

+ 𝐷
𝑖
𝐾
𝑎
(�̃� (𝑡)) + �̃�𝐷

𝑖
𝐾
𝑏
(�̂� (𝑡)) + (𝐼 − 𝜌)𝐷

−

𝑖
𝐻
0

+ 𝐷
−

𝑖
𝐻
𝑎
(𝜌) − 𝜌𝐷

−

𝑖
𝐻
𝑎
(�̂�)

+ (𝐼 − �̂� (𝑡))𝐷
−

𝑖
𝐻
𝑏
(�̂� (𝑡))

+𝐷
−

𝑖
𝐻
𝑎
(�̃� (𝑡)) + �̃�𝐷

−

𝑖
𝐻
𝑏
(�̂� (𝑡))] 𝑥 (𝑡) ,

(20)

where �̃�(𝑡) = �̂�(𝑡) − 𝜌. Denote 𝐵
𝑗

= [0 ⋅ ⋅ ⋅ 𝑏
𝑗

⋅ ⋅ ⋅ 0] with 𝐵 =

[𝑏
1

⋅ ⋅ ⋅ 𝑏
𝑚

], and

Δ
�̂�
= {�̂� = (�̂�

1
⋅ ⋅ ⋅ �̂�

𝑚
) : �̂�

𝑗
∈ {min

𝑞

{𝜌
𝑞

𝑗

} ,max
𝑞

{𝜌
𝑞

𝑗
}} ,

𝑞 ∈ I [1, 𝐿] } .

(21)

Definition 5. Let 𝑃
1

∈ 𝑅
𝑛×𝑛 be a positive-definite matrix.

Denote
𝜀 (𝑃

1
, 𝛿) = {𝑥 ∈ 𝑅

𝑛

: 𝑥
𝑇

𝑃
1
𝑥 ≤ 𝛿} ,

𝜀
∗

(𝑃
1
, 𝛿) =

{

{

{

𝑥 ∈ 𝑅
𝑛

: 𝑥
𝑇

𝑃
1
𝑥 +

𝑚

∑

𝑗=1

�̃�
2

𝑗
(𝑡)

𝑙
𝑗

≤ 𝛿

}

}

}

.

(22)

Assuming that 𝑙
𝑗

> 0 is given, we denote 𝛿
∗

= 𝛿 +

max {∑
𝑚

𝑗=1
(�̃�
2

𝑗
(𝑡)/𝑙

𝑗
)}.

The following lemma provides a method for choosing of
𝜂
𝑖
’s, which are Lipschitzian functions in 𝑥 and �̂� and thus are

useful in controller design method.

Lemma 6 (see [11]). Let 𝑥 ∈ ℘(𝐻(�̂�)). For each 𝑗 ∈ I[1, 𝑚],
𝜆
𝑗
(𝑥 (𝑡) , �̂� (𝑡))

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1,

if 𝐾(�̂� (𝑡))
𝑗
𝑥 (𝑡) = 𝐻(�̂� (𝑡))

𝑗
𝑥 (𝑡)

𝜎 (𝐾(�̂� (𝑡))
𝑗
𝑥 (𝑡)) − 𝐻(�̂� (𝑡))

𝑗
𝑥 (𝑡)

(𝐾(�̂� (𝑡))
𝑗
− 𝐻(�̂� (𝑡))

𝑗
) 𝑥 (𝑡)

,

otherwise,

(23)

and for each 𝑖 ∈ I[0, 2𝑚 − 1], let 𝑧
𝑗

∈ {0, 1} such that 𝑖 =

𝑧
1
2
𝑚−1

+ 𝑧
2
2
𝑚−2

+ ⋅ ⋅ ⋅ + 𝑧
𝑚
, and define

𝜂
𝑖
(𝑥 (𝑡) , �̂� (𝑡))

=

𝑚

∏

𝑗=1

[𝑧
𝑗
(1 − 𝜆

𝑗
(𝑥, �̂�)) + (1 − 𝑧

𝑗
) 𝜆

𝑗
(𝑥, �̂�)] .

(24)

Then, 𝜂
𝑖
’s are functions Lipschitz in 𝑥 and �̂�, such that,

∑
2
𝑚
−1

𝑖=0
𝜂
𝑖
= 1, 0 ≤ 𝜂

𝑖
≤ 1, 𝑖 ∈ I[0, 2𝑚 − 1]. Moreover, they

satisfy relation (19).
By using the functions 𝜂

𝑖
(𝑥(𝑡), �̂�(𝑡))’s and controller (18),

plant (16) can be written in a quasi-LPV form as follows:

𝑦 (𝑡) = (𝐴 + 𝐴
1
) 𝑥 (𝑡) + 𝐵

1
𝜔 (𝑡)

+ 𝐵
2

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[ (𝐼 − 𝜌)𝐷

𝑖
(𝐾

0
+ 𝐾

𝑎
(�̂� (𝑡)) + 𝐾

𝑏
(�̂� (𝑡)))

+ (𝐼 − 𝜌)𝐷
−

𝑖
(𝐻

0
+ 𝐻

𝑎
(�̂� (𝑡)) 𝑥 (𝑡)

+𝐻
𝑏
(�̂� (𝑡)))]

− 𝐴
1
∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑑𝑠.

(25)

Lemma 7 (see [36]). For any 𝑎 ∈ 𝑅
𝑛, 𝑏 ∈ 𝑅

2𝑛, 𝑍
0
∈ 𝑅

2𝑛×𝑛,
𝑅 ∈ 𝑅

𝑛×𝑛,𝑌 ∈ 𝑅
𝑛×2𝑛, and 𝑍 ∈ 𝑅

2𝑛×2𝑛, the following holds:

−2𝑏
𝑇

𝐹𝑎 ≤ [

𝑎

𝑏
]

𝑇

[

𝑅 𝑌 − 𝑍
𝑇

0

𝑌
𝑇

− 𝑍
0

𝑍

][

𝑎

𝑏
] , (26)

where [ 𝑅 𝑌

𝑌
𝑇
𝑍
] ≥ 0.

Definition 8. Firstly, for system (25), consider the following
𝐿𝑦𝑎𝑝𝑢𝑛𝑜V-𝐾𝑟𝑎𝑠𝑜V𝑠𝑘𝑖𝑖 functional

𝑉 = 𝑉
1
+ 𝑉

2
+ 𝑉

3
+

𝑚

∑

𝑗=1

�̃�
2

𝑗
(𝑡)

𝑙
𝑗

, (27)

where

𝑉
1
= 𝑥

𝑇

(𝑡) 𝐸𝑃𝑥 (𝑡) , 𝑉
2
= ∫

0

ℎ

∫

𝑡

𝑡+𝜃

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠𝑑𝜃,

𝑉
3
= ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑆𝑥 (𝑠) 𝑑𝑠,

𝐸 = [

𝐼
𝑛×𝑛

0

0 0
] , 𝑃 = [

𝑃
1

0

𝑃
2

𝑃
3

] , 𝑃
1
= 𝑃

𝑇

1
> 0.

(28)

Then, the following set can be given:

𝑀
𝑉
(𝛿) =

{

{

{

𝑥 (𝑡) ∈ 𝑅
𝑛

: 𝑉 = 𝑉
1
+ 𝑉

2
+ 𝑉

3
+

𝑚

∑

𝑗=1

�̃�
2

𝑗
(𝑡)

𝑙
𝑗

≤ 𝛿

}

}

}

.

(29)

Remark 9. ByDefinitions 5 and 8,we can draw the conclusion
that𝑀

𝑉
(𝛿) ⊂ 𝜀

∗

(𝑃
1
, 𝛿) ⊂ 𝜀(𝑃

1
, 𝛿).

By Lemma 6, we analyze the auxiliary LPV system as
follows, of which the closed-loop system comprising of (25)
and (18) is a special case, for all 𝑥(𝑡) ∈ 𝑀

𝑉
(𝛿) ⊂ ℘(𝐻(�̂�)):

�̇� (𝑡) = 𝐴 (𝜂) 𝑥 (𝑡) + 𝐵
1
𝜔, 𝜂 ∈ Γ, (30)
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where 𝜂 = [𝜂
0
, 𝜂
1
, . . . , 𝜂

2
𝑚
−1
], and

Γ={𝜂 ∈ 𝑅
2
𝑚

:

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
= 1, 0 ≤ 𝜂

𝑖
≤ 1, 𝑖 ∈ I [0, 2𝑚 − 1]} ,

𝐴 (𝜂) = 𝐴 + 𝐴
1

+ 𝐵
2

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[(𝐼 − 𝜌)𝐷

𝑖
𝐾
0
+ 𝐷

𝑖
𝐾
𝑎
(𝜌)

− 𝜌𝐷
𝑖
𝐾
𝑎
(�̂�) + (𝐼 − �̂� (𝑡))𝐷

𝑖
𝐾
𝑏
(�̂� (𝑡))

+ 𝐷
𝑖
𝐾
𝑎
(�̃� (𝑡)) + �̃�𝐷

𝑖
𝐾
𝑏
(�̂� (𝑡))

+ (𝐼 − 𝜌)𝐷
−

𝑖
𝐻
0
+ 𝐷

−

𝑖
𝐻
𝑎
(𝜌)

− 𝜌𝐷
−

𝑖
𝐻
𝑎
(�̂�) + (𝐼 − �̂� (𝑡))𝐷

−

𝑖
𝐻
𝑏
(�̂� (𝑡))

+𝐷
−

𝑖
𝐻
𝑎
(�̃� (𝑡)) + �̃�𝐷

−

𝑖
𝐻
𝑏
(�̂� (𝑡))]

− 𝐴
1
∫

𝑡

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑑𝑠.

(31)

Theorem 10. Let 𝑟
𝑓

> 0, 𝑟
𝑛
> 0, 𝑑, ℎ > 0 and 𝛿 > 0 be given

constants, then the following two conditions are satisfied.

(I) The trajectories of the closed-loop system that start from
the origin will remain inside the domain 𝑀

𝑉
(𝛿) for

every 𝜔 ∈ M
𝛿
.

(II) In normal case, that is, 𝜌 = 0, for 𝑥(0) = 0,

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ 𝑟
2

𝑛
∫

∞

0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡

+ 𝑟
2

𝑛

𝑚

∑

𝑗=1

�̃�
2

𝑗
(0)

𝑙
𝑗

,

(32)

and in actuator failures cases, that is, 𝜌 ∈ {𝜌
1

⋅ ⋅ ⋅ 𝜌
𝐿

}, for 𝑥(0) =

0,

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ 𝑟
2

𝑓
∫

∞

0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡

+ 𝑟
2

𝑓

𝑚

∑

𝑗=1

�̃�
2

𝑗
(0)

𝑙
𝑗

,

(33)

where �̃�(𝑡) = diag{�̃�
1
(𝑡) ⋅ ⋅ ⋅ �̃�

𝑚
(𝑡)}, �̃�

𝑗
(𝑡) = �̂�

𝑗
(𝑡) − 𝜌

𝑗
if there

existmatrices𝑄
1
> 0,𝑄

2
,𝑄

3
, 𝑆,𝑅,𝑍

1
,𝑍

2
,𝑍

3
,𝑂

0
,𝑂

𝑎𝑗
,𝑂

𝑏𝑗
,𝑌

0
,

𝑌
𝑎𝑗
, 𝑌

𝑏𝑗
, 𝑗 ∈ I[1, 𝑚] and symmetric matrixes Θ𝑖, 𝑖 ∈ I[0, 2𝑚 −

1], with

Θ
𝑖

=
[

[

Θ
𝑖

11
Θ
𝑖

12

Θ
𝑖𝑇

12
Θ
𝑖

22

]

]

(34)

and Θ
𝑖

11
, Θ𝑖

22
∈ 𝑅

𝑚𝑛×𝑚𝑛 such that the following inequalities
hold for all𝐷

𝑖
∈ D and𝑀

𝑉
(𝛿) ⊂ ℘(𝐻(�̂�)); that is, |𝐻(�̂�)

𝑗
𝑥| ≤

1 for all 𝑥 ∈ 𝑀
𝑉
(𝛿), 𝑗 ∈ I[1, 𝑚]:

Θ
𝑖

22𝑗𝑗
≤ 0, 𝑗 ∈ I [1, 𝑚] , 𝑖 ∈ I [0, 2𝑚 − 1]

Θ
𝑖

11
+ Θ

𝑖

12
Δ (�̂�) + (Θ

𝑖

12
Δ(�̂�))

𝑇

+ Δ (�̂�)Θ
𝑖

22
Δ (�̂�) ≥ 0, �̂� ∈ Δ

�̂�

(35)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑀
𝑖

𝑉
𝑇

0𝑖

[

[

0

𝐵
1

0

]

]

[

[

0

𝐴
1
(𝐼 − 𝜀) 𝑆

0

]

]

[

[

𝑄
1

0

0

]

]

[

[

[

ℎ𝑄
𝑇

2

ℎ𝑄
𝑇

3

0

]

]

]

∗ −𝑟
2

𝑛
𝐼 0 0 0 0

∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ − (1 − 𝑑) 𝑆 0 0

∗ ∗ ∗ ∗ −𝑆 0

∗ ∗ ∗ ∗ ∗ −ℎ𝑅

]

]

]

]

]

]

]

]

]

]

]

]

]

]

𝜌 = 0,

(36)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑀
𝑖

𝑉
𝑇

0𝑖

[

[

0

𝐵
1

0

]

]

[

[

0

𝐴
1
(𝐼 − 𝜀) 𝑆

0

]

]

[

[

𝑄
1

0

0

]

]

[

[

[

ℎ𝑄
𝑇

2

ℎ𝑄
𝑇

3

0

]

]

]

∗ −𝑟
2

𝑓
𝐼 0 0 0 0

∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ − (1 − 𝑑) 𝑆 0 0

∗ ∗ ∗ ∗ −𝑆 0

∗ ∗ ∗ ∗ ∗ −ℎ𝑅

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

𝜌 ∈ {𝜌
1

⋅ ⋅ ⋅ 𝜌
𝐿

} , 𝜌
𝑞

∈ 𝑁
𝜌
𝑞

(37)

[

[

[

𝑅 0 𝑅𝜀𝐴
𝑇

1

∗ 𝑍
1

𝑍
2

∗ ∗ 𝑍
3

]

]

]

≥ 0, (38)

where

𝑀
𝑖
= [

𝑁
0𝑖

𝑈
𝑖

𝑈
𝑇

𝑖
Ω
𝑖

] + 𝐺
𝑇

Θ
𝑖

𝐺,

𝑁
0𝑖

= [
𝑄
2
+ 𝑄

𝑇

2
+ ℎ𝑍

1
𝑇
1𝑖

∗ −𝑄
3
− 𝑄

𝑇

3
+ ℎ𝑍

3

] ,

𝑈
𝑖
= [𝑈

1𝑖
𝑈
2𝑖

⋅ ⋅ ⋅ 𝑈
𝑚𝑖
] ,

𝑉
0𝑖

= [𝑉
00𝑖

𝑉
01𝑖

⋅ ⋅ ⋅ 𝑉
0𝑚𝑖

] ,

Ω
𝑖
= [Ω

𝑖𝑗𝑝
] , 𝑗, 𝑝 = 1 ⋅ ⋅ ⋅ 𝑚,

𝑇
1𝑖

= 𝑄
3
− 𝑄

𝑇

2
+ 𝑄

1
(𝐴

𝑇

+ 𝜀𝐴
𝑇

1
) + ℎ𝑍

2

+ (𝐼 − 𝜌)𝐷
𝑖
𝑌

𝑇

0
+ (𝐼 − 𝜌)𝐷

−

𝑖
𝑂

𝑇

0
,

𝑉
00𝑖

= [𝐶𝑄
1
+ 𝐷 (𝐼 − 𝜌)𝐷

𝑖
𝑌
0
+ 𝐷 (𝐼 − 𝜌)𝐷

−

𝑖
𝑂
0

0] ,
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𝑉
0𝑗𝑖

=[𝐷 (𝐼 − 𝜌)𝐷
𝑖
(𝑌

𝑎𝑗
+ 𝑌

𝑏𝑗
)+𝐷 (𝐼 − 𝜌)𝐷

−

𝑖
(𝑂

𝑎𝑗
+ 𝑂

𝑏𝑗
) 0] ,

𝑈
𝑗𝑖
= [

0 −𝑌

𝑇

𝑎𝑗
𝐷
𝑖
𝜌𝐵

𝑇

2
+ 𝑌

𝑇

𝑏𝑗
𝐷
𝑖
𝐵
𝑇

2
− 𝑂

𝑇

𝑎𝑗
𝐷
𝑖
𝜌𝐵

𝑇

2
+ 𝑂

𝑇

𝑏𝑗
𝐷
𝑖
𝐵
𝑇

2

0 0

] ,

𝐺 =

[

[

[

[

[

[

[

𝐼

...
𝐼

]

]

]

0

0 𝐼

]

]

]

]

,

Ω
𝑖𝑗𝑝

= [
0 −𝐵

𝑗

2
𝐷
𝑖
𝑌
𝑏𝑝

− 𝑌

𝑇

𝑏𝑗
𝐷
𝑖
𝐵
𝑝𝑇

2
− 𝐵

𝑗

2
𝐷
𝑖
𝑂
𝑏𝑝

− 𝑂

𝑇

𝑏𝑗
𝐷
𝑖
𝐵
𝑝𝑇

2

0 0

] ,

𝑌
𝑎
(𝜌) =

𝑚

∑

𝑗=1

𝑌
𝑎𝑗
𝜌
𝑗
,

(39)

and also �̂�
𝑗
(𝑡) is determined according to the adaptive law

̇
�̂�
𝑗
= Proj

[min𝑞{𝜌𝑞
𝑗
}max𝑞{𝜌

𝑞

𝑗
}
{𝐿

𝑗
}

=

{
{
{
{

{
{
{
{

{

0, if �̂�
𝑗
= min

𝑞

{𝜌
𝑞

𝑗

} , 𝐿
𝑗
≤ 0

or �̂�
𝑗
= max

𝑞

{𝜌
𝑞

𝑗
} , 𝐿

𝑗
≥ 0

𝐿
𝑗
, otherwise,

(40)

where

𝐿
𝑗
= −𝑙

𝑗
𝑥
𝑇

(𝑡) [

0 0

Λ
𝑗𝑖

0
] 𝑥 (𝑡) ,

Λ
𝑗𝑖

= 𝐵
𝑗

2
(

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
𝐷
𝑖
)𝐾

𝑏
(�̂�) + 𝐵

2
(

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
𝐷
𝑖
)𝐾

𝑎𝑗

+ 𝐵
𝑗

2
(

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
𝐷
−

𝑖
)𝐻

𝑏
(�̂�) + 𝐵

2
(

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
𝐷
−

𝑖
)𝐻

𝑎𝑗
,

𝑄 = [

𝑄
1

0

𝑄
2

𝑄
3

] ,

(41)

where 𝐾
𝑎𝑗

= 𝑌
𝑎𝑗
𝑄
−1

1
, 𝐾

𝑏𝑗
= 𝑌

𝑏𝑗
𝑄
−1

1
, 𝐻

𝑎𝑗
= 𝑂

𝑎𝑗
𝑄
−1

1
, and

𝐻
𝑏𝑗

= 𝑂
𝑏𝑗
𝑄
−1

1
⋅ 𝑙
𝑗
> 0 (𝑗 ∈ I[1, 𝑚]) are the adaptive law gains

which can be given according to practical applications. Then,
the following controller can be given:

𝐾(�̂�) = 𝑌
0
𝑄
−1

1
+

𝑚

∑

𝑗=1

�̂�
𝑗
𝑌
𝑎𝑗
𝑄
−1

1
+

𝑚

∑

𝑗=1

�̂�
𝑗
𝑌
𝑏𝑗
𝑄
−1

1
. (42)

Proof. See appendix.

From Theorem 10, we have the following algorithm to
optimize the adaptive 𝐻

∞
performance in normal and fault

cases and the disturbance tolerance level 𝛿 with considering
time delay.

Algorithm 11. Suppose that 𝑟
𝑛
and 𝑟

𝑓
denote the adaptive

𝐻
∞

performance indexes for the normal case and fault cases

of the closed-loop system (30), respectively. Let 𝛿 denote
the disturbance tolerance level. Then, 𝑟

𝑛
, 𝑟
𝑓
are minimized,

and 𝛿 is maximized if the following optimization problem is
solvable:

min 𝜂 = 𝛼𝜂
𝑛
+ 𝛽𝜂

𝑓
+ 𝛾𝜂

𝛿

s.t. (a) (35) , (36) , (37) , (38)

(b) 𝑀
𝑉
(𝛿) ⊂ ℘ (𝐻 (�̂�)) ,

(43)

where 𝜂
𝑛

= 𝑟
2

𝑛
, 𝜂

𝑓
= 𝑟

2

𝑓
, 𝜂

𝛿
= 1/𝛿

∗

= 1/(𝛿 +

max{∑𝑚

𝑗=1
(�̃�
2

𝑗
(𝑡)/𝑙

𝑗
)}), and 𝛼, 𝛽, and 𝛾 are weighting coeffi-

cients.
By Definition 2, condition (b) cannot be shown as LMIs

directly. However, obviously,𝑀
𝑉
(𝛿) ⊂ 𝜀

∗

(𝑃
1
, 𝛿
∗

) ⊂ 𝜀(𝑃
1
, 𝛿
∗

),
which implies that (b) can be replaced with (b1) as follows:

(b1) 𝜀 (𝑃
1
, 𝛿
∗

) ⊂ ℘ (𝐻 (�̂�)) . (44)

Equation (44) is equivalent to

𝛿
∗

ℎ(�̂�)
𝑗
𝑃
−1

1
ℎ(�̂�)

𝑇

𝑗
≤ 1 ⇐⇒

[

[

1

𝛿
∗

ℎ(�̂�)
𝑗
𝑃
−1

1

∗ 𝑃
−1

1

]

]

≥ 0, (45)

for all 𝑗 ∈ I[1, 𝑚], where ℎ(�̂�)
𝑗
is the 𝑗th row of 𝐻(�̂�).

Then, it can be drawn that (45) is equivalent to the following
inequalities:

(b2) [
−𝜂

𝛿
−𝑂

0𝑠

∗ −𝑄
1

] +

𝑚

∑

𝑗=1

�̂�
𝑗
[

0 −𝑂
𝑎𝑗𝑠

− 𝑂
𝑏𝑗𝑠

∗ 0

] ≤ 0, (46)

where �̂� ∈ Δ
�̂�
and 𝑂

𝑎𝑗𝑠
is the 𝑠th row of 𝑂

𝑎𝑗
, 𝑠 ∈ I[1, 𝑚].

Remark 12. Theorem 10 prevents a condition for the existence
of an adaptive fault tolerant 𝐻

∞
controller. In Theorem 10,

if set 𝑌
𝑎𝑗

= 0, 𝑌
𝑏𝑗

= 0, 𝑂
𝑎𝑗

= 0, and 𝑂
𝑏𝑗

= 0, 𝑗 ∈

I[1, 𝑚], the condition ofTheorem 10 is reduced to fixed gains
condition. By the following example, we can get that the
adaptive controller can guarantee better effect.

4. Examples

Example 13. Consider the system of the form (1) with

𝐴 = [

3 2

3 40
] , 𝐴

1
= [

−1 0

0 −2
] ,

𝐵
1
= [

1 0

1 0
] , 𝐵

2
= [

40 0

0 40
] ,

𝐶 = [

4 0 0

0 0 0
]

𝑇

, 𝐷 = [

0 0.5 0

0 0 1
]

𝑇

,

𝜏 (𝑡) =

1 + sin (𝑡)

4

,

(47)

and the following two possible fault modes.
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×10

−3

Figure 1: Response curve of the first state in normal case with the
adaptive controller (solid) and the fixed gain controller (dashed).

Fault mode 1: both of the two actuators are normal; that
is 𝜌1

1
= 𝜌

1

2
= 0. Fault mode 2: the first actuator is outage, and

the second actuator may be normal or loss of effectiveness,
described by 𝜌

2

1
= 1, 0 ≤ 𝜌

2

2
≤ 𝑎, where 𝑎 = 0.5 denotes the

maximal loss of effectiveness for the second actuator.
Let 𝛼 = 10, 𝛽 = 1, and 𝛾 = 10, and let the optimal

indexes with fixed controller gains are 𝜂
𝑛

= 0.1963, 𝜂
𝑓

=

9.8933, 𝜂
𝛿

= 20.5385, and 𝜂 = 217.2408. By solving (43),
the optimal indexes can be given as 𝜂

𝑛
= 0.5881, 𝜂

𝑓
= 9.1236,

𝜂
𝛿
= 9.6701, and 𝜂 = 111.7048. For getting smaller number

for every optimal index, we may revise 𝛼 = 110, 𝛽 = 0.2, and
𝛾 = 0.5. Then, the indexes can be drawn that 𝜂

𝑛
= 0.1676,

𝜂
𝑓
= 7.1242, and 𝜂

𝛿
= 18.6399. For illustrating the efficiency

of the design method, the following simulations is given.
During the following simulation, fault case is considered

as follows. At 0 second, the first actuator is outage. Here, we
choose 𝑙

1
= 𝑙

2
= 100.

Firstly, we consider the 𝐻
∞

performance. The distur-
bance is given as

𝜔
1
(𝑡) = 𝜔

2
(𝑡) = {

cos (𝑡) , 4.2 ≤ 𝑡 ≤ 6.9

0, otherwise.
(48)

Figures 1 and 2 show the responses curves of the first state in
normal and fault case, respectively.

Then, we consider the disturb tolerance problem.The dis-
turbance is given as

𝜔
1
(𝑡) = 𝜔

2
(𝑡) = {

27.2, 4 ≤ 𝑡 ≤ 5

0, otherwise.
(49)

Figures 3 and 4 show the responses curves of the states in nor-
mal case.

5. Conclusions

In this paper, an adaptive fault-tolerant𝐻
∞
controllers design

method was given for networked systems with actuator

1 2 3 4 5 6 7 8 9 100
𝑡 (s)

0.15

0.1

0.05

0

−0.05

𝑥

1

0.16

0.14

0.12

0.1

0.08
5.5 6 6.5

Figure 2: Response curve of the first state in fault case with the
adaptive controller (solid) and the fixed gain controller (dashed).

0.3
0.25
0.2
0.15
0.1
0.05

0
−0.05

0 1 2 3 4 5 6 7 8 9 10
𝑡

𝑥

𝑥

1

𝑥

2

Figure 3: Responses curves of the states with adaptive controller in
normal case.

saturation. The designs were proposed in LMIs approach,
which could guarantee the disturbance tolerance ability and
adaptive𝐻

∞
performances of networked systems in the cases

of actuator saturation and actuator failures. An example, has
been given to illustrate the efficiency of the design method.

Appendix

Proof of Theorem 10. Item (II) will be proved firstly. By
Definition 8, since 𝑥

𝑇

(𝑡)𝐸𝑃𝑥(𝑡) = 𝑥
𝑇

(𝑡)𝑃
1
𝑥(𝑡), then

𝑑

𝑑𝑡

{𝑥
𝑇

(𝑡) 𝐸𝑃𝑥 (𝑡)} = 2𝑥
𝑇

(𝑡) 𝑃
1
�̇� (𝑡)

= 2𝑥
𝑇

(𝑡) 𝑃
𝑇

[

�̇� (𝑡)

0
] .

(A.1)

From the derivative of𝑉(𝑡) along the closed-loop system (30),
it follows that

�̇� = 𝑥
𝑇

(𝑡)

2
𝑚
−1

∑

𝑖=0

(𝜂
𝑖
Φ
1𝑖
) 𝑥 (𝑡) + 𝜒 (𝑡)

− (1 − 𝑑) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑆𝑥 (𝑡 − 𝜏 (𝑡))

− ∫

𝑡

𝑡−ℎ

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠 + 2

𝑚

∑

𝑖=1

�̃�
𝑖
(𝑡)

̇
�̃�
𝑖
(𝑡)

𝑙
𝑖

+ 2𝑥
𝑇

(𝑡) 𝑃
𝑇

[

0

𝐵
1

]𝜔 (𝑡) ,

(A.2)
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0.5

0

−0.5

×10

102

𝑥

1

𝑥

2

𝑥

Figure 4: Responses curves of the states with fixed gain controller
in normal case.

where

Φ
1𝑖

= 𝑃
𝑇

Δ
0𝑖
+ Δ

𝑇

0𝑖
𝑃 + [

𝑆 0

0 ℎ𝑅
] ,

𝜒 (𝑡) = −2∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑡) 𝑃
𝑇

[

0

𝐴
1

] 𝑦 (𝑠) 𝑑𝑠,

Δ
0𝑖

= [

0 𝐼

𝐴 + 𝐴
1
+ 𝐵

2
(𝐼 − 𝜌) (𝐷

𝑖
𝐾(�̂�) + 𝐷

−

𝑖
𝐻(�̂�)) −𝐼

] .

(A.3)

By Lemma 7, taking 𝑍
0

= 𝑃
𝑇

[
0

𝐴1
] 𝑎 = 𝑦(𝑠), 𝑏 = 𝑥(𝑡), it

follows that

𝜒 (𝑡) ≤ ∫

𝑡

𝑡−𝜏(𝑡)

[𝑦
𝑇

(𝑠) 𝑥
𝑇

(𝑠)]𝑊
1
[

𝑦 (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

= ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑡) 𝑍 𝑥 (𝑡) 𝑑𝑠

+ 2∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) (𝑌 − [0 𝐴
𝑇

1
] 𝑃) 𝑥 (𝑡) 𝑑𝑠

= ∫

𝑡

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠 + 𝜏 (𝑡) 𝑥
𝑇

(𝑡) 𝑍 𝑥 (𝑡)

+ 2∫

𝑡

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) (𝑌 − [0 𝐴
𝑇

1
] 𝑃) 𝑥 (𝑡) 𝑑𝑠

≤ ∫

𝑡

𝑡−ℎ

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠 + 2𝑥
𝑇

(𝑡) (𝑌 − [0 𝐴
𝑇

1
] 𝑃) 𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝑌 − [0 𝐴
𝑇

1
] 𝑃) 𝑥 (𝑡)

+ ℎ𝑥
𝑇

(𝑡) 𝑍 𝑥 (𝑡) ,

(A.4)

where𝑊
1
= [

𝑅 𝑌−[0 𝐴
𝑇

1
]𝑃

∗ 𝑍

] and𝑅,𝑌,𝑍 satisfying [
𝑅 𝑌

∗ 𝑍
] ≥ 0.

Furthermore, by (20) it follows that

�̇� +

1

𝛾
2

𝑓

𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝑤
𝑇

(𝑡) 𝑤 (𝑡)

= 𝑥
𝑇

(𝑡)

2
𝑚
−1

∑

𝑖=0

(𝜂
𝑖
Φ
2𝑖
) 𝑥 (𝑡) − 2𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) (𝑌 − [0 𝐴
𝑇

1
] 𝑃) 𝑥 (𝑡)

+ 2

𝑚

∑

𝑖=1

�̃�
𝑖
(𝑡)

̇
�̃�𝑖

𝑙𝑖

+

1

𝛾
2

𝑓

𝑥
𝑇

(𝑡)

× [𝐶 + 𝐷(𝐼 − 𝜌)

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
(𝐷

𝑖
𝐾(�̂�) + 𝐷

−

𝑖
𝐻(�̂�))]

𝑇

× [𝐶 + 𝐷 (𝐼 − 𝜌)

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
(𝐷

𝑖
𝐾(�̂�) + 𝐷

−

𝑖
𝐻(�̂�))] 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑇

[0 𝐵
𝑇

1
]

𝑇

[0 𝐵
𝑇

1
] 𝑃𝑥 (𝑡)

− (1 − 𝑑) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑆𝑥 (𝑡 − 𝜏 (𝑡))

− (𝜔
𝑇

− 𝑥
𝑇

(𝑡) 𝑃
𝑇

[0 𝐵
𝑇

1
]

𝑇

) (𝜔 − [0 𝐵
𝑇

1
] 𝑃𝑥)

+ 2𝑥
𝑇

(𝑡) 𝑃
𝑇

[

[

[

[

[

[

0 0

𝐵
2

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[𝐷

𝑖
(𝐾

𝑎
(�̃�) + �̃�𝐾

𝑏
(�̂�)) 0

+𝐷
−

𝑖
(𝐻

𝑎
(�̃�) + �̃�𝐻

𝑏
(�̂�))]

]

]

]

]

]

]

𝑥 (𝑡) ,

(A.5)

where

Φ
2𝑖

= 𝑃
𝑇

Δ
1𝑖
+ Δ

𝑇

1𝑖
𝑃 + [

𝑆 0

0 ℎ𝑅
] + ℎ𝑍

+ [𝑌
𝑇

0]

𝑇

+ [𝑌
𝑇

0]

(A.6)

with Δ
1𝑖

= [
0 𝐼

𝑊2𝑖 −𝐼
], 𝑊

2𝑖
= 𝐴 + 𝐵

2
∑
2
𝑚
−1

𝑖=0
𝜂
𝑖
[(𝐼 − 𝜌)𝐷

𝑖
𝐾
0
+

𝐷
𝑖
𝐾
𝑎
(𝜌)−𝜌𝐷

𝑖
𝐾
𝑎
(�̂�)+(𝐼−𝜌)𝐷

𝑖
𝐾
𝑏
(�̂�)+(𝐼−𝜌)𝐷

−

𝑖
𝐻
0
+𝐷

−

𝑖
𝐻
𝑎
(𝜌)−

𝜌𝐷
−

𝑖
𝐻
𝑎
(�̂�) + (𝐼 − 𝜌)𝐷

−

𝑖
𝐻
𝑏
(�̂�)].

Then,

�̇� +

1

𝛾
2

𝑓

𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤ −2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝑌 − [0 𝐴
𝑇

1
] 𝑃) 𝑥 (𝑡)

+ 2

𝑚

∑

𝑖=1

�̃�
𝑖
(𝑡)

̇
�̃�
𝑖
(𝑡)

𝑙
𝑖

+ 𝑥
𝑇

2
𝑚
−1

∑

𝑖=0

(𝜂
𝑖
Φ
3𝑖
) 𝑥

+ 2𝑥
𝑇

(𝑡) 𝑃
𝑇

[

0 0

Φ
4

0
] 𝑥 (𝑡) ,

(A.7)
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where

Φ
3𝑖

= 𝑃
𝑇

Δ
1𝑖
+ Δ

𝑇

1𝑖
𝑃 + [

𝑆 0

0 ℎ𝑅
]

+𝑃
𝑇

[0 𝐵
𝑇

1
]

𝑇

[0 𝐵
𝑇

1
] 𝑃 + ℎ𝑍 + [𝑌

𝑇

0]

+ [𝑌
𝑇

0]

𝑇

+

1

𝛾
2

𝑓

[
Φ
𝑇

5

0

] [Φ
5

0] ,

Φ
4
= 𝐵

2

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[𝐷

𝑖
(𝐾

𝑎
(�̃�) + �̃�𝐾

𝑏
(�̂�))

+𝐷
−

𝑖
(𝐻

𝑎
(�̃�) + �̃�𝐻

𝑏
(�̂�))] ,

Φ
5
= 𝐶 + 𝐷 (𝐼 − 𝜌) (𝐷

𝑖
𝐾(�̂�) + 𝐷

−

𝑖
𝐻(�̂�)) .

(A.8)

Let 𝐵
2
= [𝑏

1

⋅ ⋅ ⋅ 𝑏
𝑚

]𝐵
𝑗

2
= [0 ⋅ ⋅ ⋅ 𝑏

𝑗

⋅ ⋅ ⋅ 0], then we have

𝐵
2
�̃�𝐷

𝑖
𝐾
𝑏
(�̂�) =

𝑚

∑

𝑗=1

�̃�
𝑗
𝐵
𝑗

2
𝐷
𝑖
𝐾
𝑏
(�̂�) ,

𝐵
2
�̃�𝐷

−

𝑖
𝐻
𝑏
(�̂�) =

𝑚

∑

𝑗=1

�̃�
𝑗
𝐵
𝑗

2
𝐷
−

𝑖
𝐻
𝑏
(�̂�) ,

𝐵
2
𝐷
𝑖
𝐾
𝑎
(�̃�) =

𝑚

∑

𝑗=1

�̃�
𝑗
𝐵
2
𝐷
𝑖
𝐾
𝑎𝑗
,

𝐵
2
𝐷
−

𝑖
𝐻
𝑎
(�̃�) =

𝑚

∑

𝑗=1

�̃�
𝑗
𝐵
2
𝐷
−

𝑖
𝐻
𝑎𝑗
.

(A.9)

In fact, 𝜌
𝑖
is an unknow constant which denotes the loss

of effectiveness of the 𝑖th actuator. So, from �̃�
𝑗
(𝑡) = �̂�

𝑗
(𝑡) − 𝜌,

it follows that ̇
�̃�
𝑗
(𝑡) =

̇
�̂�. Now, if the adaptive laws are chosen

as (40), then

2𝑥
𝑇

𝑃
𝑇

[

[

[

[

[

0 0

𝐵
2

2
𝑚
−1

∑

𝑖=0

𝜂
𝑖
[𝐷

𝑖
(𝐾

𝑎
(�̃�) + �̃�𝐾

𝑏
(�̂�)) 0

+𝐷
−

𝑖
(𝐻

𝑎
(�̃�) + �̃�𝐻

𝑏
(�̂�))]

]

]

]

]

]

𝑥

+ 2

𝑚

∑

𝑗=1

�̃�
𝑖

̇
�̃�
𝑖

𝑙
𝑗

≤ 0.

(A.10)

Let 𝜉(𝑡) = col [𝑥(𝑡) 𝑦(𝑡) 𝑥(𝑡 − 𝜏(𝑡))], then

�̇� (𝑡) +

1

𝛾
2

𝑓

𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝜔
𝑇

(𝑡) 𝜔 (𝑡)

≤ 𝜉
𝑇

(𝑡)

2
𝑚
−1

∑

𝑖=1

(𝜂
𝑖
Ψ
𝑖
) 𝜉 (𝑡) ,

(A.11)

where

Ψ
𝑖
=

[

[

Φ
3𝑖

𝑃
𝑇

[

0

𝐴
1

] − 𝑌
𝑇

∗ −𝑆 (1 − 𝑑)

]

]

. (A.12)

Furthermore, the problem �̇�(𝑡) + (1/𝛾
2

𝑓
)𝑧
𝑇

(𝑡)𝑧(𝑡) −

𝜔
𝑇

(𝑡)𝜔(𝑡) ≤ 0 reduces to

Ψ
𝑖
< 0, [

𝑅 𝑌

∗ 𝑍
] ≥ 0, 𝑖 ∈ I [0, 2𝑚 − 1] . (A.13)

It is obvious from the requirement of 0 < 𝑃
1
and the

fact that in (A.13) −(𝑃
3
+ 𝑃

𝑇

3
) must be negative and 𝑃 is

nonsingular.
Defining

𝑃
−1

= 𝑄 = [

𝑄
1

0

𝑄
2

𝑄
3

] , Π = diag {𝑄, 𝐼} . (A.14)

WemultiplyΨ
𝑖
byΠ

𝑇 andΠ, on the left and the right, respec-
tively. Applying Fisher’s lemma to the emerging quadratic
term in 𝑄, denoting 𝑆 = 𝑆

−1

𝑍 = [

𝑍1 𝑍2

𝑍

𝑇

2
𝑍3

] = 𝑄
𝑇

𝑍𝑄, 𝑅 = 𝑅
−1,

and choosing [𝑌
1

𝑌
2
] = 𝜀𝐴

𝑇

1
[𝑃
2

𝑃
3
], where 𝜀 ∈ 𝑅

𝑛×𝑛 is a
diagonal matrix, we obtain the following:Ψ

𝑖
< 0 is equivalent

to

[
Ξ
0𝑖
+ 𝑄

1
𝑆𝑄

1
+ ℎ𝑄

𝑇

2
𝑅𝑄

2
Ξ
1𝑖
+ ℎ𝑄

𝑇

2
𝑅𝑄

3

∗ Ξ
2

] < 0 (A.15)

with

Ξ
0𝑖

=

1

𝛾
2

𝑓

Ξ
𝑇

3𝑖
Ξ
3𝑖
+ 𝑄

2
+ 𝑄

𝑇

2
+ ℎ𝑍

1
,

Ξ
1𝑖

= 𝑄
3
− 𝑄

𝑇

2
+ 𝑄

1
(𝐴

𝑇

+ 𝜀𝐴
𝑇

1
) + ℎ𝑍

2

+ [(𝐼 − 𝜌)(𝐷
𝑖
𝑌
0
+ 𝐷

−

𝑖
𝑂
0
)]

𝑇

𝐵
𝑇

2

+ [𝐷
𝑖
𝑌
𝑎
(𝜌) + 𝐷

−

𝑖
𝑂
𝑎
(𝜌)]

𝑇

𝐵
𝑇

2

− [𝜌(𝐷
𝑖
𝑌
𝑎
(�̂�) + 𝐷

−

𝑖
𝑂
𝑎
(�̂�))]

𝑇

𝐵
𝑇

2

+ [(𝐼 − �̂�) (𝐷
𝑖
𝑌
𝑏
(�̂�) + 𝐷

−

𝑖
𝑂
𝑏
(�̂�))]

𝑇

𝐵
𝑇

2
,

Ξ
2
= − 𝑄

3
− 𝑄

𝑇

3
+ ℎ𝑍

3
+ Υ

0
+ ℎ𝑄

𝑇

3
𝑅𝑄

3
,

Ξ
3𝑖

= 𝐶𝑄
1
+ 𝐷 (𝐼 − 𝜌) (𝐷

𝑖
𝑌 (�̂�) + 𝐷

−

𝑖
𝑂 (�̂�)) ,

Υ
0
= 𝐴

1
(𝐼
𝑛
− 𝜀) (1 − 𝑑)

−1

(𝐼
𝑛
− 𝜀)𝐴

𝑇

1
+ 𝐵

1
𝐵
𝑇

1
,

𝑌
0
= 𝐾

0
𝑄
1
, 𝑌

𝑎𝑗
= 𝐾

𝑎𝑗
𝑄
1
, 𝑌

𝑏𝑗
= 𝐾

𝑏𝑗
𝑄
1
,

𝑌
𝑎
(𝜌) =

𝑚

∑

𝑗=1

𝑌
𝑎𝑗
𝜌
𝑗
, 𝑌

𝑎
(�̂�) =

𝑚

∑

𝑗=1

𝑌
𝑎𝑗
�̂�
𝑗
,

𝑌
𝑏
(�̂�) =

𝑚

∑

𝑗=1

𝑌
𝑏𝑗
�̂�
𝑗
,
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𝑌 (�̂�) = 𝑌
0
+ 𝑌

𝑎
(�̂�) + 𝑌

𝑏
(�̂�) ,

𝑂
0
= 𝐻

0
𝑄
1
, 𝑂

𝑎𝑗
= 𝐻

𝑎𝑗
𝑄
1
, 𝑂

𝑏𝑗
= 𝐻

𝑏𝑗
𝑄
1
,

𝑂
𝑎
(𝜌) =

𝑚

∑

𝑗=1

𝑂
𝑎𝑗
𝜌
𝑗
,

𝑂
𝑎
(�̂�) =

𝑚

∑

𝑗=1

𝑂
𝑎𝑗
�̂�
𝑗
, 𝑂

𝑏
(�̂�) =

𝑚

∑

𝑗=1

𝑂
𝑏𝑗
�̂�
𝑗
,

𝑂 (�̂�) = 𝑂
0
+ 𝑂

𝑎
(�̂�) + 𝑂

𝑏
(�̂�) .

(A.16)
Furthermore, (A.15) can be described by

𝑀
𝑖
(�̂�) = 𝑁

1𝑖
+

𝑚

∑

𝑗=1

�̂�
𝑗
𝑈
𝑗𝑖
+ (

𝑚

∑

𝑗=1

�̂�
𝑗
𝑈
𝑗𝑖
)

𝑇

+

𝑚

∑

𝑗=1

𝑚

∑

𝑝=1

�̂�
𝑗
�̂�
𝑝
Ω
𝑖𝑗𝑝

+ (𝑉
00𝑖

+

𝑚

∑

𝑗=1

�̂�
𝑗
𝑉
0𝑗𝑖

)

𝑇

(𝑉
00𝑖

+

𝑚

∑

𝑝=1

�̂�
𝑗
𝑉
0𝑗𝑖

) < 0,

(A.17)

where

𝑁
1𝑖

= 𝑁
0𝑖
+ [

𝑄
1
𝑆𝑄

1
+ ℎ𝑄

𝑇

2
𝑅𝑄

2
ℎ𝑄

𝑇

2
𝑅𝑄

3

∗ Υ
0
+ ℎ𝑄

𝑇

3
𝑅𝑄

3

] (A.18)

and 𝑈
𝑗𝑖
, Ω

𝑖𝑗𝑝
, 𝑉
00𝑖
, 𝑉
0𝑗𝑖
, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑚 are defined in (39).

If we multiply [
𝑅 𝑌

∗ 𝑍
] ≥ 0, on the left and on the right,

by diag {𝑅
−1

, 𝑄
𝑇

} and diag {𝑅
−1

, 𝑄}, then it follows that

[

𝑅 0 𝑅𝜀𝐴
𝑇

1

∗ 𝑍1 𝑍2

∗ ∗ 𝑍3

] ≥ 0. By Lemmas 3 and 7, it is easy to see if

conditions (34), (37), and (38) hold, then (A.17) and [
𝑅 𝑌

∗ 𝑍
] ≥ 0

are satisfied, which implies that �̇�(𝑡) ≤ 0. Furthermore, by
Lemma 3 and (37), it follows that �̇�(𝑡) + (1/𝛾

2

𝑓
)𝑧
𝑇

(𝑡)𝑧(𝑡) −

𝜔
𝑇

(𝑡)𝜔(𝑡) ≤ 0 holds for any 𝑥 ∈ ℘(𝐻(�̂�)), 𝜌 ∈ {𝜌
1

⋅ ⋅ ⋅ 𝜌
𝐿

},
𝜌
𝑞

∈ 𝑁
𝜌
𝑞 , and �̂� satisfying (40). The proofs for the normal

case of closed-loop system (16) are similar and omitted here.
To prove item (I): by the proof of item (II), we have �̇� ≤

𝜔
𝑇

𝜔, which implies that

𝑉 (𝑥 (𝑡)) ≤ ∫

∞

0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

�̃�
2

𝑗
(0)

𝑙
𝑗

≤ 𝛿
∗

,

for 𝑥 (0) = 0.

(A.19)

Then, the conclusion can be drawn that trajectories of
the closed-loop system that start from the origin will remain
inside 𝜀

∗

(𝑃, 𝛿
∗

) for every 𝜔 ∈ M
𝛿
.
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