
Math. Appl. 3 (2014), 17–31
DOI: 10.13164/ma.2014.02

SHUFFLE ON ARRAY LANGUAGES GENERATED BY ARRAY

GRAMMARS

D.K. SHEENA CHRISTY, VEDHANAYAGAM MASILAMANI,

DURAIRAJ GNANARAJ THOMAS, ATULYA K. NAGAR

and ROBINSON THAMBURAJ

Abstract. Motivated by the studies done by G. Siromoney et al. (1973) and Alexan-

dru Mateescu et al. (1998) we examine the language theoretic results related to shuf-

fle on trajectories by making use of Siromoney array grammars such as (R : R)AG,
(R : CF)AG, (CF : R)AG, (CF : CF)AG, (CS : R)AG, (CS : CS)AG and

(CF : CS)AG which are more powerful than the Siromoney matrix grammars (1972)
and are used to make digital pictures.

1. Introduction

There have been several studies on generation of languages of finite words [2]. One
such tool for the generation of languages is found to be the shuffle on trajectories
[5]. The shuffle on trajectories is based on the parallel composition. This operation
is introduced using a uniform method based on the notion of trajectory.

A trajectory is a segment of a line in a two dimensional XY plane. The line
can change its direction only at points with non negative integer coordinates.
A trajectory defines how to skip from a word to another word during the shuffle
operation. Languages consisting of trajectories are either regular or context free
string languages considered in [5].

The generation of two-dimensional arrays by theoretical models [2, 4, 6, 8–10]
describes a wide variety of interesting classes of pictures. To develop the study
on parallel contextual array grammars, the shuffle operation on finite arrays with
trajectories has been introduced [3]. Based on the studies of rewriting rules on
various Siromoney matrix grammars [8], the shuffle on trajectories on finite and
infinite rectangular array languages has been done in [1]. The closure properties
for different classes of Siromoney matrix languages with respect to shuffle on tra-
jectories and the comparison of its generative power with other array grammars
have been made in [1].

In formal language theory new families of languages are introduced by chang-
ing the type of rewriting rules. Furthermore in order to obtain richer families
restrictions are imposed on the use of production rules in well known families of

MSC (2010): primary 68Q42, 68Q45.

Keywords: shuffle on trajectories, array languages, array grammars.
The authors would like to thank the support rendered by the Department of Mathematics

and Computer Science, Liverpool Hope University, UK.

17

18 D.K. SHEENA CHRISTY ET AL.

grammars. Several such studies are available in the literature [7]. In [9] Siromoney
et al. have given the generalized notion of rewriting rules in string grammars to
array rewriting rules for matrix grammars. These rules are either regular, context
free or context sensitive in nature but the use of production rules is restricted by
the condition of row and column concatenation. As an application, Siromoney ar-
ray grammars generate interesting kolam patterns [10,11] and it can be noted that
Siromoney matrix languages are particular cases of Siromoney array languages [9].

In this paper we continue the study of the shuffle on trajectories as a tool for
obtaining various finite array languages generated by Siromoney array grammars
[9] such as (R : R)AG, (R : CF)AG, (CF : R)AG, (CF : CF)AG, (CS : R)AG,
(CS : CS)AG and (CF : CS)AG. We further examine the language theoretic
results related to L1ttTL2 where L1 and L2 can be taken from different or same
families of array languages and T is either a regular language or a context-free
language.

2. Basic definitions

In this section we first review some of the basic definitions from [1,9].

Definition 2.1. Let Σ be a finite alphabet of symbols. A picture A over Σ is
a rectangular m× n array of elements of the form

A =

am1 . . . amn

...
. . .

...
a11 . . . a1n

= [aij]m×n .

The set of all pictures or arrays over Σ is denoted by Σ∗∗. A picture language or
an array language over Σ is a subset of Σ∗∗.

Definition 2.2. Let A = [aij]m×p and B = [aij]n×q. The column concatena-

tion A©| B of A and B is defined only when m = n and is given by

A©| B =

am1 . . . amp bn1 . . . bnq
...

. . .
...

...
. . .

...
a11 . . . a1p b11 . . . b1q

.

Similarly, the row concatenation A©−B of A and B is defined only when p = q and
is given by

A©−B =

bn1 . . . bnq
...

. . .
...

b11 . . . b1q
am1 . . . amp

...
. . .

...
a11 . . . a1p

.

The empty array is denoted by Λ. We have Λ©| P = P©| Λ = P and
Λ©− P = P©− A = P for any P ∈ Σ∗∗.

We use ⊕ to denote either ©| or ©−. Also when there is no ambiguity and the
meaning is clear then the operator ⊕ is left out.

SHUFFLE ON ARRAY LANGUAGES 19

Definition 2.3. The column shuffle operation on two arrays P and Q denoted
by PttcQ is defined recursively as

PttcQ = ((A©| X)ttc(B©| Y))

= A©| (Xttc(B©| Y)) ∪B©| ((A©| X)ttcY)

where P = A©| X and Q = B ©| Y , P,Q ∈ Σ∗∗, A is the first column of P and B
is the first column of Q. The operation is defined only when the number of rows
in P and the number of rows in Q are equal. If A is empty then X = P . Similarly
if B is empty then Y = Q. Also PttcΛ = ΛttcP = P .

Example 2.4. Let P = A ©| X where A =
a
b

, X =
b
a

and Q = B ©| Y

where B =
c
d

, Y =
d
c

. Now

Xttc(B ©| Y) =
b
a
ttc c

d
d
c

=

{
b c d
a d c

,
c b d
d a c

,
c d b
d c a

}
,

A©| (Xttc(B©| Y) =

{
a b c d
b a d c

,
a c b d
b d a c

,
a c d b
b d c a

}
,

(A©| X)ttcY =
a
b

b
a
ttc d

c
=

{
a b d
b a c

,
a d b
b c a

,
d a b
c b a

}
,

B©| ((A©| X)ttcY) =

{
c a b d
d b a c

,
c a d b
d b c a

,
c d a b
d c b a

}
.

Therefore

PttcQ =

{
a b c d
b a d c

,
a c b d
b d a c

,
a c d b
b d c a

,
c a b d
d b a c

,

c a d b
d b c a

,
c d a b
d c b a

}
.

Definition 2.5. The row shuffle operation on two arrays P and Q denoted by
PttrQ is defined recursively as

PttrQ = ((A©−X)ttr(B©−Y))

= A©−(Xttr(B©−Y)) ∪B©−((A©−X)ttrY)

where P = A©−X and Q = B©− Y , P,Q ∈ Σ∗∗, A is the first row of P and B is
the first row of Q. The operation is defined only when the number of columns in
P and the number of columns in Q are equal. Also PttrΛ = ΛttrP = P .

Definition 2.6. Let V1 = {r, u}, V2 = {`, d} be the sets of versors in the
plane. `, r, u and d stand for the left, right, up and down directions respectively.
A trajectory is an element t ∈ V ∗1 ∪ V ∗2 .

Let |P |c denote the number of columns in the array P , |P |r denote the number
of rows in the array P . If w is a finite string, then |w|a denotes the number of
occurrences of a in w.

Definition 2.7. Let Σ be a finite alphabet, t ∈ V ∗1 , v ∈ {r, u} and P,Q ∈ Σ∗∗.
The column shuffle of P with Q on the trajectory vt, denoted by Pttcvt Q is

20 D.K. SHEENA CHRISTY ET AL.

recursively defined as follows. If P = A©| X and Q = B©| Y where A,B,X, Y ∈
Σ∗∗, A and B are the first columns of P and Q respectively, then

Pttcvt Q = ((A ©| X)ttcvt(B ©| Y)) =

{
A©| (Xttct(B©| Y)), if v = r

B©| ((A©| X)ttctY), if v = u
.

If P = Λ, then

Λttcvt (B ©| Y) =

{
φ if v = r

B©| (Λttct Y) if v = u
.

If Q = Λ, then

(A ©| X)ttcvtΛ =

{
A ©| (XttctΛ) if v = r

φ if v = u
and ΛttcvtΛ =

{
Λ if t = λ

φ otherwise.
.

The row shuffle of P with Q on the trajectory vt, v ∈ {`, d}, t ∈ V ∗2 is defined
in a similar way with r, u replaced by `, d and ©| catenation is replaced by ©−
catenation. Also if |P |c 6= |t|r or |Q|c 6= |t|u then PttctQ = φ. Similarly if
|P |r 6= |t|` or |Q|r 6= |t|d then PttrtQ = φ.

If T is a set of trajectories, i.e., T ⊆ V ∗1 ∪ V ∗2 , then PttcTQ =
⋃

t∈T∩V ∗1

PttctQ,

PttrTQ =
⋃

t∈T∩V ∗2

PttrtQ and PttTQ =

 ⋃
t∈T∩V ∗1

PttctQ

 ∪
 ⋃

t∈T∩V ∗2

PttrtQ

 .

The above operation is extended to array languages over Σ. If L1, L2 ⊆ Σ∗∗

then

L1ttTL2 =
⋃

P∈L1,
Q∈L2

PttTQ =
⋃

P∈L1,
Q∈L2

 ⋃
t∈T∩V ∗1

PttctQ

 ∪
 ⋃

t∈T∩V ∗2

PttrtQ

 .

Example 2.8. Let P,Q and R ∈ Σ∗∗. If

P =
a a a
a a a
a a a

, Q =
b b b
b b b
b b b

and R =
c c c
c c c
c c c

,

then

PttctQ =
a b b a b a
a b b a b a
a b b a b a

, where t = ru2rur and PttrtR =

a a a
c c c
a a a
c c c
c c c
a a a

where t = `d2`d`.

Definition 2.9. Let G = (V, I, P, S) be an array (rewriting) grammar (AG),
where V = V1∪V2, V1 a finite set of non-terminals, V2 a finite set of intermediates,
I, a finite set of terminals, P = P1∪P2∪P3, P1 the finite set of non-terminal rules,
P2 the finite set of intermediate rules and P3 the finite set of terminal rules. S ∈ V1

SHUFFLE ON ARRAY LANGUAGES 21

is the start symbol, P1, is a finite set of ordered pairs (u, v), u, v ∈ (V1 ∪ V2)+ or
u, v ∈ (V1 ∪ V2)+.
P1 is context-sensitive (CS) if there is a (u, v) in P1 such that u = u1s1v1 and

v = u1αv1 where s1 ∈ V1, u1, v1, α are all in (V1 ∪ V2)+ or all in (V1 ∪ V2)+. P1 is
called context-free (CF) if every (u, v) in P1 is such that u ∈ V1 and v in (V1∪V2)+

or (V1 ∪ V2)+ and regular (R) if u ∈ V1 and v of the form U ⊕ V , U in V1 and V
in V2 or U in V2 and V in V1.
P2 is a set or ordered pairs (u, v), u and v in (V2∪{x1, x2, . . . , xp})+ or u and v

in (V2 ∪{x1, x2, . . . , xp})+; x1, x2, . . . , xp in I++ have the same number of rows in
the first case and same number of columns in the second case; i.e., the finite set of
intermediate rules involve only intermediates and a finite number of fixed arrays in
I++. Further P2 is such that each intermediate in V2 generates either a language
(called intermediate matrix language) whose terminals are a finite number of arrays
with the same number of rows or the transpose of such a language. P2 is called
CS, CF or R depending on whether the intermediate matrix languages generated
are CS, CF or R.
P3 the finite set of terminal rules is ordered pairs (u, v), u ∈ (V1 ∪ V2) and v in

I++.

Remark 2.10. The transpose of a language L is

LT =

 a11 . . . am1

.
a1n . . . amn

∣∣∣∣∣∣
a11 . . . a1n
.
am1 . . . amn

∈ L

 .

Remark 2.11. I∗∗ denotes the set of all horizontal sequences of rectangular
arrays from I and I++ = I∗∗−{ε}, where ε is the empty array. I∗∗ denotes the set
of all vertical sequences of rectangular arrays from I and I++ = I∗∗ − {ε}. Also
(x)i+1 = (x)i ©| x, (x)i+1 = (x)i ©− x where x ∈ I++.

Definition 2.12. An array grammar (AG) is called (CS : CS)AG if the non-
terminal rules are CS and at least one intermediate language is CS.

An array grammar is (CS : CF)AG if the non-terminal rules are CS and none
of the intermediate language is CS. A grammar is called (CS : R)AG if the non-
terminal rules are CS and all the intermediate languages are regular. Similarly for
all the other six, viz., (CF : CS)AG, (CF : CF)AG, (CF : R)AG, (R : CS)AG,
(R : CF)AG, (R : R)AG.

Definition 2.13. If A is an intermediate, the intermediate matrix language
generated by A is MA = {X/A ⇒∗ X ∈ {x1, x2, . . . , xp}+, x1, x2, . . . , xp ∈
I++ and x1, x2, . . . , xp have same number of rows} or MA = {X/A ⇒∗ X ∈
{x1, x2, . . . , xp}+, x1, x2, . . . , xp ∈ I++ and x1, x2, . . . , xp have same number of
columns}.

Definition 2.14. M = {X/S ⇒∗G X,X in I++} is a (context sensitive : con-
text sensitive) array language ((CS : CS)AL) if there exists a (CS : CS)AG G
such that M = M(G). Similarly for the remaining eight families.

Notation. We write α ⇒P β when a rule in P1 or P2 or P3 is used in the
derivation. The reflexive, transitive closure of ⇒ is denoted by ⇒∗.

22 D.K. SHEENA CHRISTY ET AL.

3. Results

In this section we give the existince results for the array languages such as (R :
R)AL, (CF : CF)AL, (CF : R)AL, (CF : CS)AL and (CS : CS)AL.

Theorem 3.1. There exist two languages L1 and L2 in (R : R)AL and (CF :
CF)AL and T is a regular language such that L = L1ttTL2 is a (CF : CF)AL.

Proof. Let L1 = {L token of all sizes with fixed proportion} be a (R : R)AL
generated by L1 = L(G1), G1 = (V, I, P1, S1) where V = V1 ∪ V2, V1 = {S1},
V2 = {A1, B1}, I = {X, ·}, P1 = P11∪P12∪P13, with P11 = {S1 → (A1©−S1)©| B1},
P12 be the set of intermediate rules given by LA1 and LB1 ,

P13 =

{
S1 →

X ·
X X

}
, LA1

= {X (·)n|n ≥ 1}, LB1
=

{
(·)n
X
|n ≥ 1

}
.

The language thus generated is

L1 =

 X ·
X X

,
X · ·
X · ·
X X X

, . . .

 .

Let us consider a (CF : CF)AL, L2, which is the language

· X X X
· X · X
X · X ·
· X · X
X X · X

,

· · X X X X
· · X · X X
· X X X · X
· X · · X ·
X · X · X X
· X X · · X
X X X · · X

, · · ·

,

L2 is generated by the following (CF : CF)AG, G2 = (V2, I, P2, S2) with V2 =
V ′ ∪ V ′′, V ′ = {S3, S4, S2}, V ′′ = {A2, B2}, I = {X, ·} and S2 ∈ V ′ and P2 =
P ′ ∪ P ′′ ∪ P ′′′ where P ′ = {S2 → ((A2 ©− S3) ©| B2) ©| ((S4 ©− A2) ©| B2),
S3 → (A2 ©−S3) ©| B2, S4 → (S4 ©− A2) ©| B2},

P ′′′ =

S3 →
X
·
X

, S4 →
X
·
X

and

P ′′ : LA2 =

{(
·
·

)n

/n ≥ 1

}
and LB2 =

 (X)n
·

(X)n

/n ≥ 1

 .

Now the shuffling of L1 and L2 over the trajectory TC = {rnum/n,m ≥ 1},
which results in a (CF : CF)AL with the language being of the form

L = L1ttTC
L2 =

X · · · · · X X X
X · · · · · X · X
X · · · · X · X ·
X · · · · · X · X
X X X X X X X · X

. · · ·

SHUFFLE ON ARRAY LANGUAGES 23

is a (CF : CF)AL generated by the following (CF : CF)AG, G3 = (V3, I, P3, S5)
where V3 = V31 ∪ V32 with V31 = {S1, S2, S3, S4, S5}, V32 = {A1, B1, A2, B2} and
P3 = P31 ∪ P32 ∪ P33 where P31 = {S5 → S1 ©| S2, S1 → (A1 ©− S1) ©| B1,
S2 → S3 ©| S4, S3 → (A2 ©− S3) ©| B2, S4 → (S4 ©− A2) ©| B2},

P32 =

LA1

= {X (·)n/n ≥ 1}; LB1
=

{
(·)n
X

/
n ≥ 1

}

LA2
=

{(
·
·

)n
/
n ≥ 1

}
; LB2

=

 (X)n
·

(X)n

/
n ≥ 1

and

P33 =

S1 →
X · ·
X · ·
X X X

, S3 →
X
·
X

, S4 →
X
·
X

 .

�

Theorem 3.2. There exist two languages L1 and L2 in (CF : R)AL and T
a CFL such that L = L1ttTL2 is a (CF : R)AL.

Proof. Let L1 = { shape I of all sizes with fixed proportion }, i.e.,

L1 =

X X X
· X ·
X X X

,

X X X X X
· · X · ·
· · X · ·
· · X · ·
X X X X X

, · · ·

be a (CF : R)AL generated by the following (CF : R)AG, G1 = (V ′, I, P ′, S)
where V ′ = V1 ∪ V2, V1 = {S, S1}, V2 = {A,B,C,D}, I = {X, ·} and P ′ =
P1 ∪ P2 ∪ P3 where P1 = {S → (B ©− S1 ©− B) ©| A ©| (B ©− S1 ©− B), S1 →
(S1 ©− C) ©| D},

P3 =

S1 →
· ·
· ·
· ·

, S →
X X X
· X ·
X X X

 , P2 =

LA = {(X)2n+1/n ≥ 1}
LB = {(X)n/n ≥ 1}

LC =

{(
·
·

)n

/n ≥ 1

}
LD = {(·)2n+1/n ≥ 1}

 .

Let us consider another (CF : R)AL, L2 = { the token L of odd sizes and fixed
proportion }, generated by a (CF : R)AG, G2 = (V ′, I, P ′, S′) where V ′ = V1∪V2,
I = {X, ·}, P ′ = P1 ∪ P2 ∪ P3 with P1 = {S′ → A ©− ((A ©− S′) ©| B) ©| B},

P3 =

S′ → X · ·
X · ·
X X X

 , P2 =

 LA = {X (·)n/n ≥ 1}

LB =

{
(·)n
X

/
n ≥ 1

} .

Let us consider the trajectory T as CFL, TC = {rnun/n ≥ 1}.
Now the shuffling of L1 and L2 over the trajectory T is a (CF : R)AL given by

L = L1ttTC
L2 =

X X X X · ·
· X · X · ·
X X X X X X

,

24 D.K. SHEENA CHRISTY ET AL.

X X X X X X · · · ·
· · X · · X · · · ·
· · X · · X · · · ·
· · X · · X · · · ·
X X X X X X X X X X

, · · ·

which can be generated by the following (CF : R)AG, G′′ = (V ′′, I, P ′′, S′′) where
V ′′ = V1 ∪ V2, V1 = {S1, S2, S3, S

′′}, V2 = {A1, B1, C1, D1, E1, F1}, I = {X, ·},
P ′′ = P1 ∪ P2 ∪ P3 where

P1 = {S′′ → S2 ©| S3, S2 → (B1 ©− S1 ©− B1) ©| A1 ©| (B1 ©− S1 ©− B1),

S3 → A1 ©| (E1 ©− (S3 ©| F1) ©− B1),

S1 → (S1 ©− C1) ©| D1, S3 → (S3 ©| F1) ©− C1},
P2 : LA1

= {(X)2n+1/n ≥ 1}, LB1
= {(X)n/n ≥ 1},

LC1
=

{(
·
·

)n/
n ≥ 1

}
, LD1

= {(·)2n+1/n ≥ 1},

LE1
= {(· ·)2n/n ≥ 1}, LF1

= {

··
·

n/
n ≥ 1} and

P3 =

S′′ → X X X X · ·
· X · X · ·
X X X X X X

, S1 →
· ·
· ·
· ·

, S3 →
· · ·
· · ·
· · ·

 .

�

Theorem 3.3. There exist two languages L1 and L2 in (CF : CS)AL and T
a regular language such that L = L1ttTL2, is a (CF : CS)AL.

Proof. Let us consider a (CF : CS)AL L1, a set of matrices of the form

L1 =

X · · X
X · · X
· · · ·
X X X X
X · · X
· X X ·
X · · X
X X X X

,

X · · · · X
X · · · · X
X · · · · X
· X · · X ·
X X · · X X
X · · · · X
X X X X X X
· X · · X ·
X · X X · X
X X · · X X
X X X X X X

, · · ·

which is generated by the (CF : CS)AG, G1 = (V ′, I, P ′, S′) where V ′ = V1 ∪ V2,
V1 = {S′, S1}, V2 = {A,B}, I = {X, ·} and P ′ = P1 ∪ P2 ∪ P3 where

P1 = {S′ → B ©| (A ©− S1) ©| B,S1 → B ©| (A ©− S1) ©| B},

SHUFFLE ON ARRAY LANGUAGES 25

P3 =

S1 →

X X
· ·
X X
· ·
X X

 , P2 =

LA =

· ·· ·
· ·

n/
n ≥ 1

LB =

(X)n
·

(X)n
·

(X)n
·

/
n ≥ 1

.

Let us consider another (CF : CS)AL L2, a set of matrix of the form

L2 =

A X X A
A X X A
X X X X
B A A B
B X X B
X B B X
C X X C
C C C C

,

A X X X X A
A X X X X A
X A X X A X
B A X X A B
B X X X X B
B B A A B B
X B X X B X
C X B B X C
C C X X C C
C C C C C C

, . . .

and L2 is generated by (CF : CS)AG, G2 = (V ′′, I ′, P ′′, S′′) where V ′′ = V1 ∪ V2
with V1 = {S′′, S2}, V2 = {C ′, D′}, I ′ = {A,B,C,X} and S′′ ∈ V1.

The production rule P ′′ consists of P ′′ = P1 ∪ P2 ∪ P3, where P1 = {S′′ →
C ′ ©| (D′ ©− S2) ©| C ′, S2 → C ′ ©| (D′ ©− S2) ©| C ′},

P3 =

S2 →

A A
X X
B B
X X
X X

 , P2 =

LC′ =

(A)n
X

(B)n
X

(C)n

/
n ≥ 1

LD′ =

X X
X X
X X

n/
n ≥ 1

.

Consider a regular trajectory TC = {(ru)n/n ≥ 1}. Then

L = L1ttTC
L2 =

X A · X · X X A
X A · X · X X A
· X · X · X · X
X B X A X A X B
X B · X · X X B
· X X B X B · X
X C · X · X X C
X C X C X C X C

,

26 D.K. SHEENA CHRISTY ET AL.

X A · X · X · X X A
X A · X · X · X X A
X A · X · X · X X A
· X X A · X X A · X
X B X A · X X A X B
X B · X · X · X X B
X B X B X A X B X B
· X X B · X X B · X
X C · X X B · X X C
X C X C · X X C X C
X C X C X C X C X C

, · · ·

is also a (CF : CS)AL being generated by the following (CF : CS)AG, G =
(V, I, P, S) where V = V1 ∪ V2, V1 = {S}, V2 = {R, J}, I = {A,B,C, ·, X} and
P = P1 ∪ P2 ∪ P3 where P1 = {S → R ©| (J ©− S) ©| R},

P2 =

LJ =

· X
· X
· X

n/
n ≥ 1

LR =

(X A)n
· X

(X B)n
· X

(X C)n

/
n ≥ 1

,

P3 =

S →

X A · X · X X A
X A · X · X X A
· X · X · X · X
X B X A X A X B
X B · X · X X B
· X X B X B · X
X C · X · X X C
X C X C X C X C

.

�

Theorem 3.4. There exist two languages L1 and L2 in (CS : CS)AL and
a context free trajectory T such that L = L1 ttT L2 is a (CS : CS)AL.

Proof. Let us consider a (CS : CS)AL L1 consisting of pictures of the form
· X ·
X X ·
· · ·

,

· X ·
· X ·
X X ·
X X ·
· · ·
· · ·

,
· · X X · ·
X X X X · ·
· · · · · ·

,

· · · X X X · · ·
· · · X X X · · ·
X X X X X X · · ·
X X X X X X · · ·
· · · · · · · · ·
· · · · · · · · ·

generated by the following (CS : CS)AG, G1 = (V1, I, P1, S) where V1 = V11∪V12,
V11 = {S}, V12 = {A1, B1, C1}, I = {·, X}, P1 = P11 ∪ P12 ∪ P13, P11 = {S →

SHUFFLE ON ARRAY LANGUAGES 27

A1 ©| S ©| B1 ©| C1, (C1 ©| B1)→ (B1 ©| C1), S → Λ},

P12 =

LA1 =

 (·)n
(X)n
(·)n

/n ≥ 1

 ;LB1 =

{
(X)2n
(·)n

/n ≥ 1

}
;LC1 = {(·)3n/n ≥ 1}

 ,

P13 = φ. Let us consider another (CS : CS)AL, L2 consisting of a set of pictures
of the form

· X ·
· X X
· · ·

,
· · X X · ·
· · X X X X
· · · · · ·

,

· X ·
· X ·
· X X
· X X
· · ·
· · ·

,

· · · X X X · · ·
· · · X X X · · ·
· · · X X X X X X
· · · X X X X X X
· · · · · · · · ·
· · · · · · · · ·

generated by the following (CS : CS)AG, G2 = (V2, I, P2, S) where V2 = V21∪V22,
V21 = {S′}, V22 = {A2, B2, C2}, I = {·, X}, P2 = P21 ∪ P22 ∪ P23, P21 = {S′ →
A2 ©| S′ ©| B2 ©| C2, (C2 ©| B2)→ (B2 ©| C2), S → Λ},

P22 =

LA2
= {(·)3n/n ≥ 1} , LB2

=

{
(X)2n
(·)n

/n ≥ 1

}
, LC2

=

 (·)n
(X)n
(·)n

/n ≥ 1

 ,

P23 = φ. Let us consider a trajectory TC = {rnun/n ≥ 1}. Then the shuffle of L1

and L2 over TC is given by

L = L1ttTC
L2

=

 · X · · X ·
X X · · X X
· · · · · ·

,
· · X X · · · · X X · ·
X X X X · · · · X X X X
· · · · · · · · · · · ·

which is generated by the following (CS : CS)AG G3 = (V3, I, P3, S) where
V3 = V31∪V32, V31 = {S, S′, S′′}, V32 = V12∪V22, I = {·, X}, P3 = P31∪P32∪P33,
P31 = P11 ∪ P21 ∪ {S′′ → S ©| S′}, P32 = P12 ∪ P22, P23 = φ. �

Theorem 3.5. There exist two languages L1 in (CS : CS)AL and L2 in (CS :
R)AL and a context free trajectory T such that L = L1 ttT L2 is a (CS : CS)AL.

Proof. Let L1 be the same (CS : CS)AL (first language) as considered in
Theorem 3.4 that can be generated by the same (CS : CS)AG.

Let us consider a (CS : R)AL L2 consisting of pictures of the form

L2 =

a a b
c c d
e e f

,
a b b
c d d
e f f

,

a a b
a a b
c c d
c c d
e e f
e e f

, . . .

generated by the following (CS : R)AG, G2 = (V2, I

′, P2, S
′) where V2 = V21∪V22,

28 D.K. SHEENA CHRISTY ET AL.

V21 = {S′}, V22 = {A2, B2, C2}, I ′ = {a, b, c, d, e, f}, P2 = P21 ∪ P22 ∪ P23,
P21 = {S′ → A2 ©− S′ ©− B2 ©− C2, (C2 ©− B2) → (B2 ©− C2), S′ → Λ}, P22 =
{LA2

= {anbm/m, n ≥ 1}, LB2
= {cndm/m, n ≥ 1}, LC2

= {enfm/m, n ≥ 1}},
P23 = φ.

Let us consider the trajectory TC = {rnun/n ≥ 1}. Then, the shuffle of L1 and
L2 over TC is given by

L = L1ttTC
L2

=

· X · a a b
X X · c c d
· · · e e f

,
· X · a b b
X X · c d d
· · · e f f

,

· X · a a b
· X · a a b
X X · c c d
X X · c c d
· · · e e f
· · · e e f

, . . .

and is generated by the following (CS : CS)AG G = (V, I ′′, P, S′′) where
V = (V1 ∪{S′′}), I ′′ = I ∪ I ′, P = P1 ∪P2 ∪P3, P1 = P11 ∪P21 ∪{S′′ → S ©| S′},
P2 = P12 ∪ P22, P3 = φ. �

4. Application to kolam pattern generation

“Kolam” refers to decorative artwork drawn on the floor with the kolam drawing
generally starting with a certain number pattern of points and curly lines going
around these points. A classification of kolam patterns based on their generation
by different array grammars was considered by Siromoney et al. [10]. The approach
for generation of kolam patterns adopts the technique referred to as Narasimhan’s
method of kolam generation (Siromoney et al., 1974). The kolam patterns are
coded as rectangular arrays of symbols. The array languages generated by array
grammars with shuffle operation on finite arrays over trajectories have strong
connection with kolam patterns. As an illustration, we consider the following
example [10].

Example 4.1. Let us consider a language L1 in (R : R)AL and T a context-free
regular language such that L1ttTL1 is a (CF : R)AL.

Let L1 be the set of kolam patterns generated by the following (R : R)AG,
G = (V, I, P, S) where V = V1 ∪ V2, I = {5,♦,H,�,�,∆, B} (B stands for
blank), V1 = {S}, V2 = {E,F}, P = P1 ∪ P2 with P1 = {S → (S ©| E) ©− F},

P2 =

B B B B B ∇
B B B B B ♦
B B B B � H
B B B B ∆ H
B B � ∆ B �
∇ ♦ H H � ♦

,

SHUFFLE ON ARRAY LANGUAGES 29

LE =

5 B
♦ B
H �
H ∆
� H
♦ H

n

n ≥ 1

∪

B 5
B ♦
� H
∆ H
H �
H ♦

n

� H
∆ H

n ≥ 1

,

LF =

{
5 ♦
B B

(
H H � ♦
� ∆ � �

)
n

B �
� ∆

/
n ≥ 1

}
∪
{
B B ∆ ♦
5 ♦ H H

(
H H ∆ ♦
∆ ♦ H H

)n
B ∆
∆ ♦

/
n ≥ 1

}
.

The set of instructions is:

(1) Join a H dot to the nearest H dot.
(2) Join a 5 dot to the nearest 5 dot.
(3) Join a ♦ dot to the nearest � dot.
(4) Join a � dot to the nearest ∆ dot.
(5) Join a ∆ dot to the nearest � dot.
(6) Join a � dot to the nearest ♦ dot.

A member of L1 is given in Figure 1. Let us consider a context free trajectory

Figure 1. A kolam pattern.

TC = {rnun/n ≥ 1}. Now the shuffling of L1 over the trajectory TC results
in a (CF : R)AL and can be generated by the following (CF : R)AG, G2 =
(V, I, P, S), V = V ′1 ∪V2), I = {5,♦,H,�,�,∆, B} (B stands for blank and in the
figures drawn the corresponding entry is left blank), V ′1 = {S, S1}, V2 = {E,F},

30 D.K. SHEENA CHRISTY ET AL.

P = P ′1 ∪ P2 where P ′1 = {S → (S1 ©| S1), S1 → (S ©| E) ©− F}. One generated
member of this pattern is given in Figure 2.

Figure 2. Extended kolam pattern.

5. Conclusion

The class of grammars with array rewriting rules is a powerful tool to describe
interesting pictures. In this paper we combine the array languages generated by
array grammars with shuffle operation on finite arrays over trajectories and study
the picture generation of various classes of Siromoney array languages such as (R :
R)AG, (R : CF)AG, (CF : R)AG, (CF : CF)AG, (CS : R)AG, (CS : CS)AG
and (CF : CS)AG. These languages have strong connection with kolam patterns.
Our future interest is to associate the shuffle on trajectories with array automata
and tiling patterns.

References

[1] H. Geetha, D. G. Thomas, T. Kalyani and A. S. Prasanna Venkatesan, Shuffle on trajectories

over finite array languages, in: J. K. Aggarwal et al. (eds.), Combinatorial Image Analysis,

Lecture Notes in Computer Science 6636, 2011, 261–274.
[2] D. Giammarresi and A. Restivo, Two-dimensional languages, in: A. Salomaa and G. Rozen-

berg (eds.), Handbook of Formal Languages 3, Springer-Verlag, 1997, 215–267.

[3] P. Helen Chandra, C. Martin-Vide, K. G. Subramanian, D. L. Van and P. S. P. Wang, Par-
allel contextual array grammars and trajectories, in: C. H. Chen and P. S. P. Wang (eds.),

Handbook of Pattern Recognition and Computer Vision, 3rd ed., World Scientific, 2004,

55–70.
[4] K. Krithivasan and R. Siromoney, Array automata and operations on array languages, Int.

J. Comput. Math. 4 (1974), 3–30.

[5] A. Mateescu, G. Rozenberg and A. Salomaa, Fundamental study – shuffle on trajectories:
Syntactic constraints, Theor. Comput. Sci. 197 (1998), 1–56.

[6] A. Rosenfeld and R. Siromoney, Picture languages – a survey, Languages of Design 1 (1993)
229–244.

SHUFFLE ON ARRAY LANGUAGES 31

[7] A. Salomaa, On grammars with restricted use of productions, Ann. Acad. Sci. Fenn. Ser.

A.I. 454 (1969), 1–32.
[8] G. Siromoney, R. Siromoney and K. Krithivasan, Abstract families of matrices and picture

languages, Computer Graphics and Image Processing 1 (1972), 234–307.
[9] G. Siromoney, R. Siromoney and K. Krithivasan, Picture languages with array rewriting

rules, Information and Control 22 (1973), 447–470.

[10] G. Siromoney, R. Siromoney and K. Krithivasan, Array grammars and kolam, Computer
Graphics and Image Processing 3 (1974), 63–82.

[11] K. G. Subramanian, L. Revathi and R. Siromoney, Siromoney array grammars and applica-

tions, Int. J. Pattern Recogn. 3 (1989), 333–351.

D. K. Sheena Christy, Department of Mathematics, SRM University, Kattankulathur, Chennai
– 603 203, India

e-mail : sheena.lesley@gmail.com

Vedhanayagam Masilamani, Department of Computer Science and Engineering, IIITD&M
Kanchipuram, Chennai – 600 036, India

e-mail : masila@iiitdm.ac.in

Durairaj Gnanaraj Thomas, Department of Mathematics, Madras Christian College, Tam-

baram, Chennai – 600 059, India

e-mail : dgthomasmcc@yahoo.com

Atulya K. Nagar, Department of Mathematics and Computer Science, Liverpool Hope Uni-

versity, Hope Park, Liverpool L16 9JD, UK
e-mail : nagara@hope.ac.uk

Robinson Thamburaj, Department of Mathematics, Madras Christian College, Tambaram,
Chennai – 600 059, India

e-mail : robin.mcc@gmail.com

