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Introduction

Group algebras K[Q] of polycyclic-by-finite groups are easily-defined,
interesting examples of right and left Noetherian rings. Since prime
rings and prime ideals are the basic building blocks in the Goldie theory
of Noetherian rings, the determination of the structure of the prime
ideals of K[(] is certainly of importance. In a recent fundamental paper
[8], Roseblade proved that G has a characteristic subgroup G, of finite
index such that the prime ideals of K[G,] can be described in a
particularly nice manner. Furthermore, he showed that this type of
description does not, in general, apply to K[G]. In this paper, we offer a
slightly different, somewhat more complicated formulation which does
indeed describe the primes of K[G].

Observe that the group algebra K[G] can be written as
K[@] = K[Gy] *(G/G,), a crossed product of the finite group H = Q/G,
over the ring R = K[G,). Furthermore, a recent paper [5] of the authors
studies the general crossed product situation E* H with H finite and
offers a rather complicated scheme for describing the prime ideals of
R * H in terms of those of R. Since the situation here is certainly much
more special, the general scheme, as expected, simplifies enormously
and allows us to lift information from R = K[G,] to K[G]. Thus the
proofs of the main results of this paper use crossed-product techniques,
frequently well disguised, and ultimately rest on the structure of the
primes in R = K[@,], that is, on the basic work of Roseblade. To
describe these new results, we first require a number of definitions, most
of which come from [8].

In the following definitions and theorems of the introduction, K[®]
will always denote the group algebra of a polycyclic-by-finite group G
over a field K.

DEFINITIONS. Let N be a subgroup of @ and let I be an ideal of K[G].

(1) N is said to be orbital in G if [@: Ng(N)] < oo, that is, if N has only
finitely many conjugates under the action of G. N is an ¢solated orbital
subgroup if N is orbital and if there are no orbital subgroups M of @ with
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M o N (where o denotes strict inclusion) and [M : N] < co.

(2) A(G) = {z € G| [@:Cg(x)] < oo}. This is the f.c. centre of @ and
G = A(G) if and only if G is finite-by-abelian. Furthermore, we let V(NV)
denote the complete inverse image in Ng(N) of A(N4(N)/N).

(3) I' = {x € @| z—1 € I}. Thus I' is the kernel of the homomorph-
ism G —» K[G]/I so that I' is a normal subgroup of G and I is the
complete inverse image in G of an ideal of K[G/I']. If N < G we say
that I is almost faithful sub N if and only if I' € N and [N :I'] < co.

(4) Let H be a subgroup of G and let L be an ideal of K[H]. Then

L° = gL KI6) = () L* K[Q)

Here Id stands for ‘the largest ideal contained in’ and it is a simple
matter to see that this definition makes sense. Indeed, suppose I is an
ideal contained in L-K[G]. Since I =I* for all x € G, we have
I = (L-K[G])* = L* K[G] and hence I < (\,.cL** K[G] = LC. On the
other hand, the right-hand term L€ is surely a G-invariant right ideal of
K[@] and hence xL¢ = LSz < LC for all x € G. Thus L€ is a two-sided
ideal and in fact the unique largest such contained in L- K[®].

We can now state

THEOREM I (Existence). If P is a prime ideal of K[G], then there exists
an isolated orbital subgroup N of G' and an almost faithful sub N prime
ideal L of K[VgN)] with P = LS.

DEFINITION. In the above context, if P = L¢ we call any such N a
vertex of P and write N = vx(P). Moreover, for this N, any such L is a
source of P.

THEOREM II (Uniqueness). If P is a prime ideal of K[G], then the
vertices of P are unique up to conjugation in G. Furthermore if N is any
such vertex, the sources of P for this N are unigque up to conjugation by
N4(N).

THEOREM ITI (Converse). If N is an isolated orbital subgroup of G and if
L is an almost faithful sub N prime ideal of K[V 4(N)), then L is a prime
tdeal of K[Q].

At this point, it is necessary for us to assume that the reader is
familiar with the basic results and remaining definitions of [8].
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Furthermore, we note that the main results of the latter paper hold for
all polycyclic-by-finite groups, rather than just for polycyeclic groups as
claimed. We now consider briefly the relationship between the theorems
stated above and their predecessors in [8].

Let us observe first that if H <1 G and if L is an ideal of K[H], then it
follows from the freeness of K[G] over K[H] that

L¢= QG L*- K[G] = (xQGL")~K[G],

and we see that L%is controlled by H. Thus, since G is an orbitally sound
group if and only if each isolated orbital subgroup of @ is normal, we see
that Theorem I reduces to [8, Theorem C1] in the orbitally sound case.
Furthermore, if one merely assumes the weaker condition that
Ve(N) = Vg(coregN) for all isolated orbital subgroups N, then again
V() is normal in G and V;(N)/coregN is an f.c. group so Theorem I
reduces to the ‘if’ part of [8, Theorem B]. On the other hand, the ‘only if’
part of the latter result is surely related to Theorem III.

The following result is not really new. Rather it translates certain
invariants computed in [4] and [8] into the language of vertices and
sources. Recall that the central rank of P, c.r.P, is the transcendence
degree over K of the centre of the classical ring of quotients 2(K[G]/P)
of the prime Noetherian ring K[G]/P. Furthermore, the plinth length
pr(Q@) is defined in [8, §2.3].

THEOREM IV (Invariants). If P is a prime ideal of K[G] with vertex N
and source L, we have that
(i) er.P =c.r.L,

(ii) hgt P = p (Vg(N))—c.r. L, where A = Ng(N),
(iii) if K ts a non-absolute field, then P is primitive if and only if
dim (K [V(N)]/L < co.

Finally, we have opted to make this paper independent of the crossed-
product work in [5). This certainly lengthens the present manuscript,
but considerably eases the prerequisites for reading it. On the other
hand, for the reader who is somewhat familiar with [5], we offer in the
next two paragraphs a brief description of the relationship between the
latter paper and the proof given here, stressing in particular the way in
which this proof was motivated.

Reference [5] studies prime ideals in crossed products R * @ of finite
groups and, without loss of generality, one can assume that R is a G-
prime ring. There are then two cases to consider. If R is prime, then [5,
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§2] introduces a suitable ring of quotients of B and sets up an
appropriate one-to-one correspondence describing the prime ideals. In
some sense, there are really just two key ingredients determined by this
quotient ring, namely the extended centroid of R and the X-inner
automorphisms. Several years ago, Formanek [2] computed the
extended centroid of an arbitrary group ring using A-methods and it is
clear that one can also determine the X-inner automorphisms in the
same way. Thus if R is a group ring, then these A-methods should handle
the extension from R to R * G quite nicely. Furthermore, it was shown in
[4] that A-methods also work modulo a standard prime, that is modulo
the type of prime ideal which occurs in the group algebra of an orbitally
sound group. Because of this, it is clear that using these methods we can
describe the extensions necessary for this paper. However, as it turns
out, there is really very little that has to be done. Indeed [4, Proposition
1.4] is all that is required in the course of the proof.

The second case is the general case with R a G-prime ring. Here [5, § 3]
introduces the maps ¥ and ? which afford a one-to-one correspondence
between certain prime ideals of R*@ and of R* H, where H is the
stabilizer in G of a minimal prime of E. Admittedly the original
formulation of these maps in the above-mentioned paper is useful there
from a theoretical point of view, but they are certainly less convenient
computationally. Thus, in this case, our concern is with making the map
* more understandable and, as we will show in §3, for the sake of
completeness, we have L' = L€ in general. With this observation, the
results of this paper follow rather quickly from Roseblade’s work.
Furthermore, the isolated orbital subgroups show up here because, as is
pointed out in [8, §3.1], among ‘nearby’ orbital subgroups, their
normalizers are largest.

1. Crossed products

In this section we obtain the crossed-product results necessary for the
main theorems and, as was indicated in the introduction, this work will
not depend upon reference [5]. In fact, we are able to offer a completely
different argument here, which is a good deal shorter than the original,
by assuming throughout that the rings involved are Noetherian. Many
of the preliminary lemmas are well known in a slightly different context.
Furthermore, the proof of the key result here is conceptually quite
simple. However, since we are not computing invariants but rather
determining ideals set-theoretically, it is necessary carefully and
precisely to describe certain embeddings. In other words, it is not
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sufficient just to know that certain rings are isomorphic; we
must really understand these isomorphisms.

LemMA 1.1. Let S be a ring.

(i) Supposel = e, +e,+... +e,1s a decomposition of 1 in S into a sum
of n orthogonal idempotents. Let U be a group of units of S and suppose that
U permutes the set {e,,e,,...,e,} transitively by conjugation. Then
S = M (T), the ring of n x n matrices over a suitable subring T ~ e,Se,,
and e, plays the role of the matrixz unit e, ,.

(i) Suppose 8 = M, (T') and let {e;;} denote the set of matriz units of S.
Then the maps I — ey Iey, and L — SLS yield a one-to-one correspon-
dence between the two-sided ideals I of S and the two-sided ideals L of the
ring e,18¢e,, ~ T'. Furthermore, I is prime if and only if e, 1e,, is prime.

Proof. (i) This is [7, Lemma 6.1.6].
(ii) This follows from the well-known fact that every ideal I of M, (T')
is of the form M ,(J) for some ideal J of T'.

DEerinITION. If T is an additive subgroup of a ring S, we let Id (7"
denote the sum of all ideals of S contained in T'. This is surely the largest
ideal of S contained in 7'.

Now let R * G denote a crossed product of the group G over the ring R,
so that R+ @ is a free R-module with basis @ = {Z|x € G}. If H is a
subgroup of @ and if L is an ideal of R * H, we define L¢ = Id g, 4(LG).
Thus ¢ determines a map from #(R * H), the set of ideals of R* H, to
F(R*Q).

LEmMMA 1.2. Let H be a subgroup of G and let L be an ideal of R+ H.
(i) We have
LS =1dg, o(LG) = ﬂG(LG")*" = ﬂGLfc?.
X € X €
(ii) If H < G, then L® = (N, .c L)G.
(iii) If H € A =G, then LS = (L*)C.

Proof. (i) If I is an ideal of R * G contained in L@, then, since I is G-
invariant, we have I<(), (L@ On the other hand, since
Ny (LG = N, ¢ LG, this intersection is clearly a left B-module, a
right R * G-module, and it is G-invariant. Thus it is a two-sided ideal
and hence equal to Id g, (L&) = LS.
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(i) If H < @G, then each L7 is an ideal of R * H. Hence it follows from
the freeness of R*xG over R H, that
L°= N L*G=(N L*G
xeG x eG
(iti) Set
M=L*= (\ (LAY = 1\ ['A
Since R *@ is free over R * A4, it then follows that

MG=(N\ LAG= N LG,

aed aed

and hence clearly

(LAC = M6 = (\G(Mc?)i = (\G(Lc‘i)’E = LS.

At this point, and for the remainder of this section, we assume that
R=*G@ is a crossed product with G a finite group and with R a right
Noetherian ring. Thus R * G, being a finitely generated R-module, is also
right Noetherian. We note that G permutes the ideals of R and if Lis a
G-invariant ideal of R, then L * G = LG is an ideal of R * @ and we have
the natural isomorphism (R *G)/(L * @) ~ (R/L) * G. Furthermore, the
G-invariant ideal L is said to be G-prime if and only if, for all G-invariant
_ideals J, and J, of R, J;J, &L implies J, €L or J, € L. In the
following lemma, part (ii) is Incomparability and part (iv) is Going
Down.

LEMMA 1.3. Let R * @G be given.

i) If I is an ideal of R*x @, then I N\ R is a G-invariant ideal of R.
Furthermore, if I is prime, then I N R s G-prime.

(ii) If I o P are ideals of R * G with P prime, then In R > PN R.

(iii) Let J 2 L be tdeals of R with L being G-invariant and let

T Rx@ —— (R*x®)/(L*xQ)=R=x@

be the natural map. If I is an ideal of R* G with I 2J, then I "R = J if
and only if InR=1J.

(iv) If Lisa G-prime ideal of R, then L is a semiprime ideal. Moreover,
if P is a prime ideal of R* G with P 2 L, then P is a minimal covering
prime of L*@G if and only if PN R = L.

Proof. (i) Since I and R are G-invariant, so is I N R. Furthermqre,
suppose I is prime and that J, and J, are G-invariant ideals of R with
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JJ, 1. Then (J,*@)(J,*G) =1 and, since I is prime, we have
J;*@ = I for some ¢ and therefore J; = I N R.

(ii) Since R*(@ is right Noetherian, the proof of [3, Theorem 1.37]
asserts that there exists an element o € I which is regular modulo P.
Moreover, since R * G is a Noetherian E-module, there exists an integer
m = 1 with

o" e R+aR+a*R+...+o™ 'R.

This yields a monic equation of the form o™ +a™ '7,_;+...+75 =0
with 7; € R. In particular, this expression is also contained in P and we
can now choose 7 > 1 minimal such that o"+a" 's,_, +... +s, € P for
somes; € R.1Ifs, € P, then, since a is regular modulo P, we obtain either
le Pifn=1ora" '+a" %s,_; +... +s; € Pifn > 1 and both of these
are contradictions. Thus sy ¢ P. On the other hand, P =7 and « € I so
8o € I. Therefore, s, € I N R and sy ¢ PN R.
(iii) Assume INR=.J. Then [ nR) cInR=Jso

InRc (J+L+x@)nR=J and InR=J.

Conversely, let I "R = J and let & € I n B. We can of course assume
that « € R. But I 2 L*@, so I is the complete inverse image of I and
hence a € I also. Thus xe InR=J, aeJ, and we conclude that
InR=17.

(iv) Suppose first that L = 0 and hence that Ris a G-prime ring. Then
R is semiprime since the nilpotent radical of R is a G-invariant nilpotent
ideal and hence must be zero. If P n R = 0, then it follows immediately
from (ii) above that P is a minimal prime of R * G. Conversely, suppose
PN R #0.Since lg(P N R)- (P R) = 0 and since both these ideals are
G-invariant, we conclude that [x(P N R) = 0 and hence that P n Ris an
essential right ideal of R. It now follows from [3, Theorem 1.37, proof]
that P N Rcontainsaregularelementr € R. Thenrisclearly also regular
in R * G and since 7, being an element of P, is not regular modulo P, we
conclude from [3, Theorem 2.5 and Lemma 2.17] that P isnot a minimal
prime of R*G.

Finally, let L be arbitrary and use the notation of (iii) above with
J = L.In particular, if P 2 L, then P n R = Lifand only ifPAR=0.
Since P is a minimal covering prime of L * @ if and only if P is a minimal
prime of R+ @, the work of the preceding paragraph yields the result.

If Ris a right Ore ring, then, by definition, R has a classical right ring
of quotients Z(R). In particular, by [3, Theorem 1.37), this always
occurs when R is semiprime and furthermore in this case Z(R) is
necessarily a semisimple Artinian ring.
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In the next three lemmas we make the further assumption that Risa
G-prime ring. We fix notation so that @ is a minimal prime ideal of R and
so that H is the stabilizer of @ in G. Additional notation is introduced in
the following lemma.

LEMMA 1.4. Let R, G, Q and H be as above.
(1) Then R is a semiprime ring and in fact

N @=0.

xeG

Thus the minimal primes of R are precisely the G-conjugates of Q.
Furthermore, if N = (\,; 4@, then @ = ann N and N = ann@.

(i1) The natural map R — R/Q extends to an eptmorphism
9R) — .@(R/Q) with lcemel Q,@(R)

(iii) IfQ2R 1 —e) 2(R) for some central idempotente € Y R), then e
s in fact centmlly przmztwe and e2R) ~ AR/Q).

Proof. (i) Since R is a G-prime ring, it is semiprime by Lemma 1.3 (iv).
Thus if @ = Q,,Q,, ..., Q,, are the finitely many minimal primes of R,
then these are permuted by G and we have the irredundant intersection
0=\Q;. LetI = ", ;@ andletJ be the intersection of the remaining
minimal primes. Then, since I and J are both G-invariant and IJ = 0, it
follows that I = 0 and that the @° are all the minimal primes of R.

Now observe that NQ = 0. Thusif A = ann @, then A 2 N and forall
x ¢ H we have @ 20 = AQ. Hence we see that @* 24 so N 2 4 and
N = ann@. Similarly we can deduce that @ = ann N.

(i) Since R is semiprime, 2R) = RT ~! exists, where T denotes the
set of regular elements of R. Let : R - R/Q denote the natural
epimorphism. Then it follows from [3, Lemma 2.17] that 7' consists of
regular elements of R. Furthermore, since 7' is a right divisor set in R
and is an eplmorphlsm it is clear that 7' is a right divisor set in R.
Hence the ring R7 ™! exists. It is now trivial to verify that the map
RT~' - RT ! given by rt™! — # ! is a well-defined ring epimorph-
ism extending the original map R - R. But RT ' = 9R) is a
semisimple Artinian ring, so we see that R is an order in the Artinian
ring RT ! and hence clearly 2(R) = RT~!. Since the kernel of the map
2R) - YR)is QT ' = QAR), this part is proved.

(iii) Since Z(R)is a semisimple Artinian ring and @ 2(R) is a two-sided
ideal, by (ii) above, we know that Q 2 R) = (1 —e) 2 R) for some central
idempotent e. Thus by (ii) again, e 2(R) ~ 2(R/Q) and, by [3, Corollary
1.38] the latter ring is simple since R/Q is prime. Thus we see that e is a
centrally primitive idempotent of 2(R).
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We know that R * G is right Noetherian, but of course it need not be a
semiprime ring even if R is G-prime. Thus there is no a priorireason to
believe that (R * @) exists. However, we show that it does in the next
lemma. Note that parts (i) and (ii) below only require that R be a
semiprime ring.

LeMMA 1.5. We use the above notation.

(i) AR*Q) = IR)*Q exists and is a right Artinian ring.

(ii) The maps P - PIYR) and P' - P' N (R Q) yield a one-to-one
correspondence between the minimal primes P of R * G and the primes P’ of
IARx*Q).

(iii) 2 R=*Q) = M,(S) where n =[G :H). Furthermore, e plays the
role of the matrix unit ey, e s central in Q(R)* H, and

S~edYR+xGle=eIYR)xH.

Proof. (i) If T denotes the set of regular elements of R, then 7' is easily
seen to be a right divisor set of regular elements of R *@. Indeed the
elements of 7 are surely regular in R*x@ and if teT and
a= D> 7r,Z € R*@, then the fractions (¢~ 'r,)* = () 'r,” € 2R) can all
be written with a common denominator. Hence, for all z in the support
of a, there exist s,e R and fe T with (¢t7!r,)*= s '. Setting
B =2 %s, € R*(@, we see immediately that {8 = of and T is indeed a
right divisor set. We conclude that (R*@)T ~! exists and then we see
easily that this ring is just (BT ') * G = 2(R) * G. In other words, R G
is an order in the Artinian ring 2(R)* G and from this it follows that
IAR*Q) = ZR)*q.

(ii) Observe that PAR*Q) = P(R+@Q)T ' = PYR). This one-to-
one correspondence now follows immediately from [3, Lemma 2.18]
since (R * (@) is Artinian.

(iii) Let U denote the group of units of R and set
G = {uz| w € U,z € G} so that Gis a group of units of R * @ and hence
of 2R »@). Clearly ® acts by conjugation on 2(R). Now R is a G-prime
ring, so Z(R) is also G-prime and hence G-simple. It follows that ®
permutes transitively all the centrally primitive idempotents of 2(R). If
the latter are e =e¢,,¢,,...,¢,, then since 1 =e,+e,+...4+¢, is an
orthogonal decomposition of 1 in (R * @), we conclude from Lemma
1.1(i) that QR*Q@)= M,S), where S ~eYR*G)e. It remains to
identify » and the ring e 2(R * G)e.

Since Q 2(R) N R = @, by Lemma 1.4(ii), it is clear that the stabilizer
of Q2R)in Gis $ = {ui| u € U,x € H}. But 1 —eis the unique identity
element of Q2(R) so we see that § is also the stabilizer of ¢ in ® and
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hence n =[6: 9] =[G: H]). Finally, if « =2, . ga,Z € 4R)*G with
a, € IR), then

e = > aele= D aee E= D a.cf,
xeG xeG xeH
since e is orthogonal to its distinct G-conjugates. Hence it follows that
eYR*G)e =eI(R)* H and of course e is central in 2(R)* H.

We now consider the ring e2(R) * H in more detail. In the course of
the following proof, we will apply earlier lemmas to the crossed products
RxHand (R/Q)*H = (R+ H)/(Q * H). Observe that in the latter case,
R/Q is indeed an H-prime ring.

LEmMA 1.6. Again, we use the above notation.

(i) e2R)y* H ~ 2(R/Q)* H).

(1) Let L,,L,,...,L, be the distinct prime tideals of R*»H with
L,~ R = Q. Then the expressions eL; 2 R) are all distinct and yield all the
prime ideals of e R)* H. Furthermore, L,2(R)N (R*H) = L,.

Proof. Observe that, by Lemma 1.4, the map
T RxH —» (RxH)/(Q«H)=(R/Q)*H
extends to a map Z(R)*H — 2(R/Q)* H with kernel
Q2R)*H = (1—e)2(R)*H.

Thus we see that e2(R)* H ~ 2(R/Q)» H. Moreover, the latter ring is
isomorphic to 2((R/Q)* H), by Lemma 1.5(i), so (i) follows.

Now, by Lemma 1.3(iv), L,,L,, ..., L, are the distinct minimal
primes of RE+H and hence they are indeed finite in number.
Furthermore, by Lemma 1.5(ii), the expressions L,2AR) yield all the
distinet primes of 2(R)* H = YR+ H). Thus the complete inverse
images of these ideals in 2(R) * H are also distinct and prime. Since the
complete inverse image of L, 2(R) is

LR)+(1-e)2R)*H = eL,%R)+(1 —e)AR) * H,

we see that the expressions eL;2(R) are all distinct prime ideals of
e9(R)» H. Moreover, in view of the isomorphism of (i), these account for
all the prime ideals.

Finally, let 7' denote the set of regular elements of R. Then by [3,
Lemma 2.17] these elements are regular modulo @ and hence, as
elements of R * H, they are regular modulo @ » H. But L, is a minimal
covering prime of @ » H so, by [8, Theorem 2.5 and Lemma 2.17], the
elements of T’ are also regular modulo L;. Now any finite number of
5388.3.43 I
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elements of 9(R) can be written with a common denominator and hence
it follows that any element of L;2(R) is of the form ot ™! with « € L; and
teT. Thus if Be L;YAR)n(R*H), then 8 =at™! so pt =« € L; and,
since ¢ is regular modulo L;, we conclude that B € L;. Hence surely
LIAR)Nn(RxH) =L,

We are now ready to prove the main result of this section.

THEOREM 1.7. Let R * G be a crossed product of the finite group G over the
right Noetherian ring R. Let @ be a prime ideal of R, set
H={xe@|Q =Q}, and let A be a fixed subgroup of G with A 2 H.

(i) The map % F(R*A) - F(R*Q) yields a one-to-one correspon-
dence between the prime ideals L of R+ A with LA R = [, . 4Q" and the
prime ideals P of R+G with PAR =, @’

(i) SetJ = Ny, 4@ If P = LS as above, then JL S PN (R+ A) S L
and L is the unique minimal covering prime of P (R*A) with
JELNR.

Proof. We proceed in a series of steps.

Step 1. Suppose that H = A and that [, . ;@" = 0.1t follows from the
latter assumption that R is a G-prime ring and that @ is a minimal prime
of R. Hence all the notation of the preceding three lemmas can apply. In
particular, if L,, L,, ..., L, denote the distinct prime ideals of R* H
with L; " R = @, then, by Lemma 1.6(ii), the expressions eL; 2(R) yield
all the distinct prime ideals of e 2(R) * H. Thus since (R *G) = M (S),
by Lemma 1.5(iii), with e playing the role of the matrix unite,, and with
eIR*xQ)e=e2R)*H, it follows from Lemma 1.1(ii) that the
expressions

P, = 9YR*@)eL,AR) IR +Q)

are distinct and yield all the primes of (R *(@). Hence, by Lemmas
1.3(iv) and 1.5(ii), the expressions P; = P;N (R *G) are distinct and
yield all the prime ideals of B * @ with P; » R = 0. It remains to obtain a
simpler formulation for P; and P;.

Observe that 2(R)- 2R * Q) = 2(R)* G and thateL;2(R)is anideal of
eAR*Q)e =eIR)* H. Thus ‘

eP; = e.@(R*G)e~eL,~£(R)-,@(.R*G)
=el;,YR) AR*Q)=eL, YR)*G.
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Now (1 ~e)2R) = QZR), so
YR)e = e2R) = anny g Q YR) = ann 4 p)@,
and hence, by Lemma 1.4(i),
9R)enR=anng@ = N.

We now multiply the above expression for eP; by any element s € 2(R)
with se € N. Since (se)L; S L, we deduce immediately, by considering all
such s, that NP; < L;2(R) * G and hence that

NP, € LYR)*G (R Q).

Let o = J a;f; € P; with o; € R+ H and with {z;} a right transversal
for H in G. Then it follows from the above and from Lemma 1.6(ii) that,
for each j,

Noj = LiAR) N (R*H) = L,

But L; is a prime ideal of R*xH and L, 2 N xH, since L,nR =@ is
disjoint from N. Thus since (N * H)x; < L; we conclude that «; € L; and
hence that« € L,G. In other words, P; = L,G and, since P;is an ideal, we
have P; € L,°, by definition. Finally, L;® is an ideal of R *G and

LiGﬁR SngﬂR=L,f‘\‘R=Q

Thus since L;°N R is G-invariant and (), .¢@° = 0, we deduce that
L°A R = 0. Since P;is prime and P; < L;%, it now follows immediately
from Incomparability, Lemma 1.3(ii), that P; = L;® and this special
case is proved.

Step 2. Suppose that H = 4 but that I = [\, Q" is arbitrary. Let
" R+xG@ - (R*Q)/(I *@) denote the natural map. Observe that, by
Lemma 1.3(iii), the prime ideals L of R x H with L n R = @ correspond
in a one-to-one manner with the prime ideals Lof B« Hwith LA R = @.
Similarly, the prime ideals P of B* G with P N R = I correspond in a
one-to-one manner with the prime ideals P of R+ @ with Pn R = 0.
Note that (L&)~ = LG, so since LE 2 I * G we have clearly

(L™ = (Idg. (L) = Ids. o(LG) = LC.

Hence since H is also the stabilizer of Q in G, the correspondence in
R*@, proved in Step 1, pulls back to yield the appropriate
correspondence in this case.

Step 3. Suppose that 4 = H is arbitrary. Now, by Step 2, the map ©
yields a one-to-one correspondence between the prime ideals M of R x H
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with M N R =@ and the primes P of R*@ with PnR= (), Q"
Furthermore, by considering the relationship R4 2 Rx H, we see
that the map “ yields a one-to-one correspondence between the prime
ideals M -of R+ H with M n R = @ and the primes L of R* A with
LAR=\,.4Q" Since

P = MG__= (MA)G= LG,
by Lemma 1.2(iii), part (i) is clearly proved.

Step 4. The back map. If z € 4, then JL = L < L’G. If x ¢ A4, then
J S (N, 4@ S L so since L’ is a right ideal of R+@ we have
JL = L’G. Thus we see that JL < (\, LG = L°= P and hence
JL < P (Rx*A). On the other hand, P < LG so

Pn(RxA)s LGN (RxA)= L.

Now let I be a minimal covering prime of PN (R+* A) with InR 2 J.
Then

I2PA(R*A4)2JL=(J+A)L,

and since I 2J*A4 we have I 2 L. On the other hand, since
L23PnNn(R*A) we can choose L' a minimal covering prime of
PN (R*A) with L2 L' 'Since (), 4@ =LNR2L NR, and since
A 2 H, we see that L' " R 2 J. Hence, by the above, L' 2 L,so L' = L
and the theorem is proved.

We remark that Theorem 1.7 holds for arbitrary rings and does not
require the Noetherian assumption. This is a consequence of [5,
~ Theorem 3.6] and Proposition 3.6 of this paper.

2. Group algebras

This section is devoted to proving the main theorems of the paper.
Indeed, we will actually obtain a number of more detailed results which
contain Theorems I-IV and which give a good deal of additional
information. Throughout this section, G will be assumed to be a
polycyclic-by-finite group and K will denote a commutative field.

DEFINITIONS. (1) Recall from [8] that an ideal I of the group algebra
K[@] is called faithful if I'={zxeG|z—1€l}=(1) and almost
faithful if I'is finite. More generally, if N < @, then [ is said to be almost
faithful mod N if I' 2 N and [I': N] < co. This of course occurs if and
only if I is the complete inverse image of an almost faithful ideal of
K[G/N].
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(2) An ideal I of K[G] is said to be standard [4] if
(i) I = (I nKIMGDKIG,
(ii) I n K[A(@)] is an intersection of almost faithful prime ideals of
K[A®)].
Note that, by [4, Lemma 1.1], the intersection in (ii) above can always
be taken to be finite. A standard prime of K[G] is of course a standard
ideal which is prime.

Recall, from Lemma, 1.2, that for any subgroup H of G and any ideal

L of K[H], we have
L =1dge(LK[R]) = ﬂG(LK[G])" = ﬂGL"K[G].
X € X €

Furthermore, if H <1 @ then the last expression becomes
LS = (N, .cL*)K[G]. The following lemma is a reformulation of [4,
Proposition 1.4). Its content is in the second part which asserts that L¢
is prime.

LemMMmA 2.1. Any standard prime ideal P of K[G] can be wrilten as
P = LCwith L an almost faithful prime ideal of K[A(Q)). Conversely if Lis
an almost faithful prime of K[A(Q)), then LS is a standard prime ideal of
K[@).

The next lemma describes the behaviour of standard primes of K[G]
under restriction to K[H] where H is a normal subgroup of G of finite
index. In this situation, K[G] can be written as K[G] = K[H]*(G/H), a
crossed product of the finite group G/ H over the ring K[H]. Thus results
on crossed products of finite groups apply when dealing with the
extensions K[H] € K[G]. In particular, we know from Lemmas 1.3(i)
and 1.4(i) that for any prime P of K[@] we have P K[H] = [\, .c@Q",
where @ is a prime ideal of K[H] which is unique up to G-conjugacy.

LEmMMA 2.2. Let H be a normal subgroup of G of finite index and let P be a
prime ideal of K[G). Write P K[H) = (), . @ with Q a prime ideal of
K[H].

(i) P is standard if and only if Q is standard.

(ii) Assume that P is standard and write P = LC with L an almost
faithful prime of K[A(G)). If J is a minimal covering prime of
L~ K[A(H)), then JH is a minimal covering prime of P~ K[H] and is
standard.

Proof. We first prove (ii). If U € G, let my: K[G] — K[U] denote the
natural projection. Set D = A(H) and A = A(G), so that D = HnA
since [@G:H])< . Now, by assumption, P is standard so
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P = (P n K[A])K[®] implies that =,(P) < P. Hence, since D = H N A,
we have

mp(P A K[H)) = = (P ~ K[H]) < P ~ K[H].

It follows from [7, Lemma 1.1.5(ii)] that I = P n K[H] is controlled
by D, that is, I = (I n K[D])K[H). Moreover, since

PN K[Al= LN K[A] =N, .o L%,
we see that
INK[D]=PnK[D] = ﬂG(L" N K[D)) = (\ (Ln K[D))

eG

We claim now that any minimal covering prime J of L N K[ D] is almost
faithful. Indeed, since L n K[D] is a A-prime ideal of K[D], we have
LN K[D] =, ,J” and hence L'n D = [\, ,(J")’. In particular, if
Z=ZA)NnD,thenJ'nZ = L'nZ < L' But L is almost faithful and
[D:Z] < o0, so we conclude that J' is finite.

It now follows from Lemma, 2.1 that J is a standard prime of K[H).
Moreover, since D < @,

PnK[H]=1=(NK[D)K[H] = ﬂG(L N K[D)y*- K[H]
= xOGJxK[H] - xQG( yOHJyK[H] )x
- xOG(JH)x,

so that J ¥ is clearly a minimal covering prime of P n K[H]. This proves
(ii) and one implication in (i) since the uniqueness of  implies that @ is
G-conjugate to J¥ and hence is clearly standard.

Conversely, assume that @ is standard and, by [8, Lemma 5], write
PN K[A] =), .¢N* with N a prime ideal of K[A]. Since Q = M* for
some almost faithful prime ideal M of K[D], we have
QN K[D] =), .y M and hence

N (N nK[D])* = (P~ K[A]) » K[D] = (P~ K[H]) n K[D]

xeG
=xQG(Qx n K[D]) - xOGMx.

Thus since these intersections are finite and M is prime, we have
NN K[D] c M* for some x € G and it follows that N'n D < (M*)".
Since the latter group is finite and [A : D] < o0, we conclude that N is an
almost faithful prime of K[A]. Thus it follows from Lemma 2.1 that

P =N%= (xQGN")K[G] = (P n K[A)K[G]
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is a standard prime ideal of K[@] which is clearly contained in P. Finally
observe that since @ = (", .y M?)K[H], we have

(P N K[H)K[G) = ( () Q)KIG) = ([} M™)K[G]

< (P~ K[A)K[G] =

so that (PN K[H])K[G] = P’ = P. It now follows immediately from
Incomparability, Lemma 1.3(ii), that P = P’'. Thus P is standard and
the lemma is proved.

Let us review and slightly extend some definitions from the
introduction.

DEFINITION. [8] A subgroup N of @ is called orbital if (G :N4(N)] < o0.
In addition, N is an isolated orbital subgroup if and only if N is orbital
and for all orbital subgroups M > N we have [M:N] = co. If N is
orbital, then its isolator ¢5(IN) is defined by

= (M| M is orbital in G, M 2 N, and [M : N] < o).

By [8, §3.1] we know that [ig(N): N] < 00, ig(NV) is an isolated orbital
subgroup, and Ng(¢26(N)) 2 N4(N).

The group G is called orbitally sound if and only if all its isolated
orbital subgroups are normal. By [8, Theorem C2], the intersection of
the normalizers of the isolated orbital subgroups of @, for any
polycyclic-by-finite group @, has finite index in G. Following [8] we
denote this latter subgroup by nio(G) so that nio(@) is a characteristic
orbitally sound subgroup of @ of finite index.

We are now ready to prove the following result which contains within
it Theorem I.

THEOREM 2.3. Let G be a polycyclic-by-finite group and let P be a prime
ideal of K[G). Suppose H is a normal orbitally sound subgroup of G of finite
index and write P K[H] = (\, .c@" with Q a prime of K[H). Define
N =igQ", A =NgN), and B={x e G| Q" =Q}.

(i) A=2B=2H.

(ii) There exists a unique prime ideal T of K[A] with P =TS and
TAK[H] =\, c4Q° Indeed T is the unique minimal covering prime of
P A K[A] not containing [\, ,Q.

(iii) There exists an almost faithful sub N prime ideal L of K[V g(N)]
with T = L* and hence with P = LC. Indeed, L is a minimal covering
prime of T N K[V g(N)].
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Proof. We use the above notation. Recall that such a normal
subgroup H of finite index in @ does indeed exist, for example we could
take H = nio(@), and that P K[H] does indeed have the above
structure with @ unique up to G-conjugation. Furthermore, Q' < H so
Q'isorbital in @ and N = i4(Q") is an isolated orbital subgroup of G with
[N :Q" < o0 and N4(N) 2 N4(Q) 2 H. For convenience, let M be a
characteristic subgroup of N of finite index contained in @'. Then
certainly M <0 Ng(N) = A. Observe that if Q* = @, then z certainly
normalizes @' and hence we have 4 2N4(Q') 2 B2 H. Thus by
considering K[G'asa crossed product K[G] = K[H]* (G/H), we see from
Theorem 1.7(i) that there exists a unique prime ideal 7T of
K[H)*(A/H) = K[A] with TnK[H]=(),.,Q" and with P = TC.
Since Theorem 1.7(ii) characterizes 7 appropriately in terms of
P N K[A4], parts (i) and (ii) are proved.

Let : K[A] - K[A/M)denote the natural map. Since M < H and
[Q': M] < 0, it follows that @ is almost faithful mod M. Furthermore,
H is orbitally sound so H is orbitally sound and hence, by [8, Theorem
C,], @ is a standard prime of K[H]. Moreover, since
T K[H] =N, .,Q° wesee by Lemma 1.3(iii) that 7' is a prime ideal of
K[A] with T~ K[A] = N, . 40*. We can now conclude from Lemma
2.2(i) that 7' is a standard prime of K[4]. In other words, there exists an
almost faithful prime L of K[A(4)] with

T = <.Q,;Zf‘>K[3] =I

By lifting the above expression back to K[A], we see that there exists
an almost faithful mod M prime ideal L of K[V ,(M)] with

T = (GQAL“)K[A] =LA

Observe that N, M < 4 and [N : M] < co0. Hence it follows easily that
V(M) =V (N)=VgN). Note that ig(M) 2N 2 M so ig(M)=N.
Furthermore, since L' is orbital in 4, it is orbital in @, and from L' 2 M
and [L':M]< o0, we conclude that L'SigM)=N and that
[N: L' < 0. Thus we see that L is almost faithful sub N. Finally we
have T'= L* and P = T¢ so Lemma 1.2(iii) yields P = (L4)%= L.
Since TN K[V4N)] = (N, 4L% a finite intersection of primes, L is
clearly a minimal covering prime of 7' n K[V 4(N)]. The result follows.

DEFINITION. Let P be a prime ideal of K[G@], N an isolated orbital
subgroup of G, and L an almost faithful sub N prime ideal of K[V o(N)].
If P = LY then N is said to be a vertex of P and we write N = vxg4(P).
Furthermore, for this N, L is said to be a source of P.
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The previous theorem gives a means of finding at least one vertex and
source for P. This will become all the more useful once we prove a
uniqueness result. This is in fact done in the next theorem which
contains within it Theorems II and III.

THEOREM 2.4. Let N be an isolated orbital subgroup of G and let L be an
almost faithful sub N prime ideal of K[VN)]. Then P = LS is a
prime ideal of K[G). Furthermore, if H = nio(G) and if

PnK[H]I=Q,n@,n...0Q,,

an intersection of G-conjugate primes, then we have that
(i) for some @ = Q;, N = 14(Q") so that N is uniquely determined by P
up to conjugation in G,
(ii) forthis N, the tdeal L is uniquely determined by P wp to conjugation
by A = Ng(N).
(iii) of J s any minimal covering prime of LN K[V4N)n H], then
JH = Q° for some a € A. Furthermore, Vg(N) N H = V (@").

Proof. Sett A =Ng4N) and let H = nio(@) so that, by definition,
H < A.8ince[N:Nn H] < coand [N : L) < 00, we can choose M to be
a characteristic subgroup of N of finite index with M < N H and
M < L. Thus M < 4 and therefore also M <« H. Furthermore, since
[N:M] < oo we have ig(M) =N, so Ngo(M) = A4, and then clearly
V(M) = V().

Let : K[A] —» K[A/M]denote the natural map. Then L is an almost
faithful prime of K[A(4)], since V(M) = V¢N), and we conclude from
Lemma 2.1 that

~

T=I%= (‘ﬂgi‘i)K[Z]
is a standard prime of K[A]. Furthermore, by Lemma 2.2(i),
TAKAH =N,. Q" is a finite intersection of Z-conjuga,te standard
primes of K[H). Lifting this information to K[4], we see immediately
that
T=L"=( ﬂAL“)K[A]

is a prime ideal of K[A] and that T A K[H] = (), . 4Q" is a finite
intersection of 4-conjugate primes of K[H] which are almost faithful
mod M.

Set B = {z € G| @* = @} so that H = B = @ and surely B < Ny(@").
Observe that [@': M] < oo and @' is orbital in @ so14(Q") = ig(M) =N
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and hence B € N4(Q") S Ng(NV) = A. We now view K[G] as the crossed
product K[H]*(G/H). Then, since B < 4, it follows from Theorem
1.7(i) that P = T%is a prime ideal of K[G] and, since T = (L*4)¢ = L€
by Lemma 1.2(iii), the first assertion is proved. Furthermore, by
Theorem 1.7(i) again, @ is a minimal covering prime of
PAnKHI=Q,n@,n...nQ, so @=¢,; for some . Thus since
N =1i4@Q"), (i) is proved.

Now suppose both N and P = L€ are known. We consider those @,
with ¢4(Q!) = N. Since @; = @* for some = € @, we have

N =ig@}) =i6(@" =

and hence this occurs if and only if x € A. In particular, the ideal
MNa 4@ is the intersection of all the minimal covering primes Q; of
P N K[H] withig(@!) = N and this is surely determined by N and P. It
now follows from Theorem 1.7(ii) that the prime ideal 7' of K[A4] is
uniquely  determined by the conditions 7¢=P and
TNAK[H]}=(),c4Q% But T=L* and L is certainly a minimal
covering prime of TAK[VyN)]=(),4L% so L is unique up to
conjugation in A. This proves (ii).

Finally, recall that 7' = I“is a standard prime of K[4]. Thus Lemma
2.2(ii) asserts that if J is any minimal covering prime of L n K[A(H)),
then J” is a minimal covering prime of 7'~ K[A] = (), Q% and hence
J? = for some @ € 4. Lifting this information back to K[A], we see
that for any minimal covering prime J of LN K[Vg(M)], we have
JH = @° for some a € A. Since clearly V(M) = V@' = V4N)nH,
the theorem is proved.

It remains to prove Theorem IV. The following lemma contains some
technical details that will be needed in the proof. Recall that the central
rank of a prime ideal P of K[(] is defined in [4] by

c.r. P = tr.deg. xZ(2(K[G]/P)),
and that h(G) denotes the Hirsch number of the polycyclic-by-finite
group G.

LEMMA 2.5. Let G be a polycyclic-by-finite group and let P be a prime
ideal of K[G].

(1) Suppose H is a normal subgroup of G of finite index and write
PN K[H] =N, .cQ@" with Q a prime ideal of K[H]. Then

cr.P=cr.@, hgtP =hgtQ.



POLYCYCLIC-BY-FINITE GROUPS 539
(1) Suppose G is an f.c. group. Then

hgt P = h(G)—c.r. P
and c.r. P = 0 if and only if dim K[G]/P < 0.

Proof. (i) The equality c.r. P = c.r. @ is proved in [4, Lemma 4.3 (iii)],
and the equahty hgt P = hgt @ follows easily from Lemma 1.4(i)
together with the Incomparability and Going Down results proved in
Lemma 1.3(11)(iv).

(ii) Let @ be an f.c. group and let Z be a torsion-free central subgroup
of G with [@:Z] < 0. Then P~ K[Z] is prime in K[Z] and it follows
from part (i) that hgt P = hgt(P n K[Z]). But K[Z]is a domain which is
a finitely generated commutative K-algebra so the classical Dimension
Theorem of commutative algebra [6, Theorem 23, pp. 84-85] shows that

hgt(P N K(Z]) +c.r.(P N K[Z]) = tr.deg.xK[Z] = rank Z.

Of course rank Z = k(Z) = h(@)and c.r.(P N K[Z]) = c.r. P, by part (i).
Thus we see that hgt P+c.r. P = h(G). Finally, c.r. P = 0 if and only if
er.(PNnK[Z])=0 and the latter is clearly equivalent to
dimgK[Z]/(P n K[Z]) < 0. But [G:Z] < 00 so this in turn is surely
equivalent to dim¢K[G@]/P < oo and the result follows.

The proof of Theorem IV now follows quite simply. As we pointed out
in the introduction, this result merely translates known invariants into
the language of vertices and sources. Note that the plinth length p Q) is
defined in [8, §2.3] for @ a polycyclic group. However, the definition
extends naturally to all polycyclic-by-finite groups since finite factors
are immaterial here.

Proof of Theorem IV. We assume that P is a prime ideal of K[G] with
vertex N and source L so that P = LC Let H = nio(G) and use the
notation and results of Theorem 2.4. In particular, if J is a minimal
covering prime of LN K[VZN)n H], then Q = (J¥)® for some
a € A = Ng(N). Thus by replacing L by L® and J by J* if necessary, we
can clearly assume that a =1 and Q = J¥. Let : K[H] - K[H /@'
denote the natural map.

(i) By Lemma 25( ), er.P=cr.Q and c.r.L = c.r.J. Further-
more, since § = J? is standard by [8, Theorem Cl] and since
Vo(N)NH = Vy4(Q'), it follows from [4, Corollary 3.3(ii)] that
cr.§ =cr.J and hence that cr.Q=cr.J. Thus we have
cr.P=cr.Q=crJ=crL.
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(ii) The height formula given in [8, §2.4] states that

hgt @ = hgtJ +p Q")
and Lemma 2.5(ii) yields
hgt J = A(V(Q") —c.r.J.

Clearly c.r.J = c.r.J = c.r. L where the latter equality was obtained in
(i) above. Since hgt P = hgt @, by Lemma 2.5(i), we now have

hgt P = h(Vy(Q") +pu(@") —c.r. L.
Finally, it follows easily from the definition of plinth length that

MV@N) = PV (@) —pu(@)

and p g(V(@Q") = » 4(V4(N)), where the latter holds since [4: H] < o
and V(Q') = V4N )r\H. Thus

hgt P = p (Vg(N))—car. L

and (ii) is proved.

(iii) Let K be a non-absolute field. Then we know, by [4, Theorem 5.2]
which is a consequence of [8, Theorem F2], that P is primitive if and
only if c.r. P = 0. Hence, in view of part (i), this occurs if and only if
cr.L=0. Let : K[V4N)] - K[V4N)/L'] denote the natural map.
Then K[V 4N)])/L ~ K[V4N)]/L so it suffices to show that c.r. L = 0 if

and only if dim yK[V4(N)]/L < 0. But [N : L'] < 00 so Vg(IV) isan f.c.
group and thus Lemma 2.5(ii) yields this fact. This concludes the proof
of Theorem IV.

3. Further comments on induced ideals

In this brief final section, we comment on some elementary but useful
properties of the induced ideals L¢. We also show that, for 4 = H, the
correspondence given in Theorem 1.7 is identical to the one of [5,
Theorem 3.6). The first lemma, which describes briefly a certain
monotonic property of the operator Vg, is essentially contained in [8,
§7.1]. We include it here to avoid confusion over certain formal
differences in definition.

LemMA 3.1. Let G be a polycyclic-by-finite group and let N, = N, be
orbital subgroups with N, isolated. Then V(N ,) € V(N ,).

Proof. Since N, € N,, it clearly suffices to show that
Vo(Ny) = Ng(&N,). To this end, let x € V5N ;). Then there certainly
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exists a normal subgroup H of finite index in G with the commutator
[H, x] contained in N,. Moreover, H n N, is an orbital subgroup of G of
finite index in N, which is normalized by z, since

[HAN,z]HAN, SHAN,.

Finally, N, is isolated so ig(H N N,)= N, and x therefore also
normalizes N ,.

PROPOSITION 3.2. Let G be a polycyclic-by-finite group and let P be a
prime ideal of K[@). If N is an isolated orbital subgroup of G with
N 2vxg(P), then P = I€ for some prime ideal I of K[N4N)].

Proof. Set V = vxg(P) so that, by definition, P = L% for some almost
faithful sub V prime ideal L of K[Vg(V)]. Since V < N, it follows from
the preceding lemma that V4(V) € V4(N) S NgN) = A. Hence by
Lemma 1.2(iii), if I =LA then P=L®=(L4%=1I% Since
[G: 4] < o0, it is clear that V is an isolated orbital subgroup of 4 and
that V (V) = Vg(V). Thus, by Theorem III, I = L4 is indeed a prime
ideal.

We now consider crossed products R * G with R and @ arbitrary and
we identify the ideals L€ as the annihilators of certain induced modules.
If H is a subgroup of G and V is a right R * H-module, then as usual we
write V¢ =V ®g, y R *G for the induced R * G-module.

LEMMA 3.3. Let R * G be given, let H be a subgréup of G, and let L be an
tdeal of R+xH. If L =anng, (V) for some RxH-module V, then
L% = annpg, (V). In particular, we have L® = anny, o((R * H /L)°).

Proof. Ifx € G, thenitistrivial to see that« € R * G annihilates V ® £
if and only if « € L*G. Thus since V¢ =3, sV ®Z, we conclude from
Lemma 1.2(i) that

anng, V¢ =\ LG = LC.

xeG

Finally, since L = anng, x(R * H/L), the result follows.

In the next lemma, we collect a number of standard facts concerning
induced modules. For example, part (iii) is an obvious extension of the
Mackey Decomposition Theorem [1, p. 324] to crossed products. Let H
be a subgroup of G. If V is a right R * H-module and if x € @, then we let
V=V ®% denote the conjugate module for the subring
(R H)® = R»(H*). Furthermore, for any right R + G-module W, we let
W | y denote its restriction to R+ H.
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LEMMA 3.4. Let R » G be given, let H be a subgroup of Gandlet V, V , and
V, be right R * H-modules.

(i) If HS N €@, then VC ~ (VN©

(i) (V,@V)°=V °@V,°

(iii) Let N be any subgroup of G and let D be a full set of (H, N)-double
coset representatives in G. Then

Ve n= @ 3 (V| g™
deD

In view of the relationship, described in Lemma 3.3, between induced
ideals and induced modules, the above facts immediately translate into
corresponding assertions concerning induced ideals. Observe that part
(1) below already appears in Lemma 1.2(iii).

LEMMA 3.5. Let R * G be given, let H be a subgroup of G, andlet L, L, and
L, be ideals of R* H.

(i) If H € N <@, then L® = (L")C.

(ii) (Ly 0 Ly)¢=L,°n L,°.

(iii) Let N be any subgroup of G and let D be a full set of (H, N)-double
coset representatives in G. Then

LEn(RxN)= "\ (L'nRs(H 0 N)".

We close this section by relating the results of § 1 to the more general
considerations of [5, § 3]. Let R * G be given with G finite and with R an
arbitrary G-prime ring. Then, by [5, Lemma 3.1(i)], there exists a prime
ideal Q of R with N, .¢@°=0. Asin §1, weset H = {x € G| @° = @},
N = anng@, and, in addition, we let M = 3 . N*so that M is a non-
zero G-invariant ideal of R. If Lis a prime ideal of B * H with LN R = @,
then it is shown in [5, Theorem 3.6] that

L'={ae R*G| Mo =« GNLG}

is a prime ideal of B * @ with L*n R = 0. Indeed, the map *yields a one-
to-one correspondence between the set of prime ideals L of R« H with
LN R = @ and the set of prime ideals P of R* G with PN R = 0. The
following proposition shows that this correspondence coincides with
that of Theorem 1.7 (with 4 = H).

PROPOSITION 3.6. Let R * G be given with G finite and with R a G-prime
ring. Let Q, H and * be as above. If L ts a prime ideal of B H with
LNR=Q, then L" = LC.
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Proof. Define E = {y € Rx H| NMy < L}. Since N and M are H-
invariant, it follows easily that £ is an ideal of E * H and hence we have
(NM+xH)E < L. But L is prime and LN R = implies that
NM«H ¢ L, so we conclude that £ < L.

Let {x,,%,,...,%,} be a right transversal for H in @, let « € L* and
write « = > o;&; with o; € R * H. Then, by definition, Mo = GN LG so [5,
Lemma 3.3(i)] yields

NMoa € NGNLG < LG = 3 L%,

Hence we see that NMo; S L so ;€ £ = L and o € LG. We have
therefore shown that L' < L@ and thus L* € Id g, o(LG) = LE.

Let : RxH — (R+H)/(Q* H) = (R/Q) * H denote the natural map.
Then L~ R =0, by Lemma 1.3(iii), so [5, Theorem 3.6] asserts that
P=L"is a prime ideal of R+«@ with PN R =0. Now let I = L®.
Then I < LG so we have In R € LA R = Q and hence

InRc N @ =0.
xeG
Finally, P<I and INnR=0 yields L"'=P=I=L% by
Incomparability [5, Lemma 3.7], and the proposition is proved.
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