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An optimal guidance algorithm for air-breathing launch vehicle is proposed based on optimal trajectory correction. The optimal
trajectory correction problem is a nonlinear optimal feedback control problem with state inequality constraints which results in a
nonlinear and nondifferentiable two-point boundary value problem (TPBVP). It is difficult to solve TPBVP on-board. To reduce
the on-board calculation cost, the proposed guidance algorithm corrects the reference trajectory in every guidance cycle to satisfy
the optimality condition of the optimal feedback control problem. By linearizing the optimality condition, the linear TPBVP is
obtained for the optimal trajectory correction. The solution of the linear TPBVP is obtained by solving linear equations through
the Simpson rule. Considering the solution of the linear TPBVP as the searching direction for the correction values, the updating
step size is generated by linear search. Smooth approximation is applied to the inequality constraints for the nondifferentiable
Hamiltonian. The sufficient condition for the global convergence of the algorithm is given in this paper. Finally, simulation results
show the effectiveness of the proposed algorithm.

1. Introduction

The development of space technology has given rise to the
expectation that launchers will become low cost and fully
reusable. The launch vehicle with hypersonic air-breathing
propulsion is considered to reduce the cost of payloads
taken to the Earth’s orbit. The air-breathing launch has
inherent features that make it a candidate for future space
transportation [1]. The impulse of air-breathing propulsion,
which is approximately 3000 s [2], is significantly higher than
that of a rocket (360 s). Air-breathing propulsion brings high
impulse as well as strong nonlinear, coupling aerodynamic
and thrust.

The traditional design category for ascent guidance is to
drive an optimal nominal trajectory off-board. The guidance
problem is then transformed into a tracking problem for
the designed optimal nominal trajectory. The design of a
trajectory could be formulated as a global optimization
task [3]. The methods for numerical optimization of con-
tinuous dynamic systems could be termed “Hamiltonian”
(indirect method) and “Transcription” (direct method) [4].

For the optimization problem with inequality constraints,
smoothing approximation was considered in [5, 6]. A filled
function approach for nonsmooth constrained global opti-
mization was presented in [7]. Linear-quadratic optimization
was implemented to optimal control in [8]. Direct and
indirect optimization methods were implemented to the off-
board trajectory optimization problem in previous literature.
The numerical algorithms of trajectory optimization for
vehicles were summarized and systematically analyzed in
[9, 10]. A new concept of pseudocontrol sets to solve optimal
control problemswas proposed in [11].This approach reduces
the calculation cost by combining large-scale linear program-
ming algorithmswith discretization of the continuous system
dynamics on small segments. An algorithm formultiobjective
optimization was presented in [12]. Intelligent algorithms can
also be used for trajectory optimization problems. The par-
ticle swarm optimization (PSO) method was implemented
to the space trajectory optimization in [13]. The simulation
results showed the effective of PSO in finding the optimal
solution to the space trajectory optimization problems, with
great numerical accuracy. Approximate numerical methods
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of optimization were presented for multiorbit noncoplanar
orbit transfers of low-thrust spacecraft in [14].

Many control methods were implemented to trajectory
tracking guidance and control problem [15]. In the previous
literature, many researchers focused on the robust control
method [16, 17]. It has obtained successful application in the
industry [18, 19]. For the networked control system, a H-
infinity step tracking control method was presented in [20].
An adaptive fuzzy robust control for a class of nonlinear
systems was proposed in [21]. An adaptive guidance law and
off-board trajectory optimization for air-breathing launch
vehicle were addressed in [22]. In that paper, the optimal
control problem was solved using SQP method. And the
adaptive guidance law was developed using a feedback loop
based on a second-order rate controller for angle of attack. A
robust state feedback guidance law was generated in real time
using the indirect Legendre pseudospectral feedbackmethod
in [23]. In that paper, the guidance problem was converted
into a trajectory state regulation problem which is a linear
time varying system.

However, the accuracy of the trajectory tracking method
is low with the disturbance and the modeling error. It
lacks the autonomy and adaptability to cope with the non-
nominal vehicle and mission conditions needed for future
reusable launch vehicles [24]. To improve the performance
and the accuracy of the guidance, the optimal guidance
method generates the prospective trajectory by fast trajectory
optimization on-board based on current flight state. This
guidance method has become a research focus with the
advance in on-board computation capability. Ping Lu used
the indirect method to pose the trajectory optimization
problem as a nonlinear two-point boundary value problem
(TPBVP) in [25, 26]. From this model, the optimal thrust
vector that satisfied the optimality condition was derived.
A finite difference method was employed to solve the
nonlinear TPBVP through numerical calculations. Similarly,
a fast trajectory optimization for hypersonic air-breathing
vehicles was presented in [27]. The indirect method was
implemented for ascent trajectory optimization on-board
considering the features of the air-breathing vehicle. Ping Lu’s
work is significant for the optimal ascent guidance. However,
the TPBVP is nonlinear and nondifferentiable for the air
breathing launch vehicle. It is difficult to solve the nonlinear
and nondifferentiable TPBVP on-board in every guidance
cycle. Using the directmethod, a new guidance concept based
on nonlinear programming (NLP) method was proposed
in [24]. NLP-based guidance concepts appear advantageous
over conventional methods because the on-board guidance
algorithm allows a single algorithm to be implemented for
different vehicles and missions. The optimal control problem
was parameterized into a nonlinear programming problem
that was solved by the gradient projection algorithm. In [28],
the reference trajectorywas updated for disturbance by an on-
board algorithm that satisfied the real-time requirement. A
new real-time guidance method derived from the optimality
condition was proposed in [29]. In that paper, the simple
guidance parameters were updated in real time. In [30], a
guidance method was presented for online launcher ascent
trajectory updating based on neural networks. In the paper,

the utilization of a neural network approximation was used
online during the ascent flight, with a training process
performed off-line.

In this paper, we present an optimal guidance algorithm
for air breathing launch vehicle based on optimal trajectory
correction to reduce the on-board calculation cost. Consider-
ing the current vehicle state as the initial condition, the opti-
mal trajectory correction problem is referred to as a nonlinear
optimal control problem with state inequality constraints.
For the real-time requirement of the on-board algorithm, the
linear TPBVP is obtained for optimal trajectory correction
by linearizing the optimality condition in this paper. The
Simpson rule is applied to transform the linear TPBVP
into linear equations. Considering the solution of the linear
TPBVP as the searching direction for the correction values,
the updating step size is generated by linear search. Smooth
approximation is applied to the inequality constraints for the
nondifferentiable Hamiltonian. The sufficient condition for
the global convergence of the algorithm is given in this paper.
Finally, simulation results for different cases of the modeling
error show the effectiveness of the proposed algorithm. In
summation, the main contributions of this paper are given
as follows.

(1) We reduce the on-board calculation cost of the
guidance method a lot. Comparing with the methods
in previous literatures which solves nonlinear equa-
tions in every guidance cycle, the proposed guidance
method in this paper solves linear equations once in
every guidance cycle only.

(2) We obtain the relationship between the global conver-
gence and the guidance cycle of the online algorithm.
The sufficient condition of the global convergence of
this algorithm is given.

The remainder of this paper is organized as follows.
Section 2 presents the state normalized-energy differential
equations of motion of the vehicle and the optimal control
problem for optimal ascent guidance. Section 3 provides
details on the optimal guidance algorithm. Section 4 presents
an analysis of the global convergence of the proposed
algorithm. Section 5 discusses the proposed differentiable
approximation for Hamiltonian. Section 6 presents the simu-
lations for theGenericHypersonic Vehicle (GHV)model and
scramjet engine. Section 7 presents the conclusion.

2. Problem Formulation

2.1. Ascent Dynamic. The formulation of motion of the air-
breathing vehicle in the longitudinal plane is presented in this
section. As shown in Figure 1, the thrust 𝑇, gravitation 𝑔, and
the aerodynamic lift force𝐿 and drag force𝐷 are acting on the
vehicle. The angle of attack 𝛼 is the angle between the body
axis and the vector of the velocity V. The flight path angle 𝛾 is
the angle between the vector of the velocity V and the ground
plane.
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Figure 1: The forces acting on the vehicle.

Themotion of the vehicle in the longitudinal plane can be
described as follows:

𝑑𝑟

𝑑𝑡
= V sin 𝛾,

𝑑V
𝑑𝑡

=
𝑇 cos𝛼 − 𝐷

𝑚
− 𝑔 sin 𝛾,

𝑑𝛾

𝑑𝑡
=

1

V
[
𝑇 sin𝛼 + 𝐿

𝑚
cos𝜎 − 𝑔 cos 𝛾 + V2

𝑟
cos 𝛾] ,

𝑑𝑚

𝑑𝑡
= −

𝑇

𝐼sp
,

(1)

where 𝑟, 𝑚, 𝐼sp, and 𝑔 are the altitude, weight of the vehicle,
impulse, and gravity acceleration, respectively.

The lift force 𝐿 and the drag force𝐷 are given as follows:

𝐿 =
1

2
𝜌V2𝑆ref𝐶𝐿 (𝑀𝑎, 𝛼) ,

𝐷 =
1

2
𝜌V2𝑆ref𝐶𝐷 (𝑀𝑎, 𝛼) ,

(2)

where 𝜌 and 𝑆ref are the air density of the current altitude
and the reference area respectively, 𝐶

𝐿
and 𝐶

𝐷
are the lift

coefficient and the drag coefficient, respectively, which are the
nonlinear functions of the angle of attack𝛼 andMachnumber
𝑀
𝑎
. For the air-breathing engine, the thrust is given by

𝑇 = 𝑇 (𝜌,𝑀
𝑎
, 𝛼, 𝜙) , (3)

where𝑇 is the nonlinear function of 𝜌, 𝛼,𝑀
𝑎
, and the throttle

command 𝜙.
In [25], the equations were normalized to reduce

the numerical calculation error. Variable substitutions are
applied as follows:

𝑅 =
𝑟

𝑟
0

, 𝑉 =
V

√𝑔
0
𝑟
0

, 𝑔 =
𝑔
0
𝑟
2

0

𝑟2
, (4)

where 𝑟
0
and 𝑔

0
are Earth radius and the ground gravity

acceleration, respectively. Considering the thrust 𝑇 and
aerodynamic forces as a composition of forces, we define the
normalized accelerations 𝑎

𝑇
and 𝑎
𝐿
as follows:

𝑎
𝑇
=

𝑇 cos𝛼 − 𝐷

𝑚𝑔
0

, 𝑎
𝐿
=

𝑇 sin𝛼 + 𝐿

𝑚𝑔
0

. (5)

We define

𝜏 =
𝑡

√𝑟
0
/𝑔
0

. (6)

The normalized equations of motion are obtained from (1),
(4), (5), and (6) as follows:

𝑑𝑅

𝑑𝜏
= 𝑉 sin 𝛾,

𝑑𝑉

𝑑𝜏
= 𝑎
𝑇
−
sin 𝛾
𝑅2

,

𝑑𝛾

𝑑𝜏
=

1

𝑉
[𝑎
𝐿
+ (𝑉
2
−

1

𝑅
)(

cos 𝛾
𝑅

)] ,

𝑑𝑚

𝑑𝜏
= −

𝑇√𝑟
0

𝐼sp√𝑔
0

.

(7)

The mission of ascent is to send the vehicle to the
required final state which is denoted as (𝑅

𝑓
, 𝑉
𝑓
, 𝛾
𝑓
). Define

normalized-energy 𝐸 as follows:

𝐸 =
𝑉
2

2
−

1

𝑅
. (8)

From (8) we obtain

𝑑𝐸

𝑑𝜏
= 𝑉𝑎
𝑇
,

𝑑𝑅

𝑑𝐸
=
sin 𝛾
𝑎
𝑇

,

𝑑𝑉

𝑑𝐸
=

1

𝑎
𝑇
𝑉

[𝑎
𝑇
−
sin 𝛾
𝑅2

] ,

𝑑𝛾

𝑑𝐸
=

1

𝑎
𝑇
𝑉2

[𝑎
𝐿
+ (𝑉
2
−

1

𝑅
)(

cos 𝛾
𝑅

)] ,

𝑑𝑚

𝑑𝐸
= −

𝑇√𝑟
0

𝑎
𝑇
𝑉𝐼sp√𝑔

0

.

(9)

The integration interval [𝐸
0
, 𝐸
𝑓
] is fixed.

2.2. Optimal Feedback Control Problem for Ascent Guidance.
In this section, the optimal feedback control problem for
optimal ascent guidance is addressed. This problem differs
from trajectory optimization off-board in that the initial
state of the optimal control problem is obtained from the
navigation system. We denote the state and the guidance
command of the trajectory as

𝑥 (𝐸) = [𝑅 (𝐸) 𝑉 (𝐸) 𝛾 (𝐸) 𝑚 (𝐸)]
𝑇

,

𝑢 (𝐸) = [𝛼 (𝐸) 𝜙 (𝐸)]
𝑇

.

(10)

With the feedback vehicle state 𝑥𝑐
𝑘
obtained from navigation

system, the optimal ascent guidance algorithm is used to
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generate new reference trajectory [𝑥(𝐸) 𝑢(𝐸)]
𝑇 and output

𝑢(𝐸) from the following optimal control problem:

min 𝐽 = 𝜙 (𝑥 (𝐸
𝑓
)) + ∫

𝐸𝑓

𝐸𝑐𝑘+1

𝑔 (𝑥, 𝑢) 𝑑𝐸,

s.t. �̇� = 𝑓 (𝑥, 𝑢) ,

𝑥 (𝐸𝑐
𝑘
) = 𝑥𝑐

𝑘
,

𝑊 (𝑥 (𝐸
𝑓
)) = 0,

𝐶 (𝑥, 𝑢) ≤ 0,

(11)

where 𝐸𝑐
𝑘
is the normalized energy for current vehicle state

𝑥𝑐
𝑘
.

3. Optimal Ascent Guidance Algorithm

In [25, 26], the optimal control problem was solved on-board
in every guidance cycle. However, it is difficult to solve the
nonlinear and nondifferentiable TPBVP on-board for air-
breathing launch vehicles. In this section, we propose an opti-
mal guidance algorithm.This guidance algorithmupdates the
reference trajectory [𝑥 𝑢]

𝑇 in every guidance cycle to deal
with the unknowndisturbance. For the current state𝑥𝑐

𝑘
of the

𝑘th guidance cycle, the optimal feedback control problem is
transformed into a linear TPBVP problem using optimality
condition linear approximation. The searching direction of
the correction values 𝑑

𝑘
is obtained by solving the linear

TPBVP. With the searching direction, the new reference
trajectory is generated by linear search. For the 𝑘th guidance
cycle, the trajectory update is performed as follows:

[𝑥𝑘+1(𝐸) 𝑢
𝑘+1

(𝐸)]
𝑇

= [𝑥𝑘(𝐸) 𝑢
𝑘
(𝐸)]
𝑇

+ 𝑙
𝑘
𝑑
𝑇

𝑘
(𝐸) . (12)

The initial reference trajectory [𝑥
0
(𝐸) 𝑢

0
(𝐸)]
𝑇 is derived

from the off-board from trajectory optimization by direct
method.The flow chart of the algorithm is shown in Figure 2.
Figure 3 shows the time sequence of algorithm.

3.1. Linear Approximation for the Optimality Condition. In
this section, we linearize the optimality condition for opti-
mality trajectory updating. The optimal control problem (11)
without inequality constraints is given as follows:

min 𝐽 = 𝜙 (𝑥 (𝐸
𝑓
)) + ∫

𝐸𝑓

𝐸𝑐𝑘+1

𝑔 (𝑥, 𝑢) 𝑑𝐸,

s.t. �̇� = 𝑓 (𝑥, 𝑢) ,

𝑥 (𝐸𝑐
𝑘
) = 𝑥𝑐

𝑘
,

𝑊 (𝑥 (𝐸
𝑓
)) = 0.

(13)

The Hamiltonian of (13) is given as follows:

𝐻 = 𝑔 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) , (14)

Begin

Linear approximation for the

optimality condition, the costate

equations, the motion equations

Solving the linear TPBVP

Linear search for the step size

Updating the optimal trajectory

End

Figure 2: Flow chart of the optimal ascent guidance algorithm.

where 𝜆 is the costate vector. The state equations, costate
equations, and optimality condition for the optimal control
problem are given by

�̇� = 𝑓 (𝑥, 𝑢) ,

�̇� = −(
𝜕𝐻

𝜕𝑥
)

𝑇

,

𝜕𝐻

𝜕𝑢
= 0.

(15)

The initial and transversality conditions are given by

𝑥 (𝐸𝑐
𝑘
) = 𝑥𝑐

𝑘
,

𝑊 (𝑥 (𝐸
𝑓
)) = 0,

𝜆 (𝐸
𝑓
) = [

𝜕𝜙

𝜕𝑥 (𝐸
𝑓
)

]

𝑇

+ [𝜛
𝑇 𝜕𝑊

𝜕𝑥 (𝐸
𝑓
)

]

𝑇

.

(16)

We denote the trajectory correction variables as follows:

[

[

Δ𝑥 (𝐸)

Δ𝑢 (𝐸)

Δ𝜆 (𝐸)

]

]

= [

[

𝑥 (𝐸) − 𝑥
𝑘
(𝐸)

𝑢 (𝐸) − 𝑢
𝑘
(𝐸)

𝜆 (𝐸) − 𝜆
𝑘
(𝐸)

]

]

. (17)
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Figure 3: Time sequence of the optimal ascent guidance algorithm.

We denote that

𝐻
𝑘

𝑢𝑥
=

𝜕
2
(𝑔 + 𝜆

𝑇
𝑓)

𝜕𝑢𝜕𝑥
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
) ;

𝐻
𝑘

𝑢
= [

𝜕𝐻

𝜕𝑢
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
)]

𝑇

;

𝐻
𝑘

𝑢𝑢
=

𝜕
2
(𝑔 + 𝜆

𝑇
𝑓)

𝜕𝑢2
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
) ;

𝐻
𝑘

𝑥
= [

𝜕𝐻

𝜕𝑥
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
)]

𝑇

;

𝐻
𝑘

𝑥𝑥
=

𝜕
2
(𝑔 + 𝜆

𝑇
𝑓)

𝜕𝑥2
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
) ;

𝑓
𝑘

𝑢
=

𝜕𝑓

𝜕𝑢
(𝑥
𝑘
, 𝑢
𝑘
) ;

𝐻
𝑘

𝑥𝑢
=

𝜕
2
(𝑔 + 𝜆

𝑇
𝑓)

𝜕𝑥𝜕𝑢
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
) ;

𝑓
𝑘

𝑥
=

𝜕𝑓

𝜕𝑥
(𝑥
𝑘
, 𝑢
𝑘
) ;

𝑔
𝑘

𝑢
= [

𝜕𝑔

𝜕𝑢
(𝑥
𝑘
, 𝑢
𝑘
)]

𝑇

;

𝑔
𝑘

𝑥
= [

𝜕𝑔

𝜕𝑥
(𝑥
𝑘
, 𝑢
𝑘
)]

𝑇

.

(18)

The first-order Taylor expansion of (15) on the old reference
trajectory [𝑥

𝑘
𝑢
𝑘

𝜆
𝑘
]
𝑇 is

[
𝜕𝐻

𝜕𝑢
]

𝑇

≈ 𝐻
𝑘

𝑢
+ 𝐻
𝑘

𝑢𝑥
Δ𝑥 + 𝐻

𝑘

𝑢𝑢
Δ𝑢 + (𝑓

𝑘

𝑢
)
𝑇

Δ𝜆,

�̇� ≈ −𝐻
𝑘

𝑥
− 𝐻
𝑘

𝑥𝑥
Δ𝑥 − 𝐻

𝑘

𝑥𝑢
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
) Δ𝑢 − (𝑓

𝑘

𝑥
)
𝑇

Δ𝜆,

�̇� ≈ 𝑓 (𝑥
𝑘
, 𝑢
𝑘
) + 𝑓
𝑘

𝑥
Δ𝑥 + 𝑓

𝑘

𝑢
Δ𝑢.

(19)

The following equations are established:

𝐻
𝑘

𝑢
+ (𝑓
𝑘

𝑢
)
𝑇

Δ𝜆 = 𝑔
𝑘

𝑢
+ (𝑓
𝑘

𝑢
)
𝑇

𝜆,

𝐻
𝑘

𝑥
+ (𝑓
𝑘

𝑥
)
𝑇

Δ𝜆 = 𝑔
𝑘

𝑥
+ (𝑓
𝑘

𝑥
)
𝑇

𝜆.

(20)

Substituting (20) into (19) yields

�̇� = −𝑔
𝑘

𝑥
− 𝐻
𝑘

𝑥𝑥
Δ𝑥 − 𝐻

𝑘

𝑥𝑢
(𝑥
𝑘
, 𝑢
𝑘
, 𝜆
𝑘
) Δ𝑢 − (𝑓

𝑘

𝑥
)
𝑇

𝜆,

Δ�̇� = 𝑓
𝑘

𝑥
Δ𝑥 + 𝑓

𝑘

𝑢
Δ𝑢 − �̇�

𝑘
+ 𝑓 (𝑥

𝑘
, 𝑢
𝑘
) ,

𝑔
𝑘

𝑢
+ 𝐻
𝑘

𝑢𝑥
Δ𝑥 + 𝐻

𝑘

𝑢𝑢
Δ𝑢 + (𝑓

𝑘

𝑢
)
𝑇

𝜆 = 0,

Δ𝑥 (𝐸𝑐
𝑘
) + Δ𝑥

𝑘
(𝐸𝑐
𝑘
) = 𝑥𝑐

𝑘
,

𝜕𝑊

𝜕𝑥 (𝐸
𝑓
)

Δ𝑥 (𝐸
𝑓
) +𝑊(𝑥

𝑘
(𝐸
𝑓
)) = 0,

𝜆 (𝐸
𝑓
) = [

𝜕𝜙

𝜕𝑥 (𝐸
𝑓
)

]

𝑇

+ [𝜛
𝑇 𝜕𝑊

𝜕𝑥 (𝐸
𝑓
)

]

𝑇

.

(21)

This equation is a linear TPBVP about the variables
[Δ𝑥 Δ𝑢 𝜆]

𝑇. The linear TPBVP is solved using the Simpson
rules in Section 6.

3.2. Backtracking Line Search for the Step Size. In this section,
the step size 𝑙

𝑘
is determined by backtracking line search

considering the solution of the linear TPBVP as the search
direction. The penalty function for problem (13) is given by

𝑝
𝑘
= 𝐽 (𝑥, 𝑢) + 𝜂 {


𝑊(𝑥
𝑓
)

+ ∫

𝐸𝑓

𝐸𝑐𝑘

𝑓 (𝑥, 𝑢) − �̇�


+
𝑥 (𝐸𝑐𝑘) − 𝑥𝑐

𝑘

} ,

(22)
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where 𝜂 is the penalty parameter satisfied 𝜂 > max |𝜆|. We
denote

𝑦 = [
𝑥
𝑘

𝑢
𝑘

] , 𝑑
𝑘
= [

Δ𝑥

Δ𝑢
] , (23)

where [Δ𝑥 Δ𝑢 𝜆]
𝑇 is the solution of the linear TPBVP (21).

The minimizer of penalty function 𝑝
𝑘
(𝑥, 𝑢) corresponds

to the solution of problem (11). Backtracking line search was
used for large-scale nonlinear optimization problems in [31].
The step size 𝑙

𝑘
is determined by backtracking line search that

satisfies

𝑙
𝑘
= max {𝑙 ∈ 𝑆 : 𝑝

𝑘+1
(𝑦
𝑘
+ 𝑙𝑑
𝑘
)

≤ 𝑝
𝑘+1

(𝑦
𝑘
) + 𝑙𝜀
1
𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
)} ,

𝑆 = {𝑙 : 𝑙 = 𝜀
2

𝑚
, 𝑚 = 0, 1, 2, . . .} ,

(24)

where 𝜀
1

∈ (0, 1), 𝜀
2

∈ (0, 1), and 𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
) is the

variational of the functional 𝑝
𝑘+1

(𝑦) caused by variational
𝑑
𝑘
of 𝑦 on 𝑦

𝑘
. Considering 𝑑

𝑘
as the solution of (21),

𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
) ≤ 0 is established. The new state and guidance

command of the reference trajectory are generated as follows:

[
𝑥
𝑘+1

𝑢
𝑘+1

] = [
𝑥
𝑘

𝑢
𝑘

] + 𝑙
𝑘
[
Δ𝑥

Δ𝑢
] . (25)

4. The Global Convergence of the Algorithm

In [32, 33], the convergence of the off-board algorithm was
analyzed. But the relationship between the global conver-
gence and the guidance cycle 𝜏 has not been discussed for on-
board optimization in the previous literatures. In this section,
we state and prove the global convergence of the on-board
algorithm proposed in the preceding section. The solution
sequence [𝑥

𝑘
𝑢
𝑘
]
𝑇 generated by the algorithm will converge

to the solution of the feedback optimal control problem.
Unlike off-board trajectory optimization, the initial condition
of the feedback optimal control problem depends on the
current state of the vehicle in real time. For the 𝑘th guidance
cycle, the optimal feedback control problem is described as
(13).Thepenalty function𝑝

𝑘
for this feedback optimal control

problem is given by (22). For the subsequent guidance cycle,
the optimal feedback guidance problem is given by

min 𝐽 = 𝑊(𝑥 (𝐸
𝑓
)) + ∫

𝐸𝑓

𝐸𝑐𝑘+1

𝑔 (𝑥, 𝑢) 𝑑𝐸,

s.t. �̇� = 𝑓 (𝑥, 𝑢) ,

𝑥 (𝐸𝑐
𝑘+1

) = 𝑥𝑐
𝑘+1

,

𝑊 (𝑥 (𝐸
𝑓
)) = 0,

(26)

where

𝐸𝑐
𝑘+1

= 𝐸𝑐
𝑘
+ ∫

𝜏𝑘+Δ𝜏

𝜏𝑘

𝑑𝐸

𝑑𝜏
𝑑𝜏, (27)

Δ𝜏 is the guidance cycle and 𝑥𝑐
𝑘+1

is the new state of vehicle
from navigation system at the time 𝜏

𝑘
+ Δ𝜏. The penalty

function for optimal problem (24) is given by

𝑝
𝑘+1

(𝑥, 𝑢) = 𝐽 (𝑥, 𝑢) + 𝜂

𝑊(𝑥
𝑘
(𝐸
𝑓
))


+ 𝜂∫

𝐸𝑓

𝐸𝑐𝑘+1

𝑓 (𝑥, 𝑢) − �̇�
 𝑑𝐸

+ 𝜂
𝑥 (𝐸𝑐𝑘+1) − 𝑥𝑐

𝑘+1

 .

(28)

We define the entire penalty function as follows:

𝑝
𝑘
(𝑥, 𝑢) = 𝑝

𝑘
(𝑥, 𝑢)

+

𝑘−1

∑

𝑖=0

∫

𝐸𝑐𝑖+1

𝐸𝑐𝑖

[𝜂
𝑓 (𝑥
𝑖
, 𝑢
𝑖
) − �̇�
𝑖

 + 𝑔 (𝑥
𝑖
, 𝑢
𝑖
)] 𝑑𝐸.

(29)

The entire penalty function 𝑝
𝑘
(𝑥, 𝑢) includes the penalty

function on the whole integration interval [𝐸
0
, 𝐸
𝑓
].

Theorem 1. If the minimizer of 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
) is exited, 𝑔(𝑥, 𝑢) ≥

0, and Δ𝜏 is selected and satisfies

𝜂

𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫
𝐸𝑐𝑘+1

𝐸𝑐𝑘
�̇�
𝑘
𝑑𝐸



−𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
)

< 𝑙
𝑘
𝜀
3
, (30)

where 𝜀
3
∈ (0, 𝜀

1
). The solution sequence [𝑥

𝑘
𝑢
𝑘
]
𝑇 generated

from (24) will converge to the solution of the feedback optimal
control problem.

Proof. From (22), (28), (29) and

𝑥
𝑘
(𝐸𝑐
𝑘+1

) = 𝑥
𝑘
(𝐸𝑐
𝑘
) + ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸 (31)

we can obtain that

𝑝
𝑘+1

(𝑥
𝑘
, 𝑢
𝑘
) − 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
)

= 𝜂



𝑥
𝑘
(𝐸𝑐
𝑘
) − 𝑥𝑐

𝑘

−(𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸)



− 𝜂
𝑥𝑘 (𝐸𝑐𝑘) − 𝑥𝑐

𝑘

 .

(32)
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From (32), we obtain

lim
Δ𝜏→0

[𝑝
𝑘+1

(𝑥
𝑘
, 𝑢
𝑘
) − 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
)] = 0,

lim
𝑓(𝑥𝑘,𝑢𝑘)− ̇𝑥𝑘→0

[𝑝
𝑘+1

(𝑥
𝑘
, 𝑢
𝑘
) − 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
)] = 0,

(33)

𝑝
𝑘+1

(𝑥
𝑘
, 𝑢
𝑘
) − 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
)

= 𝜂 {



𝑥
𝑘
(𝐸𝑐
𝑘
) − 𝑥𝑐

𝑘+1
+ ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸



−
𝑥𝑘 (𝐸𝑐𝑘) − 𝑥𝑐

𝑘

}

≤ 𝜂{
𝑥𝑘 (𝐸𝑐𝑘) − 𝑥𝑐

𝑘



+



𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸



−
𝑥𝑘 (𝐸𝑐𝑘) − 𝑥𝑐

𝑘

}

= 𝜂



𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸



.

(34)

From conditions (24) and (30), it is obtained that

𝑝
𝑘+1

(𝑥
𝑘+1

, 𝑢
𝑘+1

)

≤ 𝑝
𝑘+1

(𝑥
𝑘
, 𝑢
𝑘
) + 𝑙
𝑘
𝜀
1
𝛿𝑝
𝑘+1

(𝑑
𝑘
)

= 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
) + 𝑙
𝑘
𝜀
1
𝛿𝑝
𝑘+1

(𝑑
𝑘
)

+ 𝜂 {



𝑥
𝑘
(𝐸𝑐
𝑘
) − 𝑥𝑐

𝑘

− (𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸)



−
𝑥𝑘 (𝐸𝑐𝑘) − 𝑥𝑐

𝑘

}

≤ 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
) + 𝜂



𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸



+ 𝑙
𝑘
𝜀
1
𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
)

≤ 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
) + 𝜂



𝑥𝑐
𝑘+1

− 𝑥𝑐
𝑘
− ∫

𝐸𝑐𝑘+1

𝐸𝑐𝑘

�̇�
𝑘
𝑑𝐸



+ 𝑙
𝑘
𝜀
3
𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
)

< 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
) .

(35)

Thus, the sequence 𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
), 𝑘 = 1, 2, 3, . . .. is monotoni-

cally decreasing. Considering the existence of a minimizer,
𝑝
𝑘
(𝑥
𝑘
, 𝑢
𝑘
) converges. Thus, the following equation is estab-

lished:

lim
𝑘→∞

(𝑙
𝑘
𝜀
3
𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
) − 𝑙
𝑘
𝜀
1
𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
)) = 0. (36)

From (36), we derive

lim
𝑘→∞

(𝑙
𝑘
𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
)) = 0. (37)

If 𝑑
𝑘

̸= 0, [𝑥
𝑘

𝑢
𝑘
]
𝑇 is not the minimizer of penalty function,

then 𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
) ̸= 0. Considering that 𝑙

𝑘
is bounded away

from zero, we derive

lim
𝑘→∞

𝑑
𝑘
= 0,

lim
𝑘→∞

𝛿𝑝
𝑘+1

(𝑦
𝑘
, 𝑑
𝑘
) = 0,

lim
𝑘→∞

[�̇�
𝑘
− 𝑓 (𝑥

𝑘
, 𝑢
𝑘
)] = 0,

lim
𝑘→∞

(�̇�
𝑘
+ 𝐻
𝑘

𝑥
) = 0,

lim
𝑘→∞

𝐻
𝑘

𝑢
= 0.

(38)

Thus, the solution sequence [𝑥
𝑘

𝑢
𝑘
]
𝑇 generated by the

algorithmwill converge to the solution of the optimal control
problem.

5. Smooth Approximation for
Inequality Constraints

The nondifferentiable TPBVP from optimal control problem
(11) with the inequality constraints brings difficulties for the
proposed algorithm, which can only solve a smooth problem.
Smooth approximations for nondifferentiable optimization
problems have been studied in [5, 6, 34]. In this section
we introduce the smooth approximation method for the
inequality constraints. If the inequality constraint function is
about the state and the guidance command

𝐶 (𝑥, 𝑢) ≤ 0 (39)

the Hamiltonian for the optimal control problem (11) with
inequality constraints (39) is given by

𝐻 = 𝑔 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) + 𝜇max {𝐶 (𝑥, 𝑢) , 0} . (40)

However, the Hamiltonian (40) is a nondifferentiable func-
tion, which brings difficulty for the proposed algorithm.
For the smooth Hamiltonian approximation, a differentiable
function is substituted for max{𝐶(𝑥, 𝑢), 0}. We denote the
nondifferentiable function as follows:

max {0, 𝑦} = ∫

𝑦

−∞

𝑤 (𝑧) 𝑑𝑧, (41)

where 𝑤(𝑧) is the step function

𝑤 (𝑧) = {
1, if 𝑧 ≥ 0,

0, if 𝑧 < 0.
(42)

Considering 𝑠(𝑧, 𝑎) as the approximation function of 𝑤(𝑧),
the differentiable approximation to max{0, 𝑦} is obtained as

𝑓
𝑝
(𝑦, 𝑎) ≈ ∫

𝑦

−∞

𝑠 (𝑧, 𝑎) 𝑑𝑧 = 𝑦 +
1

𝑎
In (1 + 𝑒

−𝑎𝑦
) , (43)



8 Mathematical Problems in Engineering

where 𝑠(𝑧, 𝑎) is Sigmoid function

𝑠 (𝑧, 𝑎) =
1

1 + 𝑒−𝑎𝑧
, 𝑎 > 0. (44)

The Properties of 𝑓
𝑝
(𝑦, 𝑎), 𝑎 > 0 are as follows [5]:

(1) 𝑓
𝑝
(𝑦, 𝑎) is 𝑛-times continuously differentiable for any

positive integer 𝑛, with 𝜕𝑓
𝑝
(𝑦, 𝑎)/𝜕𝑦 = 1/(1 + 𝑒

−𝑎𝑦
)

and 𝜕
2
𝑓
𝑝
(𝑦, 𝑎)/𝜕𝑦

2
= 𝑎𝑒
−𝑎𝑦

/(1 + 𝑒
−𝑎𝑦

)
2.

(2) 𝑓
𝑝
(𝑦, 𝑎) is strictly convex and strictly increasing onR.

(3) 𝑓
𝑝
(𝑦, 𝑎) > max{0, 𝑦}.

(4) lim
𝑎→∞

𝑓
𝑝
(𝑦, 𝑎) = max{0, 𝑦}.

(5) 𝑓
𝑝
(𝑦, 𝑎) > 𝑓

𝑝
(𝑦, 𝑎
1
) for 𝑎 < 𝑎

1
, 𝑦 ∈ R.

Substituting (43) into (40), the following differentiable
Hamiltonian approximation is obtained:

�̂� = 𝑔 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) + 𝜇 [𝐶 +

1

𝑎
In (1 + 𝑒

−𝑎𝐶
)] . (45)

If the inequality constraint function is a 𝑞th-order state
variable inequality constraint given by

𝐶 (𝑥) ≤ 0. (46)

If 𝑝 times derivatives of 𝐶(𝑥) are required before 𝑢 appears
explicitly in the result, the Hamiltonian with inequality
constraints (46) is given by

𝐻 = 𝑔 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) + 𝜇𝐶

(𝑞)
, (47)

where

𝜇 = 0 if 𝐶 < 0. (48)

Considering the differentiable approximation to 𝜇 as follows:

𝜇 = 𝜇𝑤 (𝐶) ≈ 𝜇
1

1 + 𝑒−𝑎𝐶
(49)

the following differentiable Hamiltonian approximation is
obtained:

�̂� = 𝑔 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) + 𝜇

1

1 + 𝑒−𝑎𝐶
𝐶
(𝑞)
. (50)

With the differentiable Hamiltonian approximation, the
inequality constraints are considered in the proposed guid-
ance algorithm.

6. Simulation Results

6.1. Numerical Calculation Based on Linear TPBVPDiscretiza-
tion. In this section, the linear TPVBP is transformed into
linear equations using the Simpson rule, which corresponds
to the three-point Newton-Cotes quadrature rule. The Simp-
son rule for differential equation 𝑑𝑋/𝑑𝐸 = 𝑦(𝐸) is given by

∫

𝑏

𝑎

𝑦 (𝐸) 𝑑𝐸 =
𝑏 − 𝑎

6
[𝑦 (𝑎) + 4𝑦(

𝑎 + 𝑏

2
) + 𝑦 (𝑏)] . (51)

From (51), we obtain

𝑋(𝑏) − 𝑋 (𝑎) =
𝑏 − 𝑎

6
[𝑦 (𝑎) + 4𝑦(

𝑎 + 𝑏

2
) + 𝑦 (𝑏)] . (52)

We disperse the normalized energy 𝐸 into𝑁 equal segments
as [𝐸
0

𝐸
1

⋅ ⋅ ⋅ 𝐸
𝑁
], with 𝐸

0
= 𝐸𝑐
𝑘
and 𝐸

𝑁
= 𝐸
𝑓
. The

differential equation 𝑑𝑋/𝑑𝐸 = 𝑦(𝑋, 𝐸) can be transformed
into the following equation:

𝑋(𝐸
𝑖
) − 𝑋 (𝐸

𝑖−1
)

=
𝐸
𝑖
− 𝐸
𝑖−1

6
[𝑦 (𝑋

𝑖
, 𝐸
𝑖
)

+ 4𝑦 (
𝑋
𝑖
+ 𝑋
𝑖−1

2
,
𝐸
𝑖
+ 𝐸
𝑖−1

2
)

+ 𝑦 (𝑋
𝑖−1

, 𝐸
𝑖−1

)] , 𝑖 = 1, 2, 3, . . . , 𝑁.

(53)

Based on (53), the linear TPBVP (21) can be transformed into
linear equations described by

𝐴𝑋 = 𝐵. (54)

The linear equations can be solved by Gaussian elimination.
Finally, we can obtain the solution Δ𝑥(𝐸), Δ𝑢(𝐸), and

𝜆(𝐸) of the linear TPBVP (21) from the solution of the linear
equations through interpolating.

6.2. GHV Model. The proposed method is applied to the
GenericHypersonicVehicle (GHV) to verify the effectiveness
by flight simulation. In order to develop a complete set
of aerodynamic coefficients, experimental longitudinal and
lateral-directional aerodynamics were obtained for the GHV
by using six Langley wind tunnels [35]. The aerodynamic
database of the GHV is shown in [35]. The GHV model with
scramjet propulsion system is used for the simulation, where
𝑆ref = 334.73m2 and the full-scale weight𝑚ini = 110000 kg.

According to the characterization of scramjet propulsion
system described in [2, 27], the development of the propul-
sion system begins with the following equation:

𝑇 = 0.5𝜙𝐼sp (𝜙,𝑀𝑎) 𝜌V𝑔0𝐶𝑇 (𝛼,𝑀𝑎) , (55)

where 𝜙 is the throttle commandwhich varies from 0 to 1.The
coefficient 𝐶

𝑇
depends on 𝛼 and𝑀

𝑎
as follows:

𝐶
𝑇
= −0.0012𝑀

𝑎
𝛼
2
+ 0.008𝛼 + 1.4 − 0.1𝑀

𝑎
. (56)

The impulse 𝐼sp is given by the following equation:

𝐼sp = −81𝑀
2

𝑎
+ 1004𝑀

𝑎
− 52 + 100𝜙. (57)

6.3. Simulation Results for Modeling and Initial State Error.
Considering the high cost of the flight experimental test,
researchers do flight numerical simulation, hardware-in-the-
loop simulation and final flight experimental test to verify
the guidance algorithm step by step. In this section, flight
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Table 1: Initial and required final states of the vehicle.

𝑟ini
(m)

Vini
(m/s)

𝛾ini
(deg)

𝑟
𝑟𝑓

(m)
V
𝑟𝑓

(m/s)
𝛾
𝑟𝑓

(deg)
20000 1000 0 35000 2000 0

numerical simulation results for the GHV with modeling
error and initial state error are given to show the effectiveness
of the proposed guidance algorithm. For the modeling error
caused by the wind tunnel experimental test, the aerody-
namic coefficients bias is considered in the flight simulation.
The simulations end once the final normalized energy 𝐸

𝑓

is reached. The optimal guidance algorithm updates the
trajectory every guidance cycle, which is 0.3 s. The initial and
required final states of the air-breathing vehicle are shown
in Table 1. The number of the discrete nodes 𝑁 = 10. The
dynamic pressure inequality constraint is given by

𝑄 =
1

2
𝜌V2 ≤ 140000Pa. (58)

To assess the capability of the proposed algorithm to deal
with disturbance, the aerodynamic coefficients bias and the
initial state error in the simulations are given by following
cases:

(1) Δ𝐶
𝐿
= −0.1𝐶

𝐿
, Δ𝐶
𝐷
= +0.1𝐶

𝐷
.

(2) Δ𝐶
𝐿
= −0.1𝐶

𝐿
, Δ𝐶
𝐷
= +0.1𝐶

𝐷
, Δ𝑟ini = +500m.

(3) Δ𝐶
𝐿
= −0.1𝐶

𝐿
, Δ𝐶
𝐷
= +0.1𝐶

𝐷
, Δ𝑟ini = −500m.

(4) Δ𝐶
𝐿
= −0.1𝐶

𝐿
, Δ𝐶
𝐷
= +0.1𝐶

𝐷
, Δ𝑟ini = +1000m.

(5) Δ𝐶
𝐿
= −0.1𝐶

𝐿
, Δ𝐶
𝐷
= +0.1𝐶

𝐷
, Δ𝑟ini = −1000m.

The simulation results of the optimal guidance algorithm
are shown in Figures 4, 5, 6, 7, and 8. The altitude, velocity,
flight path angle, angle of attack, and dynamic pressure are,
respectively, shown in Figures 4 to 8. As expected, the final
state is achieved under aerodynamic bias and initial state
error. Figure 8 shows that the state inequality constraint is
satisfied. The dynamic pressure is less than 140000 Pa for
different cases.

Table 2 shows the terminal error and the fuel cost of
the optimal guidance algorithm. The terminal accuracy is
high for different cases. Moreover, the fuel cost of the
optimal guidance algorithm is lower than that of the tracking
guidance algorithm. A greater initial state error will result in
more fuel savings. In summary,with lower fuel cost the results
of the proposed optimal guidance algorithm satisfies all the
equality and inequality constraints. The simulation results
show the great potential for the final flight experimental test.

7. Conclusion

In this paper, we present an optimal guidance algorithm
for air-breathing launch vehicle based on optimal trajectory
correction. The proposed guidance algorithm corrects the
reference trajectory in every guidance cycle to satisfy the opti-
mality condition of the optimal feedback control problem.
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Figure 4: The altitude of the simulation results.
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Figure 5: The velocity of the simulation results.

By linearizing the optimality condition, the linear TPBVP
is obtained for optimal trajectory correction. The solution
of the linear TPBVP is derived using the Simpson rule. The
new trajectory is generated by a linear search for the step
size of the solution. Smooth Hamiltonian approximation is
implemented to the inequality constraints. The sufficiency
condition for the global convergence of the guidance algo-
rithm is given in this paper.

Finally, simulations for 5 different cases of modeling and
initial state error are presented. Compared with the tracking
guidance method, the simulation results prove the low fuel
cost and high precision of the proposed optimal guidance
method.
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Table 2: The simulation results for optimal guidance algorithm.

Case Δ𝑟
𝑓
(m) ΔV

𝑓
(m/s) Δ𝛾

𝑓
(deg) Fuel cost (kg) Fuel cost (tracking method) (kg)

1 −28.20 0.136 0.20 4572.19 4574.62
2 8.59 −0.03 −0.15 4583.14 4628.39
3 −15.08 0.07 0.20 4584.74 4605.66
4 108.16 0.47 −0.23 4602.92 4776.00
5 −32.43 0.19 −0.16 4601.33 4688.94
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Figure 6: The flight path angle of the simulation results.
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Figure 7: The angle of attack of the simulation results.
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