
Survivability in hierarchical telecommunications networks
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Abstract

We consider the problem of designing a two level telecommunications network at minimum cost.

The decisions involved are the locations of concentrators, the assignments of user nodes to concen-

trators and the installation of links connecting concentrators in a reliable backbone network. We

define a reliable backbone network as one where there exist at least 2-edge disjoint paths between

any pair of concentrator nodes. We formulate this problem as an integer program and propose a fa-

cial study of the associated polytope. We describe valid inequalities and give sufficient conditions for

these inequalities to be facet defining. We also propose some reduction operations in order to speed

up the separation procedures for these inequalities. Using these results, we devise a branch-and-cut

algorithm and present some computational results.
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1 Introduction

Network design problems arising in telecommunications applications have originated new challenges in
the field of optimization. Within the scope of this study is a two-layer telecommunications network in-
frastructure. In such a network, the traffic originating from the user nodes (terminals) is communicated
through access networks to concentrators interconnected by a backbone network. The traffic then tra-
verses the backbone network and finally reaches the access network of its destination terminal through a
multiplexing at the backbone (the interested reader is referred to the surveys of [12] and [17] and the ref-
erences therein). Since the backbone network is the primary means of providing communication between
end-users, a reliable topological design is essential. A graph is called “2-edge connected” if it contains at
least two paths that do not share any edge (edge-disjoint) between any pair of nodes.

[17] provides a classification of the underlying network design problems based on the topology of the
access and the backbone networks. The current study focuses on a star access network and a 2-edge
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connected backbone network and introduces an in depth analysis of the 2-edge connected star subgraph
problem (2ECSSP for short) to the telecommunications network design literature. Figure 1 depicts such
a network with squares representing concentrators and circles representing terminals.

Figure 1: An example of 2-edge connected/star network

In particular, we seek the most cost effective way of designing a backbone survivable telecommuni-
cations network by partitioning a given set of nodes into terminals and concentrators and establishing
edges linking concentrators such that each terminal gets assigned to a single concentrator and the edges
connecting the concentrators forming up the backbone network becomes 2-edge connected.

Our problem inherently has two subproblems, namely the survivable network design problem and the
concentrator location problem. Individually, both problems have been widely studied in the literature.
Note that 2ECSSP is NP-hard since it possesses as a special case the 2-edge connected subgraph problem,
which is NP-hard [10].

Gourdin et al. [12] review the studies within the telecommunications context which include many
variations of the concentrator location problems. Labbé et al. [20] consider the fully connected/star
network design problem. Pirkul and Nagarajan [24] and Lee et al. [21] analyze the tree/star network
design problem while Gavish studies [11] the star/tree variant. Chardaire [3] analyzes the star/star
network design problem. A path/path network design problem studied by Current and Pirkul [4] is
another example to the two level network design approaches existing in the literature. However, except
for the fully connected/star topology design, none of these designs guarantee survivability.

Survivable network design problems have been extensively studied, see for example [2, 13, 14, 15,
22, 23, 25] for surveys. In particular, the 2-edge connected subgraph problem, which is of close interest
to 2ECSSP is thoroughly investigated in the literature. Several interesting extensions of the 2-edge
connected subgraph problem have been proposed in the literature, see [1, 5, 7, 8, 9, 16, 26].

Labbe et al. [18] study the ring/star network design problem which is also of close kinship to the
2ECSSP. They design a network where the backbone network is a ring and the access nodes are connected
directly to concentrators forming star networks. It can be seen that this problem is a restriction of the
2ECSSP as a ring is a 2-edge connected network.

The current work contributes to the two level network design literature by expanding it with the
2ECSSP, a special survivable infrastructure that has not yet been analyzed in the literature. The contri-
bution includes a 0-1 model development and a detailed polyhedral analysis of the polytope associated
with the 2ECSSP. For the families of facet defining inequalities, the computational complexity status of
the separation problems are established and exact and/or heuristic separation algorithms are designed.
To make the sizes of the separation problems more manageable, reduction operations are proposed. Fi-
nally, a branch and cut algorithm which assembles all this theoretical development is designed for the
2ESSP.
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2 Notation and mathematical model

We now proceed with a formal description of the 2ECSSP to be followed with a 0-1 model. We assume
that V = {0, 1, . . . , n} is a given set of terminals. Node 0 is a special concentrator corresponding to the
root node in the two level network infrastructure. Let E = {{i, j} : i ∈ V, j ∈ V \{i}} represent the set of
potential backbone links. Associated with installing a backbone link e ∈ E is a nonnegative fixed setup
cost ce. Similarly, there is a nonnegative assignment cost of dij units associated with assigning terminal
i ∈ V to concentrator j ∈ V . In particular, dii corresponds to the cost of installing a concentrator at
node i ∈ V .

Given V , 2ECSSP seeks for a partition of V into C and T such that 0 ∈ C, a set of backbone links, say,
E′ ⊆ E among nodes in C, an assignment of each node in T to one in C such that the graph G = (C, E′)
is two edge connected and the total cost of installing backbone links and concentrators and assigning
terminals to concentrators is minimum.

Before we proceed with the model development, we provide some preliminary notation. We represent
an edge with endpoints i and j with ij or {i, j}. Let V1 and V2 be two subsets of V such that V1∩V2 = ∅.
[V1, V2] is the set of edges with one endpoint in V1 and the other endpoint in V2. For S ⊂ V , let
δ(S) = [S, V \ S] and E(S) be the set of edges with both endpoints in S. We use G(S) to denote the
subgraph induced by S, i.e., G(S) = (S, E(S)). For simplicity, we use δ(i) instead of δ({i}).

We define xe to be 1 if edge e ∈ E is used in the backbone network and 0 otherwise and yij to be 1 if
node i ∈ V is assigned to node j ∈ V and 0 otherwise. If a concentrator is installed at node i ∈ V then
node i is assigned to itself, i.e., yii = 1.

Using these two sets of binary variables, we can model the 2ECSSP as follows.

min
∑

e∈E

cexe +
∑

i∈V

∑

j∈V

dijyij (1)

s.t.
∑

j∈V

yij = 1 ∀i ∈ V (2)

yij + xij ≤ yjj ∀i, j ∈ V : i 6= j (3)

y00 = 1 (4)

x(δ(S)) ≥ 2
∑

j∈S

yij ∀S ⊆ V \ {0}, i ∈ S (5)

xe ∈ {0, 1} ∀e ∈ E (6)

yij ∈ {0, 1} ∀i, j ∈ V. (7)

Constraints (2), (3), and (7) ensure that either a concentrator is installed at a given node or this node
is assigned to exactly one other node where a concentrator is installed. If an edge becomes a backbone
edge, then concentrators are installed at both endpoints of this edge due to constraints (3). Constraint
(4) fixes the value of y00 to one and hence a concentrator is installed at the root node 0. Constraints (5)
ensure 2-edge connectivity in the backbone network. Consider a node subset S ⊆ V \ {0} and a node
i ∈ S. If i is assigned to some node in set S, i.e., if

∑
j∈S yij = 1, then there is at least one concentrator

in S implying that at least two edges from δ(S) have to be included in the backbone network to make it
2-edge connected. Finally, the objective function is the sum of the cost of installing the backbone edges
and the concentrators and the cost of assigning the remaining nodes to concentrators.

Remark that the 2ECSSP is a relaxation of the ring/star network design problem obtained by dropping
the requirement that each concentrator is adjacent to exactly two backbone edges. We obtained the above
formulation by removing the degree constraints from the formulation of the ring/star network design
problem given in Labbé et al. [18].

To devise a polyhedral analysis for the convex hull of solutions to the 2ECSSP, we first project out
some variables to make the analysis easier. For i ∈ V \ {0}, we can eliminate variable yii by substituting
yii = 1 −

∑
j∈V \{i} yij . Additionally, the variables related to the assignment of the root node can also
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be dropped since their values are known (y00 = 1). Let A = {(i, j) : i ∈ V \ {0}, j ∈ V \ {i}} and define
d′ij = dij − dii for each (i, j) ∈ A. Now we obtain the following formulation:

∑

i∈V

dii + min
∑

e∈E

cexe +
∑

(i,j)∈A

d′ijyij

s.t. xij + yij +
∑

k∈V \{j}

yjk ≤ 1 ∀(i, j) ∈ A : j 6= 0 (8)

x0i +
∑

k∈V \{i}

yik ≤ 1 ∀i ∈ V \ {0} (9)

x(δ(S)) + 2
∑

j∈V \S

yij ≥ 2 ∀S ⊆ V \ {0}, i ∈ S (10)

xe ∈ {0, 1} ∀e ∈ E (11)

yij ∈ {0, 1} ∀(i, j) ∈ A. (12)

Let X = {(x, y) ∈R|E|+|A| : (x, y) satisfies (8)-(12)} and P = conv(X). In the sequel, we assume that
|V | ≥ 5.

3 Polyhedral analysis

We first investigate the dimension of P and study its trivial facet defining inequalities. We show that P
is full dimensional and that inequalities xe ≥ 0 for e ∈ E and yij ≥ 0 for (i, j) ∈ A are facet defining for
P . Inequalities xij ≤ 1 and yij ≤ 1 are not facet defining as they are implied by constraints (8) and (9).

Next, we give necessary and sufficient conditions for the constraints of the model to be facet defining
for P .

Theorem 1 i. Let (i, j) ∈ A with j 6= 0. The inequality (8) is facet defining for P.
ii. Let i ∈ V \ {0}. The inequality (9) is facet defining for P.
iii. Let S ⊆ V \ {0} such that S 6= ∅ and i ∈ S. Inequality (10) defines a facet of P if and

only if |S| 6= 2 and |V \ S| 6= 2.

In the sequel, we present two other families of facet defining inequalities.
An important class of valid inequalities for the 2-edge connected subgraph problem is the class of

F-partition inequalities (see [22]). We deeply modify these inequalities to be valid for the 2ECSSP
polytope P , show that they are facet defining under some conditions, and investigate the complexity of
the associated separation problem.

Theorem 2 Let V0, . . . , Vp be a partition of V such that Vl 6= ∅, for l = 0, . . . , p and 0 ∈ V0. Let il ∈ Vl

be fixed nodes for l = 1, . . . , p and F ⊆ δ(V0) such that |F | = 2k + 1 for some k ≥ 0 and integer. Let
δ(V0, . . . , Vp) = {e ∈ E : endpoints of e are not in the same subset }. The F-partition inequality

x(δ(V0, . . . , Vp) \ F ) +

p∑

l=1

∑

j∈V \Vl

yilj ≥ p − k (13)

is valid for P.

Next we give sufficient conditions for the F-partition inequalities to be facet defining for P .

Theorem 3 Let V0, . . . , Vp be a partition of V such that Vl 6= ∅ for l = 0, . . . , p, 0 ∈ V0, G(Vl) is 3-edge
connected for l = 0, . . . , p, il ∈ Vl for l = 1, . . . , p be fixed nodes, F ⊆ δ(V0) such that |F | = 2k + 1
for some k ≥ 1 and integer, |F ∩ δ(Vl)| ≤ 1 and F ∩ δ(j) = ∅ for j ∈ Vl \ {il} and l = 1, . . . , p, and
|F ∩ δ(j)| ≤ 1 for j ∈ V0 \ {0}. Then the F-partition inequality (13) is facet defining for P.
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We also prove that the separation problem associated with the F-partition inequalities is NP-hard by
a reduction from the uncapacitated concentrator location problem.

Next, we introduce a new family of facet defining inequalities called the star-path inequalities. These
inequalities generalize constraints (8).

Theorem 4 Let m ≥ 1 be an integer, i0, i1, . . . , im be distinct nodes in V \{0}, and Pm = ∪m−1
l=0 {il, il+1}.

The star-path inequality

x(Pm) +

m∑

l=1

∑

j∈V \{il}

yilj +

m∑

l=1

yi0il
≤ m (14)

is valid for P.

We know that the constraints (8) are facet defining for P and these are special cases of star-path
inequalities. In the following theorem, we give sufficient conditions for the star-path inequalities to be
facet defining.

Theorem 5 Let m ≥ 1 be an integer, i0, i1, . . . , im be distinct nodes in V \ {0}, and P = ∪m−1
l=0 {il, il+1}.

If |V \ {i0, . . . , im}| ≥ 3, then the inequality (14) is facet defining for P.

We prove that the separation problem associated with the star-path inequalities (14) is NP-hard by a
reduction from the Hamiltonian path problem.

4 Reduction operations

In this section we introduce some reduction operations to reduce the sizes of the separation problems.
These operations use ideas developed by Fonlupt and Mahjoub [6] for the 2-edge connected subgraph
polytope.

For e ∈ E, G \ e denotes the graph obtained by deleting e, and for v ∈ V , G \ v denotes the graph
obtained by removing v, the edges and arcs incident to it. Given e = uv ∈ E, contracting e means
deleting e, identifying u and v, deleting the resulting loops, keeping the new parallel edges and arcs. If
F ⊆ E, then G/F denotes the graph obtained by contracting F , that is by contracting all edges in F .

Let (x, y) be an optimal solution to the linear programming relaxation. Consider the following reduc-
tion operations with respect to (x, y):

θ1:Delete an edge e with xe = 0.
θ2:Delete an arc (i, j) with yij = 0.
θ3:Delete a node i as well as all the edges and arcs incident to i, if ∃ j such that yij = 1.
θ4:Contract a node set W inducing a two edge connected graph and xe = 1 ∀ e ∈ E(W ).
θ5:Contract an edge if at least one of the endpoints of e is incident to exactly two edges, and these

two edges have value 1 w.r.t. x.

Note that the edges with fractional values are preserved by all the reduction operations.
Let G = (V, E ∪ A) be the initial graph and G′ = (V ′, E′ ∪ A′) and (x′, y′) be the reduced graph and

the reduced solution obtained after applying operations θ1, . . . , θ5.

Theorem 6 There exists a cut (resp. F -partition, star-path) inequality violated by (x, y) in G if and
only if there exists a cut (res. F -partition, star-path) inequality violated by (x′, y′) in G′.

5 Branch-and-cut algorithm and computational results

Using the results presented above we devise a branch-and-cut algorithm. The algorithm has been im-
plemented in C++ using the ABACUS framework and CPLEX LP solver. The algorithm starts with a
linear relaxation including trivial inequalities, constraints (8) and (9), and the cut inequalities for single
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node cutsets. The separation of the inequalities is performed in the following order: clique inequalities,
cut inequalities, star-path inequalities, and F -partition inequalities. For cut inequalities, we use an exact
separation algorithm. For the other classes of inequalities, we propose efficient heuristic separation algo-
rithms. Before running the separation algorithms, we apply our reduction operations in order to speed
up the computation.

We test our algorithm on instances from the TSPLIB. For each instance, we set lij as the euclidean
distance between tthe nodes i and j and we compute several cost coefficient vectors in order to have
different ratios, denoted by α, between the costs of installing backbone links and the assignment costs. In
fact, we use α ∈ {3, 5, 7, 9} with cij = ⌈αlij⌉ and dij = ⌈(10−α)lij⌉. The following table summarizes our
first preliminary computational results. The two first columns of the tables gives the instances TSPlib
names and α. The other entries of the table are as follows.

|V | : Number of nodes,
Opt : Optimal value,
Gap : Relative error between the optimal value and the upper bound achieved before branching,
Clq : Number of generated clique inequalities,
Cut : Number of generated cut inequalities,
Fpart : Number of generated F-partition inequalities,
Spath : Number of generated star-path inequalities,
BB : Number of generated nodes in the branch-and-cut tree,
CPU : Total CPU time in seconds to solve problem instance to optimality.

Instances α |V | Opt Gap Clq Cut Fpart Spath BB CPU

kroA150 3 150 79572 0,58 64 686 1380 0 215 58
kroA150 5 150 125435 0 228 268 12 0 1 0
kroA150 7 150 140961 0,24 745 5131 106 13 17 45
kroA150 9 150 113080 0 1922 3932 9 0 1 322

d198 3 198 47340 0,29 46 399 302 0 197 123
d198 5 198 76945 0,06 390 9759 332 4 7 77
d198 7 198 94300 0,13 1047 11251 34 47 43 579
d198 9 198 96088 0 2933 12829 18 1 1 1256

rat195 3 195 6957 0,6 58 489 1157 0 213 172
rat195 5 195 11320 0,1 358 5331 980 0 49 106
rat195 7 195 12319 0 1004 7180 5 0 1 81
rat195 9 195 8977 0 2849 8607 2 4 1 1135

kroA200 3 200 87951 0,6 668 4425 4512 0 1569 706
kroA200 5 200 138885 0,19 369 17519 1176 0 51 335
kroA200 7 200 158227 0,18 972 9896 113 34 29 455
kroA200 9 200 122594 0 2696 6495 10 3 1 1106

Our preliminary results reach to solve exactly instances till 200 nodes in less that 21 minutes. The
instances computed with α = 9 seem to need more CPU time to be solved than the ones computed with
lower α values. Conversely, they are solved before the branching phase thanks to our separation algorithms
which succeed to find more star-path inequalities in this case. For lower α values, the corresponding
instances induce a numerous number of subproblems in the branching phase and we can remark that, for
α = 3, the integrality gap is very high. We consequently expect to solve exactly instances computed with
α > 5 for more than 400 nodes.
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