
 10.1101/gr.361602Access the most recent version at doi:
2002 12: 1611-1618 Genome Res.

Jason E. Stajich, David Block, Kris Boulez, et al.

The Bioperl Toolkit: Perl Modules for the Life Sciences

Material

Supplemental

 http://genome.cshlp.org/content/suppl/2002/10/20/12.10.1611.DC1.html

References

 http://genome.cshlp.org/content/12/10/1611.full.html#ref-list-1

This article cites 14 articles, 9 of which can be accessed free at:

License

Commons
Creative

 http://creativecommons.org/licenses/by-nc/3.0/.described at

a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as
). After six months, it is available underhttp://genome.cshlp.org/site/misc/terms.xhtml

first six months after the full-issue publication date (see
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the

Service
Email Alerting

 click here.top right corner of the article or

Receive free email alerts when new articles cite this article - sign up in the box at the

 http://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to

Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from Cold Spring Harbor Laboratory Press on October 30, 2013 - Published by genome.cshlp.orgDownloaded from

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357384167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://genome.cshlp.org/lookup/doi/10.1101/gr.361602
http://genome.cshlp.org/content/suppl/2002/10/20/12.10.1611.DC1.html
http://genome.cshlp.org/content/12/10/1611.full.html#ref-list-1
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/3.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.361602&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.361602.full.pdf
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com
http://genome.cshlp.org/
http://www.cshlpress.com

The Bioperl Toolkit: Perl Modules
for the Life Sciences
Jason E. Stajich,1,18,19 David Block,2,18 Kris Boulez,3 Steven E. Brenner,4

Stephen A. Chervitz,5 Chris Dagdigian,6 Georg Fuellen,7 James G.R. Gilbert,8

Ian Korf,9 Hilmar Lapp,10 Heikki Lehväslaiho,11 Chad Matsalla,12 Chris J. Mungall,13

Brian I. Osborne,14 Matthew R. Pocock,8 Peter Schattner,15 Martin Senger,11

Lincoln D. Stein,16 Elia Stupka,17 Mark D. Wilkinson,2 and Ewan Birney11
1University Program in Genetics, Duke University, Durham, North Carolina 27710, USA; 2National Research Council of
Canada, Plant Biotechnology Institute, Saskatoon, SK S7N OW9 Canada; 3AlgoNomics, B 9052 Gent, Belgium; 4Department
of Plant and Molecular Biology, University of California, Berkeley, California 94720, USA; 5Affymetrix, Inc., Emeryville,
California 94608, USA; 6Open Bioinformatics Foundation, Somerville, Massachusetts 02144, USA; 7Integrated Functional
Genomics, IZKF, University Hospital Muenster, 48149 Muenster, Germany; 8The Welcome Trust Sanger Institute, Welcome
Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK; 9Department of Computer Science, Washington University, St.
Louis, Missouri 63130, USA; 10Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121,
USA; 11European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD UK; 12Agriculture
and Agri-Food Canada, Saskatoon Research Centre, Saskatoon SK, S7N 0X2 Canada; 13Berkeley Drosophila Genome Project,
University of California, Berkeley, California 94720, USA; 14Cogina, New York City, New York 10022, USA; 15Center for
Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA; 16Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, USA; 17Institute of Molecular and Cell Biology, 117609 Singapore

The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer
scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for
managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent
programming interface for bioinformatics application programmers. The Bioperl modules have been successfully
and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model
has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while
maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and
processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules
written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data
stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the
emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study
describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific
examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion
of how the open-source nature of the project has contributed to the development effort.

[Supplemental material is available online at www.genome.org. Bioperl is available as open-source software free
of charge and is licensed under the Perl Artistic License (http://www.perl.com/pub/a/language/misc/Artistic.
html). It is available for download at http://www.bioperl.org. Support inquiries should be addressed to
bioperl-l@bioperl.org.]

Computational analysis is an integral part of modern biologi-
cal research. Numerous computer software tools exist to per-
form data analyses, but it is not simple to automatically com-
bine data and results frommultiple sources without the use of
computer software designed to read and write data specific to

the biological domain. The day-to-day work in a typical bio-
informatics laboratory consists largely of writing program
logic to achieve this data integration.

Perl is one of the most widely used programming lan-
guages for these tasks and is commonly thought of as the
language most easily grasped by newcomers to the field. Perl
has been extremely successful for connecting software appli-
cations together into sequence analysis pipelines, converting
file formats, and extracting information from the output of
analysis programs and other text files.

Much of the Perl software in bioinformatics is specific to

18Present address: Genomics Institute of the Novartis Research
Foundation (GNF), San Diego, California 92121, USA.
19Corresponding author.
E-MAIL jason.stajich@duke.edu; FAX (919) 681-1035.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.361602.

Resource

12:1611–1618 ©2002 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/02 $5.00; www.genome.org Genome Research 1611
www.genome.org

a particular laboratory or institution and is written for imme-
diate utility rather than reusability. This results in consider-
able inefficiency, as the same software is rewritten multiple
times. The Bioperl toolkit brings together reusable Perl mod-
ules containing generalized routines specific to life-science
information. A primary motivation behind writing the toolkit
is the authors’ desire to focus energies on a solution whose
components can be shared rather than duplicating effort. In
our minds, once a routine is written for parsing and interpret-
ing sequence from EMBL and GenBank format sequence files,
no one should ever have to write this routine again. In this
spirit, we chose to make our code freely available under an
open-source license (Open Source Initiative 2001), so that
others could extend routines already in the Bioperl library and
contribute their own routines as well. Just as the Human Ge-
nome Project was facilitated by public sharing of data, so has
the open nature of the Bioperl project reduced the time for
solutions and new tools to reach the community (Waterston
et al. 2002).

To be adopted by the community, our software has to be
user friendly. To that end, Bioperl provides extensive docu-
mentation of all of the routines in each module, a graphical
diagram of the objects in the toolkit, and a set of tutorials that
lead the reader through the solutions to common tasks. Ad-
ditionally, we have created a simplified interface to Bioperl
that provides entry-level access to the toolkit. The goal of
Bioperl is to help a user focus on her specific problem at hand,
such as the logic needed to filter hits in a BLAST (Altschul et
al. 1997) report by certain criteria, rather than on the actual
mechanics of parsing that BLAST report.

Software Development Methodology
The Bioperl project began in 1995 (Chervitz et al. 1998) at a
time when there were few programming toolkits for manipu-
lating biological data or results from sequence analysis pro-
grams. Although Perl had already gained widespread popular-
ity in the bioinformatics community for its efficient support
of text processing and pattern matching tasks, there were, in
fact, no biological toolkits available in this language.

The project grew out of the following observations. First,
even though file formats of different analysis programs are

different, the information they represent is the same. For ex-
ample, a pair-wise alignment is always between two sequences
and has common properties such as length, score, fraction of
identities, start and end of the aligned sequences, and so
forth. Second, the number of data structures needed to repre-
sent information flow is limited, and common to most appli-
cations such as sequences, annotation, features, and align-
ments. This permits a small set of modules to be reused for a
variety of purposes. Third, a set of operations is commonly
performed on these data structures. These include reading and
writing information to a file, querying a sequence for its fea-
tures, and translating a coding sequence into protein.

This scenario naturally lends itself to the principle of
object-oriented programming, which Perl emulates with
modules.

Object-oriented programming is the practice of grouping
related tasks together into logical and broadly applicable com-
ponents. For example, a DNA sequence component could
contain methods to retrieve the sequence’s accession number,
reverse complement the DNA, or translate it into a protein
sequence. Object-oriented programming methodology allows
accurate modeling of the problem domain, leading to more
robust, valid, and reusable code. Instead of attacking a prob-
lem by brute force, the problem is analyzed and models are
constructed to represent the entities in the problem and so-
lution domains. The entities are represented in code through
the use of Perl modules and, where appropriate, form ele-
ments in an inheritance hierarchy. The use of inheritance and
polymorphism in Bioperl implements the well-established
principles of information hiding, modularity, and module co-
hesion (Tremblay and Cheston 2001).

We designed Bioperl using object-oriented methodology
so as to create clean, generic, and reusable modules to repre-
sent data structures and operations common to the life sci-
ences. By separating the components into logical groups such
as sequences, alignments, and databases, we have been able to
add features to a specific module without necessarily affecting
the rest of the toolkit library. This separation is a key aspect of
object-oriented programming and permits us to produce ge-
neric components with a stable interface for the programmer
(the so-called API).

At present, the components and operations in Bioperl
center around biological sequence
analysis and annotation. In the
last year, the project has expanded
to address new areas including
phylogenetics, maps, protein struc-
ture, and bibliographic references.
The project has >300 modules
and comprises >160,000 lines of
code and embedded documenta-
tion. The Perl modules, illustrated
in Table 1, are organized by logical
names so that, for example, the
Bio�Search hierarchy contains
modules related to database
searches, and Bio�Graphics con-
tains modules that are related to
drawing (Fig. 1). The Bio�Perl mod-
ule itself is a simplified API that pro-
vides access to the most-commonly
used Bioperl functions.

When designing Bioperl ob-
jects, we sought to provide a pro-

Table 1. Major Bioperl Module Groups

Modules Description

Bio�Seq Sequences and their properties
Bio�SeqIO Sequence data input/output
Bio�Index Flat-file sequence database indexing and retrieval
Bio�DB Remote database access for sequences and references via HTTP
Bio�DB�GFF SQL GFF database for DAS and GBrowse backends
Bio�SeqFeature Annotations or features that have a sequence location
Bio�Annotation Generic annotations such as Comments and References
Bio�AlignIO, Bio�SimpleAlign Multiple sequence alignments and their Input/Output
Bio�LiveSeq, Bio�Variation Sequence variations and mutations
Bio�Search, Bio�SearchIO Sequence database searches and their Input/Output
Bio�Tools Miscellaneous analysis tools
Bio�Tools�Run Wrapper for executing local and remote analyses
Bio�Tree, Bio�TreeIO Phylogenetic trees and their Input/Output
Bio�Structure Protein structure data
Bio�Map, Bio�MapIO Biological maps and their Input/Output
Bio�Biblio, Bio�DB�Biblio Bibliographic References and Database retrieval
Bio�Graphics Graphical displays of sequences

Stajich et al.

1612 Genome Research
www.genome.org

gramming interface that is very easy to use, but at the same
time, could be easily extended in its capabilities and behavior
through code reuse. Using an object-oriented paradigm, we
followed certain design principles.

First, separate the interface from the implementation.
The key information about a component is the method
names and their list of accepted arguments. Similar in concept
to interfaces in Java, we built interfaces as collections of meth-
ods that describe the expected behavior of a module, but do
not do any of the work. Child modules implement the inter-
faces, providing specializations of their parents to perform
specific tasks. To help distinguish implementation modules
from interface definitions, we used a capital I appended to the
object name. This principle is based on the well-established
methodology of specifying a given module’s Abstract Data
Type by defining how a given module will behave without
specifying the mechanism by which it achieves this end.

For example, Bio�SeqFeatureI describes the contract for
all modules that are features on sequences. This includes
methods for start, end, strand, and access to comments and
other attributes via tag/value pairs. All modules in the
Bio�SeqFeature hierarchy implement this interface (Fig. 2).

The power of this design is that operations that expect a
Bio�SeqFeatureI, such as operations in the Bio�Graphics
modules, can operate on anything that implements the
Bio�SeqFeatureI interface. In this manner, sequence annota-
tion that is retrieved from a DAS server (Dowell et al. 2001), a
local file, or a database server can all be drawn as an image
with the same methods in the Bio�Graphics modules.

Second, generalize common routines into a single mod-
ule, providing a base framework for the respective operations.
As an example, we centralized the basic input/output (IO)
operations into an IO object, called Bio�Root�IO. Because all
modules that need IO data access use operations from the IO
module, these operations are implemented across the entire
package in a consistent way. This design choice also provides
a single location for applying improvements to the shared
methods.

Third, use the Factory and Strategy patterns (Gamma et
al. 1994) as much as possible. A Strategy pattern defines one
or more operations that a particular implementation must
support. For example, Bio�SeqIO uses a Strategy pattern by
specifying that Bio�SeqIO modules must support the opera-
tion next_seq(). Various parsers implement their own parsing

Figure 1 Rendering a sequence graphically with Bio�Graphics. This image represents a 20-Kb segment of the C. elegans genome containing
annotated genes, a cross-species alignment (C. elegans to C. briggsae), EST alignments, SNPs, PCR primer pairs, and a GC content histogram. The
module’s flexible glyph-based architecture allows the application programmer to adjust precisely how to display biological objects. Glyphs allow
the programmer to define different symbols for different data types or data sources and each are drawn as a separate track in the image. The
module is also suitable for illustrating the extent of protein domains, physical (clone) maps, and horizontal maps.

The Bioperl Toolkit

Genome Research 1613
www.genome.org

algorithms, but each parser has a next_seq() method that
provides consistency and eases usage. Example usage of the
Bio�SeqIO module can be seen in Figure 3.

The Factory pattern is a design pattern used when a mod-
ule must create an object but cannot know what specific sub-
type must be created. It can serve as an aggregator for a set of
modules that implement the same Strategy. For example, the
Bio�SeqIO module acts as a Factory that produces specific
sequence file parsers for different sequence formats. When the
user asks Bio�SeqIO to parse a particular sequence file,
Bio�SeqIO determines the correct parser to instantiate and
invoke, thereby shielding application code from the technical

details of the sequence file format
and the Bio�SeqIO object hierar-
chy. Application code can be writ-
ten generally to handle sequence
input without worrying about
whether it is processing a sequence
file in GenBank, EMBL, SwissProt,
or BSML format, or whether the se-
quence data is local, or being re-
trieved dynamically from a remote
database via the Internet.

Bioperl is written purely in Perl
and requires at least version 5.005
of the Perl interpreter (the current
stable version of Perl as of the time
of writing is 5.8.0). The toolkit has
been validated for cross-platform
compatibility on most UNIX and
UNIX-like operating systems. In ad-
dition, Bioperl has been tested and
runs onMacintosh OS X andMicro-
soft Windows operating systems.

Because the Bioperl toolkit de-
pends on the Perl interpreter, there
are a number of rare cases in which
its behavior is not consistent across
different versions of Perl or between
versions of Perl on certain operat-
ing systems. Descriptions of these
version-specific problems and their
solutions are available from the Bio-
perl Web site.

In addition to pure Perl solu-
tions to bioinformatics problems, Bioperl can take advantage
of external data analysis packages. Bioperl is capable of pars-
ing the output from a variety of programs including BLAST
[both NCBI and WUBLAST (Gish 2002) versions], HMMer
(Eddy 2001), ClustalW (Thompson et al. 1994), T-Coffee
(Notredame et al. 2000), Phylip (Felsenstein 1983), many EM-
BOSS (Rice et al. 2000) programs, Genscan (Burge and Karlin
1997), and 18 others. In addition, it can launch remote analy-
ses using the EMBOSS suite, NCBI BLAST, and the multiple
sequence alignment programs ClustalW and T-Coffee. In
some cases, when an external package is not available, Bioperl
will fall back to using a slower method, either by emulating
the package in pure Perl or by invoking a network-based
analysis service such as the NCBI BLAST analysis queue. Ad-
ditional work is in progress to incorporate into the project
access to remote analysis services at the European Bioinfor-
matics Institute (EBI) (Novella: http://industry.ebi.ac.
uk/novella) and Pasteur Institute (Pise: http://bioweb.pasteur.
fr).

For us to produce uniform software code, we established
coding guidelines that are extensions of widely accepted ob-
ject-oriented programming style. All modules were required
to meet minimal standards before release. These standards
include a complete set of regression tests, well-formed embed-
ded documentation for each method, and a concise example
code in the SYNOPSIS section of each module’s documenta-
tion. We use the Perl embedded documentation format
(called POD, or Plain Old Documentation) to interleave docu-
mentation and the source code. This documentation can be
converted to text, TeX, or HTML. We have used the Pdoc
(http://pdoc.sourceforge.net) tool to generate colored and hy-

Figure 2 This figure shows a portion of the Bioperl object model including the interfaces (shown in
italicized type) for sequences (PrimarySeqI, SeqI, RichSeqI) and their implementations PrimarySeq
(general sequence), Seq (sequence with features), RichSeq (sequence with features and rich annota-
tion), LargePrimarySeq (for sequences too large to be held in a program’s memory), and LargeSeq
(large sequences with features). Also included in the diagram is the sequence feature interface (Seq-
FeatureI) and its implementations Similarity (manage similarity information), FeaturePair (paired fea-
ture information), and SimilarityPair (paired similarity information such as a pair-wise alignment infor-
mation). Additionally, the diagram shows the location objects that manage Simple (start, end, and
strand information), Split (multiple start and end spots on a sequence such as a set of exons), and
so-called Fuzzy locations (where start, end or span is not exact) for sequence features.

Figure 3 Retrieving a sequence from a remote database with
Bio�DB�EMBL. This code retrieves an mRNA sequence in EMBL for-
mat from the EBI EMBL databank with the accession no. U14680 and
writes the sequence out in GenBank format to the terminal. One
could replace Bio�DB�EMBL with Bio�DB�GenBank and instead
retrieve the sequence from NCBI just as easily, as the software can
read and write both EMBL and GenBank formats and is able to con-
nect to both services through the World Wide Web. The retrieved
sequence can then be passed to Bio�Graphics for graphical render-
ing, to the Bio�SeqIO interface for writing to a file, or to the ODBA
interfaces for storage in a relational database.

Stajich et al.

1614 Genome Research
www.genome.org

perlinked documentation in HTML for easy online browsing
available at http://doc.bioperl.org.

Our development process often starts when someone
presents an idea for a needed tool on our mailing list. Ideally,
a prototype or example code is posted, and we discuss ideas
for implementation and common scenarios for where the
functionality is needed. The developer then writes, or pre-
pares from code he already has, an interface for the proposed
module that describes the basic routines the module will
implement. For the newmodule, we require a set of regression
tests to be written. This is intended to ensure that the module
satisfies its declared interface and can be tested easily later on
when other modules that may interact with it have been up-
dated. Bioperl 1.0 >3000 such tests that passed on multiple
platforms before the toolkit was declared ready for release.
Finally, all Bioperl code is subject to ongoing code review by
and with the core developer group. This methodology is de-
rived in large part from the software development strategy
called Extreme Programming (Beck 1999). This process is
highly iterative and modules are often revisited and improved
depending on the needs of the developer. We attempt to al-
ways maintain a backward compatibility, so that code that
depends on an earlier version of the module will continue to
work.

To support multiple developers in different time zones
and institutions, the entire Bioperl source code is hosted by
the Open Bioinformatics Foundation (OBF) (http://www.
open-bio.org) on a server in which our code and documenta-
tion is shared among developers and interested users. Infor-
mation on how to obtain the source directly from our server
is available at the project Web site http://www.bioperl.org
and the source code server at http://cvs.open-bio.org.

RESULTS
Bioperl has >20 active developers led by a core of five primary
developers who ensure that standards are met, prepare code
releases, and set the vision for the project. At the time of
writing, the mailing lists for the project include 1300 sub-
scribers, and our Web site recieves an average of 10,000
unique visitors each month. The project has been used in a
variety of endeavors including genome sequencing, annota-
tion, sequence variation elucidation, disease gene discovery,
and comparative genomics. An example using Bioperl mod-
ules to complete the task of retrieving sequences from a re-
mote database is shown in Figure 3, and an example of pars-
ing a BLAST report can be seen in Figure 4.

By far, the most advanced use of the Bioperl toolkit has
come through the EnsEMBL (Hubbard et al. 2002) project.
The basic sequence handling, file format parsing, and se-
quence features for annotation model have been used as
building blocks for automatically annotating the Danio rerio,
Drosophila melanogastor, Takifugu rubripes, Homo sapiens,
Anopheles gambiae, and Mus musculus genomes (http://www.
ensembl.org).

Additionally, the Genquire (Wilkinson et al. 2002) an-
notation package is built on top of the Bioperl object model
and stores sequence and annotation data in a relational data-
base. The interactive sequence-rendering capabilities are par-
titioned into a specific Bioperl package called bioperl-gui.

The Generic Model Organism Browser (GBrowse) (L.D.
Stein, A. Day, T. Harris, A. Arva, S. Shu, S. Lewis, and C. Mun-
gall, in prep.), Distributed Annotation System Perl (DAS)
server (Dowell et al. 2001), and TFBS (Lenhard and Wasser-

man 2002) all use the Bioperl object model to describe se-
quences and Bioperl tools to complete analyses. The GBrowse
system is aWeb interface to databases of features for a genome
project. The DAS system provides researchers a means to an-
notate sequences locally and publish the annotations to the
community via the DAS XML protocol. TFBS provides a Perl
implementation of objects for DNA sequence pattern repre-
sentation by matrix profiles, with associated methods for
searching the sequences for the occurrence of patterns, pat-
tern storage, and generation of new patterns. The implemen-
tation uses Bioperl sequence, alignment, sequence features,
and feature pair objects.

Interoperability
Sometimes the best solution for a bioinformatics problem is a
hybrid of multiple tools. Providing interoperability between
languages allows a programmer using the toolkit to build
components using work done in other languages and
projects. These tools, written in different programming lan-
guages such as C, Java, and Python, can be used within a Perl
program simply by invoking them (a process often called
shelling out). In some situations, these tools require that data
be available in a certain format or within a certain database.
Bioperl provides software layers that can, for example, popu-
late a database with sequence information that can be ac-
cessed and used to generate an interactive graphical interface
provided by the Biojava toolkit. In other cases, Bioperl is used
to create files in a format recognized by other programs so
that they can perform their analyses.

Bioperl also supports a number of Extensible Markup
Language (XML) standard data exchange formats accepted in
the Bioinformatics community. Previous work has outlined
scenarios in which XML has been useful in a biological con-
text (Achard et al. 2001). XML standards supported by Bioperl

Figure 4 Report parsing with Bio�SearchIO. This code parses a
BLAST report from a file called report.bls and saves, in an array called
@HitsToSave, only the hits that have High-scoring Segment Pairs
(HSPs) meeting an e-value and length threshold. In this case, any hit
with e-value >0.001 or length < 120 residues will be excluded. Once
the array is built, the names of each of the hits that had a HSP that met
the criteria are printed out. To parse a FASTA (Pearson and Lipman
1988) report file one simply changes the format specification from
blast to fasta.

The Bioperl Toolkit

Genome Research 1615
www.genome.org

include the sequence markup formats Bioinformatics Se-
quence Markup Language (BSML; http://www.bsml.org) and
Berkeley Drosophila Genome Project’s (http://www.fruitfly.
org) Genome Annotation Markup Elements (GAME; http://
www.bioxml.org/dtds/index.html), NCBI BLAST XML for
BLAST reports, and the bibliographic standards Medline XML
provided by the European Bioinformatics Institute’s Biblio-
graphic Query Service (BQS; http://industry.ebi.ac.uk/
openBQS/) and Entrez Pubmed XML format (Wheeler et al.
2002). By supporting these XML-based formats, programs us-
ing Bioperl are able to process data from a growing number of
data sources that have adopted them as their standard. Fur-
thermore, the extensible nature of XML allows new features
to be added to the data formats without breaking existing
parsers and code.

Software can interoperate not only through the invoca-
tion of external programs, but also through invoking meth-
ods on remote components possibly written in a different
programming language from the calling component. Such a
mechanism constitutes the tightest integration of reusable
software components in a language-independent way. The
Common Object Request Broker Architecture (CORBA) (Ob-
ject Management Group 2001) provides an architecture for
enabling this technology. This technology has been applied
to biological data at the EBI in their Radiation Hybrid (Rod-
riguez-Tomé and Lijnzaad 2001) and EMBL Nucleotide Data-
bases (Wang et al. 2000). CORBA implementations are avail-
able from commercial vendors (e.g., Inprise’s VisiBroker, IO-
NA’s ORBacus) as well as from open-source projects (e.g.,
ORBit, MICO). Bioperl is compliant with the BioCORBA
project (http://www.biocorba.org), one of the proposed stan-
dards for CORBA components for biological processes.
BioCORBA is also supported by the Biojava (http://www.
biojava.org) and Biopython (http://www.biopython.org)
projects. The standard is under consideration for adoption by
the Management Group’s Life Science Research group (http://
lsr.ebi.ac.uk) and is included in the proposed Open Bioinfor-
matics Database Access (OBDA; http://obda.open-bio.org)
standard for sequence data access. Bioperl’s support for
BioCORBA allows applications written on top of Bioperl to
interact transparently with remote BioCORBA servers to per-
form operations as diverse as protein domain analysis and
bibliographic retrieval, without knowing any of the details of
the CORBA protocol.

Last, Bioperl fully supports the recent Open Bioinformat-
ics Database Access initiative (OBDA), a language-
independent relational database schema for the storage and
retrieval of GenBank/EMBL entry-based sequences. By sup-
porting this common schema, sequence objects that are cre-
ated and maintained by Bioperl can be accessed and manipu-
lated by OBDA-compliant programs written in Java, Python,
Ruby, or C. This provides a level of read/write cross-platform
data compatibility unmatched by any other sequence data-
base project, and enables extensive enterprise-level applica-
tion development.

DISCUSSION
Open-source development has proven to be a valuable and
productive mechanism for creation of the toolkit. No single
individual owns the project, rather it is owned by the
community of contributors. The community approach pre-
vents the death of a project due to loss of interest by the
sole developer and does not permit project stagnation in

the confines of a single laboratory in which a single indi-
vidual or group is responsible for the continued vitality of a
project. The original Bioperl project team has been replaced
completely over the last 7 yr as members leave the project and
new contributors join; however, the project aims have re-
mained focused, whereas the functionality has continued to
expand.

Throughout the development process, we learned a great
deal about appropriate software practices for a diverse group
of contributors. Our programming methodology, which in-
cludes defining use cases for our software, establishing a com-
prehensive regression test suite, and utilizing code reviews or
audits of contributed source code, helped the community de-
velop code that is compatible and consistent. The principles
of good design and good documentation have made it easier
for new developers to join the project.

A number of previous collaborative projects to develop
comprehensive libraries for the life sciences have produced
unsatisfactory results, or have been aborted prior to fruition.
We believe that in many of these cases, ongoing develop-
ment was stymied by a lack of commitment to open-source
principles. For example, BioWidgets, an early attempt to
create a Java-based biological toolkit, did not adopt an open-
source methodology at its inception. This left it open to
intellectual property disputes, and ultimately the project
dissolved as early contributors withdrew their software from
the project (N. Goodman, pers. comm.). In contrast, none of
the software placed in Bioperl can be withdrawn from the
project, because it has been explicitly donated to the commu-
nity using a license that expressly permits copying and modi-
fication.

Another example of a non-open-source project that has
failed to live up to its potential is the NCBI toolkit (ftp://ftp.
ncbi.nih.gov/toolbox/ncbi_tools/), a powerful and highly
functional C-language-based toolkit. Despite its quality, the
toolkit has failed to achieve widespread usage because of ac-
knowledged deficiencies in its documentation and a develop-
ment process that is closed. By limiting the development pro-
cess to NCBI personnel, the toolkit has evolved to work best
within the NCBI environment and to address NCBI-specific
operating procedures. Outside of the NCBI, the toolkit is used
to run BLAST, whereas other functionality lies fallow. In con-
trast, Bioperl has a large and active user base because of ex-
tensive interaction between the developers and the users of
the library. We allow users to contribute bug fixes and docu-
mentation improvements directly to the project, thereby
keeping the project relevant to their needs.

We feel that much of the success of the Bioperl toolkit
can be attributed to the open-source nature of the project that
has allowed a diverse group of individuals to participate in a
collaborative effort. We have successfully encouraged users of
the toolkit to assist in the development by contributing bug
fixes, documentation enhancements, and new functionality
for the benefit of all users. Contributors are part of academic,
governmental, nonprofit, pharmaceutical, and commercial
bioinformatics groups on every continent. This collaboration
and the guiding principle to get working products written in
an extensible manner have made Bioperl an excellent plat-
form for Perl bioinformatics software development. The open
sharing and discussion of ideas that embodies the scientific
spirit has proven to be successful in the world of scientific
software development as well.

The open-source development model also has some
drawbacks, which came to light throughout the lifetime of

Stajich et al.

1616 Genome Research
www.genome.org

the project. One drawback is that component development is
only focused on what contributors find useful for their own
work. Because developers tend to be technically advanced, the
code documentation and tutorials have been geared toward
these types of advanced users. Further, when a strong devel-
oper has left the project, it has not always been immediately
possible to find a contributor willing to carry on the portion
of the project for which the original developer was respon-
sible. As a result, some parts of the project have been tempo-
rarily neglected, and in some cases phased out.

We have addressed these issues by establishing guide-
lines for contributions that includes a commitment to com-
prehensive documentation and high standards for released
code. When necessary, we gracefully retire unmaintained
components by providing deprecation warnings to the com-
munity, and at all times endeavor to ensure that there is a
clear migration path from deprecated modules to new mod-
ules that provide equivalent functionality.

In the future, Bioperl will continue to evolve, addressing
more domains of bioinformatics. We plan to create objects to
manage sequence assembly information, haplotype maps,
gene expression, and protein interaction data. Additionally,
projects focusing on multispecies comparisons will build Perl
modules to manage alignment and syntenic information. We
will create software layers to interact with OBDA databases,
develop a generic analysis pipeline system to provide auto-
mated analysis components, and expand the supported file
formats the toolkit can read and write.

ACKNOWLEDGMENTS
The current Bioperl Core comprises, in alphabetical order,
Ewan Birney, Hilmar Lapp, Heikki Lehväslaiho, Jason Stajich,
and Lincoln Stein. The authors acknowledge contributions
from the following people, in alphabetical order: Brad Chap-
man, Michele Clamp, Tony Cox, James Cuff, Andrew Dalke,
Allen Day, Arne Elofsson, Mark Fiers, Ed Green, Roger Hall,
Peter van Heusden, Joseph Insana, Nicolas Joly, Aaron J
Mackey, Emmanuel Mongin, Jong Park, Lorenz Pollak, Rich-
ard Resnick, Todd Richmond, Gert Thijs, Charles Tilford, An-
drew Walsh, Kai Wang, and Alex Zelensky. Additional ideas
and help came from other OBF project team members includ-
ing Jeff Chang, Thomas Down, Keith James, and all of the
Bioperl mailing list members. Some parts of the object model,
especially locations, were adopted from the excellent work of
the Biojava project and its leaders Thomas Down and Mat-
thew Pocock. We acknowledge the former project coordina-
tors, in chronological order: Steven Brenner, Chris Dagdigian,
Georg Fuellen, Steve Chervitz, and Ewan Birney, as well as
initial contributors Jong Park and Richard Resnick, who pro-
vided help establishing the project. Our group owes its early
organizational support to its association with the VSNS-BCD
BioComputing Courses, http://www.techfak.uni-bielefeld.de/
bcd/welcome.html, funded by the Association for the Promo-
tion of Science and Humanities in Germany (Stifterverband
fur die Deutsche Wissenschaft). We thank Brian Osborne and
Peter Schattner for their documentation and tutorial work,
and Chris Dagdigian for his tremendous support as computer
systems administrator for the OBF. The Bioperl project and its
sister projects (commonly referred to as the Bio{*} projects) are
supported under the umbrella of the Open Bioinformatics
Foundation (http://www.open-bio.org). OBF has received
hardware donations from Compaq and Sun Microsystems,
and we accept donated bandwidth and computer server space
from Wyeth Research. J.E.S. is supported by NIH Genetics
training grant T32 GM07754–22. S.E.B is supported by NIH
grant 1 K22 HG00056. I.K. is supported by NHGRI Grant K22

HG-00064-01. L.D.S. is supported by NIH grants HG00739
and P41HG02223. E.B. is support by EMBL core funding. We
thank F. Dietrich, M. DeLong, M. Hahn, and two anonymous
reviewers for their comments on this work.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Achard, F., Vaysseix, G., and Barillot, E. 2001. XML, Bioinformatics,
and data integration. Bioinformatics 17: 115–125.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D.J. 1997. Gapped BLAST and
PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Res. 25: 3389–3402.

Beck, K. 1999. Extreme programming examined: Embrace change.
Addison Wesley, Reading, MA.

Burge, C. and Karlin, S. 1997. Prediction of complete gene stuctures
in human genomic DNA. J. Mol. Biol. 268: 78–94.

Chervitz, S.A., Fuellen, G., Dagdigian, C., Brenner, S.E., Birney, E.,
and Korf, I. 1998. Bioperl: Standard perl modules for
bioinformatics. Bio Informatics Technology and Systems (BITS),
http://www.bitsjournal.com/bioperl.html.

Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., and Stein, L.D. 2001.
The distributed annotation system. BMC Bioinformatics 2: 7.

Eddy, S.R. 2001. HMMER: Profile hidden Markov models for
biological sequence analysis. http://hmmer.wustl.edu.

Felsenstein, J. 1983. PHYLIP (Phylogeny Inference Package) version
3.5c. Distributed by the author. Department of Genetics,
University of Washington, Seattle.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design
patterns: Elements of reusable -object-oriented software. Addison
Wesley, Reading, MA.

Gish, W. 2002. Washington University BLAST. http://blast.wustl.edu.
Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L.,
Cox, T., Cuff, J., Curwen, V., Down, T., et al. 2002. The Ensembl
genome database project. Nucleic Acids Res. 30: 38–41.

Lenhard, B. and Wasserman, W.W. 2002. TFBS: Computational
framework for transcription factor binding site analysis.
Bioinformatics 18: 1135–1136.

Notredame, C., Higgins, D.G., and Heringa, J. 2000. T-coffee: A
novel method for multiple sequence alignments. J. Mol. Biol.
302: 205–217.

Object Management Group 2001. CORBA/IIOP Specification. OMG
publications. http://www.omg.org/technology/documents/
formal/corba_iiop.htm.

Open Source Initiative 2001. The open-source definition.
http://opensource.org/docs/definition.html.

Pearson, W.F. and Lipman, D.J. 1988. Improved tools for biological
sequence analysis. Proc. Natl. Acad. Sci. 85: 2444–2448.

Rice, P., Longden, I., and Bleasby, A. 2000. The European molecular
biology open source suite. Trends Genet. 16: 276–277.

Rodriguez-Tomé, P. and Lijnzaad, P. 2001. Rhdb: The radiation
hybrid database. Nucleic Acids Res. 29: 165–166.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL
W:Improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res.
22: 4673–4680.

Tremblay, J.P. and Cheston, G. 2001. Data structures and software
development in an object-oriented domain. Prentice Hall, Upper
Saddle River, NJ.

Wang, L., Rodriguez-Tomé, P., Redaschi, N., McNeil, P., Robinson,
A., and Lijnzaad, P. 2000. Accessing and distributing EMBL data
using CORBA (common object request broker architecture).
Genome Biol. 1: research0010.1–0010.10.

Waterston, R.H., Lander, E.S., and Sulston, J.E. 2002. On the
sequencing of the human genome. Proc. Natl. Acad. Sci.
99: 3712–3716.

Wheeler, D.L., Church, D.M., Lash, A.E., Leipe, D.D., Madden, T.L.,
Pontius, J.U., Schuler, G.D., Schriml, L.M., Tatusova, T.A.,
Wagner, L., et al. 2002. Database resources of the National
Center for Biotechnology Information: 2002 Update. Nucleic
Acids Res. 30: 13–16.

Wilkinson, M.D., Block, D., and Crosby, W.L. 2002. Genquire:
Genome annotation browser/editor. Bioinformatics (in press).

The Bioperl Toolkit

Genome Research 1617
www.genome.org

WEB SITE REFERENCES
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/; NCBI toolkit.
http://bioweb.pasteur.fr; L’Institut Pasteur Bioweb (Pasteur Institute).
http://doc.bioperl.org; Bioperl code documentation page.
http://forkhead.cgr.ki.se/TFBS/; TFBS Project.
http://industry.ebi.ac.uk/novella/; EBI Novella project Institute.
http://industry.ebi.ac.uk/openBQS/; BQS –Bibliographic Query
Service.

http://lsr.ebi.ac.uk; Management Group’s Life Science Research
group.

http://obda.open-bio.org; Open Bioinformatics Database Access.
http://opensource.org/docs/definition.html; Open-Source
Initiative–Open-Source definition.

http://pdoc.sourceforge.net; Pdoc home page.
http://www.biocorba.org; BioCORBA Project.

http://www.biojava.org; Biojava Project.
http://www.bioperl.org; Bioperl Project.
http://www.biopython.org; Biopython Project.
http://www.bioxml.org/dtds/index.html; GAME–Genome
Annotation Markup Elements.

http://www.bsml.org; BSML–Bioinformatic Sequence Markup
Language.

http://www.ebi.ac.uk; EMBL Outstation–European Bioinformatics
Institute.

http://www.ensembl.org; EnsEMBL Project.
http://www.fruitfly.org; Berkeley Drosophila Genome Project.
http://www.open-bio.org; Open Bioinformatics Foundation.

Received May 4, 2002; accepted in revised form August 9, 2002.

Stajich et al.

1618 Genome Research
www.genome.org

