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1 Frame of Reference: Scalable Product Platforms ily design is the development of modular product platforms that

In an effort to increase customization for todav's highly comS®" be easily modified through the addition, substitution, and re-
y's highly oval of one or more functional modul¢§,6]. An alternative,

?;ntqlmlees %Et}ﬁlc:zggkeetsr‘ogj;yV(;Orirzgar;ﬁg ZLeo:?eonklg?o:joustr?gu nd equally important, approach to product family design is the
. - ; ; evelopment of common product platforms that can be
times while reducing costs. _I_:or_ examp!e, Kodak's _pmducgtretched" or “scaled” in one more dimensions to satisfy a va-
p_Iatform-based response to Fuji's introduction of the Q”'Cksnarﬂety of market requirement]. This approach is frequently em-
single-use camera in 1987 enabled them to develop produfi§yed in aircraft design, whereby an aircraft such as the 777-X is
faster and more cheaply through effective product family desiggyetched to accommodate more passengers, increase its flight
allowing them to regain market share and leapfrog FLiji Simi- range, or carry additional carg8].
larly, Airbus is currently enjoying a competitive advantage over Ty facilitate the design of scalable product platforms, we have
Boeing due to improved commonality, particularly in the cockpitheen developing methods to synthesize common product plat-
The A330 cockpit is common to all other Airbus types while Boeforms that can be scaled into an appropriate family of products.
ing’s 767-400 cockpit is common only with the 757. This enabletthis work began by employing robust design principles to find
the A330-200, a less efficient “shrink” of a larger aircraft, tocommon product platforms that could be scaled by one or more
outsell Boeing’s 767-400ER, a more efficient “stretch” design ofcale factors, e.g., the number of passengers on an aireraf.
a smaller aircraft, last yed®]. This approach was then formalized into the Product Platform
As evidenced by these and similar examples in the literatur€pncept Exploration Metho@PPCEM), which employed a two-
the key to a successful product family is the common produstage approach to find a common platform and product family
platform around which the product family is derived. As Robertbased on a known scale factpf]. Recently, a single-stage ap-
son and Ulrich[3] point out, “By sharing components and pro-proach employing the powerful physical programming paradigm
duction processes across a platform of products, companies we&s developed to reduce computational expense and improve the
develop differentiated products efficiently, increase the flexibilitperformance of the product famifyL1].
and responsiveness of their manufacturing processes, and taki both approaches, the scale factor around which the product
market share away from competitors that develop only one pro@mily was “stretched” was assumed to be knowapriori; how-
uct at a time.” An effective product platform also facilitates cus€Vver, this is often not true in practice. In fact, there is a tradeoff
tomization by enabling a variety of products to be quickly an@etween commonality and performance within a product family:
easily developed to satisfy the needs and requirements of distifBProving commonality within a product family reduces the dis-
market niches/4]. However, product platform design requiredinctiveness of the_ products. Sele_ctlng _the right combination of
carefully balancing the commonality of the product platform witfommon and scaling parameters is critical to the success of the

the distinctiveness of the individual products that constitute t¥oduct platform and corresponding family of products. Conse-
family. quently, in this papewe introduce a Product Family Penalty

The prominent approach to product platform and product farkunction (PFPF) to aid in the selection of common and scaling
parameters for families of products derived from scalable product
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gramming method. The PFPF is described and developed inSer—————————— — ——
tion 3. An example problem is presented in Section 4. Section Fu) :
provides concluding remarks. z
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2.1 Product Platform Concept Exploration Method
(PPCM) [7]. The PPCEM consists of five steps that prescribe
how to formulate the product family problem and describe how tc
solve it; the actual implementation of each step is likely to vary,
from problem to problem. A quick overview of each step in the
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process follows. s " P Vi by
Step 1. Create the Market Segmentation Grithis step in- “ !
volves mapping the overall design requirements into an appropr AERRRE cuassss AP (u) 0 oo :

ate market segmentation grid. The grid allows for identification o
potential opportunities for leveraging the product platform.

Step 2: Classify the Factors and RangeBhis step involves
mapping the overall design requirements and market segmentati
grid into appropriate factors and identifying corresponding range Lo Lo 4
for each scale factor. Scale factors should be identified in this ste Vir VL Ve Vi Va Vir Vir Vi Visn
based on the platform leveraging strategies identified in Step 1.

Step 3: Build and Validate Metamodeihis step includes | p(u,)
modeling computationally expensive computer analyses or simt
lation codes using computationally inexpensive metamo@ets,
response surfaces, kriging

Step 4: Aggregate Product Platform Specificatiefighis step
includes formulating an optimization problem based on informa
tion from the market segmentation grid, the factors and range;
and the overall design requirements. Physical programming i
used to formulate this problem.

Step 5: Develop the Product Platform PortfelidJse the opti-  Fig. 1 Class-function ranges for  ith generic design metric
mization formulation from Step 4 to obtain the product platform
portfolio that optimizes the design objectives.

By using the PPCEM, a strategy for developing a product plgfseq some of the important concepts used in the PP method are
form portfolio based on a single platform is readily available;

; = P ) ~~ ~described as follows. More information on the physical program-
however, depending on the optimization formulation, practicall Phy prog

any combination of solutions is possible, including both good an ing method can be found {421,

bad designs. Even if the optimization problem is formulated care-Design Metrics. The problem formulation involves identify-

fully and correctly, bad designs are possible, even likely. A kemg the characteristics of the system, or design, which allow the

reason these potentially bad designs are the poor choices in dedesigner to judge the effectiveness of the outcome. Those charac-

mining common and scaling parameters. teristics, or design metrics, are denoted/y which are compo-
Steps 1 and 2 of the PPCEM utilize market segmentation gridents of the vectope= (x4 . .. ,um). The elementg; represent

and platform leveraging strategies, but they do not clearly addrdsshavior. Design metrics may be quantities that the designer

the issue of how to choose common and scaling parameters withiishes to minimize; maximize; take on a certain valgeal); fall

the product family. Due to the nonlinear nature of multi-criterign a particular range; or be less than, greater than, or equal to

optimization, the task of choosing the scaling parameters canmatrticular values. The designer defines preference with respect to

rely on intuition. After the physical programming overview in theeach design metric by providing certain numerical values. The

next section, we introduce a product family penalty function basel@sign metric may become part of aggregate objective function

on the physical programming paradigm to aid in the determinatidAOF) that will be minimized, or may instead be treated as in-

of common and scaling parameters within a product family.  equality or equality constraints that subjugate the aggregate objec-

2.2 Physical Programming Synopsis. This section provides five function

a synopsis of the physical programmi(®P method. For a com-  Classification of Objectives, and Class FunctiongVithin the

prehensive presentation, see R@f2]. Physical programming is physical programming procedure, the engineer expresses objec-

intended to be a simple and user-friendly optimization method thiates with respect to each design metric using four different

requires negligible knowledge of optimization. The application aflassesEachClasscomprises two caseblard andSoft referring

physical programming employs a flexible and natural problem fote the sharpness of the preference. 88ft Class functions will

mulation framework. In PP, the designer does not need to spedifgcome constituent components of the aggregate objective func-

optimization weights in the problem formulation phase. Rathetiipn. Figure 1 depicts the qualitative meaning of e&dft Class

the designer specifies ranges of different degrees of desirabilitile value of the design metric under consideratjon, is on the

for each design objective. horizontal axis, and the function that will be minimized for that
Physical programming also addresses the inherent multiobjedbjective,P;(u;), hereby called th€lass functionis on the ver-

tive nature of design problems, where multiple conflicting objedical axis.

tives govern the search for tHeestsolution. Physical program-  The desired behavior of a generic design metric is described by

ming provides a flexible and more deterministic approach tne of eight sub-Classes: four Soft and four Hard. These Classes

obtaining a solution that satisfies the typically complex texture afre characterized by:

a designer’s preferences. Physical programming is implemented irSoft:

the software package entitled PhysHiSB], which is Matlab Class 1S Smaller-Is-Better, i.e., minimization.
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Class 2S Larger-Is-Better, i.e., maximization. During optimization, the PFPF will penalize design parameters

Class 3S \Value-Is-Better. that are not common throughout the product family while optimiz-
Class 4S Range-Is-Better. ing the desired objectives. This will allow for identification of the
Hard: design parameters that are best declared common and those to
Class 1H Must be smaller, i.6u;=< i max scale the common product platform. If the design parameters can
Class 2H Must be larger, i.6u;= w; min be set at a constant value for all products, with minimal effect on
Class 3H Must be equal, i.6u;= ;i ,a the design objectives, then they should be grouped into the com-
Class 4H Must be in range, i.6u; min=m= i max mon product platform. If, however, a parameter cannot be made

For each of these Classes, we fornCkss function(Fig. 1). constant across the products without adversely affecting the de-
The Class functions provide the means for a designer to expreggn objectives, then it should be considered a good candidate for
the spectrum of preferences for a given design metric. The Cldsscoming a scaling parameter.
functions provide information that is deliberately imprecise. By The methodology that is being examined is to first optimize
design, the utopian value of each Class functions is zero. Next, wach product individually. This gives two important resulfg:an
explain how gquantitative specifications are associated with eagptimum configuration for each product, for later comparison, and
design metric. (2) initial conditions for the next optimization problem, including
. . . . . the minimization of the variation of the design parameters. With
_ Physical Programming Lexicon.Physical programming de- wo gtarting points obtaine@ptimum individual configurations
flne_s a lexicon that pr_owdes the means to express prefere_nce fhé& second optimization problem can be solved. The desired de-
flexible way. This lexicon comprises terms that characterize g, piectives are optimized, while in addition, the variations
degree of desirability of six ranges for each generic design metjiGy een the same design parameters across all the products in the
for Classes 1S and 2S, ten ranges for Class 3S, and elevenf %ily are also minimized. As an example, suppose therekare

Class 4S. To illustrate, consider the case of Class 1S. The rangfsy,cts in a family. Theariation for theith design parameter is
are defined as follows, in order of decreasing preference: defined as

Highly Desirable range g;<v;;): An acceptable range over
which the improvement that results from further reduction of the
performance objective is desired, but is of minimal additional
value.

Desirable range ifj;<u;<v;,): An acceptable range that is
desirable.

Tolerable range;,< u;<v;3): An acceptable, tolerable range.where

Undesirable rangei{z<pu;<v;,): A range that, while accept-
able, is undesirable.

Highly Undesirable rangei{,< u;<w;s5): A range that, while _ & Xf
still acceptable, is highly undesirable. XFE -
Unacceptable rangeu{=v;5): The range of values that the =1 Kk

generic objective may not take.

The parameters;; throughv;s are physically meaningful con- andxi denotes thé-th design parameter for tieth product. The
stants that are specified by the designer to quantify the preferenggiation will always be considered as a percentage of the mean
associated with théth design metric. These parameters delineatgy the variable being considered. That is, as the variables change
the ranges for each design metric. o ) _during the optimization, the percentage variation is based on the

The Class functions map design metrics into non-dimensionghyrect mean of the variables. For this example, we minimize the
strictly positive real numbers. This mapping, in effect, transformgyiation of the design parameters. This results in a set of design
design metrics with disparate units and physical meaning ontq,ftrics, in addition to the original existing metrics.
dimensionless scale through a unimodal function. Figure 1 illus- |y order to demonstrate that physical programming has the abil-
trates the mathemati.cal nature of the Class functions Qnd shQWwsto handle the optimization of numerous objectives and give
how they allow a designer to express the ranges of differing goodsiaple results, the first part of the PFPF, finding the variable
ness, or preferences, for a given design metric. Consider the fisgk; suited for the scaling variable, will be performed using two
curve of Fig. 1: the Class function for Class 1S design metrics. Si¥ethods.
ranges are defined. The parametersthrough ;s are specified  The first method will be more time consuming, where the varia-
by the designer. When the value of the objeciivgs less thanvi; jon of each design parameter will be minimized across the family,
(highly-desirable rangethe value of the Class function is smallihys the number of optimization runs will be equal to the number
which calls for little further minimization of the (;Iqss function. of design parameters that are being considered for scaling param-
When, on the other hand, the value of the objecfives between gters Minimizing the variation of each design parameter, while
viq and v;5 (highly-undesirable rangethe value of the Class letting all others be unconstrained, will in effect allow the de-
function is large; which calls for significant minimization of thesigner to see how much performance is lost when forcing the
Class function. The behavior of the other Soft Class functions {$iation to go to zergbecoming a variable that is the same, or
indicate_d in Fig. 1. Preferen_ces reg_arding each Qes_ign_ metric &Binmon, across all products in the familVhen this is per-
treated independently, allowing the inherent multiobjective natuggrmed for all design parameters, one can see how each parameter
of the problem to be preserved. This describes the basic procesgsfyonds to being forced common. The design variable that causes
physical programming: the value of the Class function for eaghe largest decrease in performance is deemed best suited to be the
design metric governs the optimization path in objective spacescaling variable.

. . The second method, which will be more efficient and also take
3 Product Family Penalty Function Development into consideration all design objectives and constraints in the AOF

We propose a Product Family Penalty FunctiBRPH that will  at the same time, will be based on a single formulation using the
optimize the design of a product family. The PFPF will determinghysical programming method. This method will optimize each
which parameters should be common throughout the product faperformance design objective while also minimizing the varia-
ily and which should be the scaling variables. Here, we assurtiens of all the design parameters considered for scaling variables.
the use of a single scaling variable within the product familyif will later be explained how this can be accomplished in the
however, the method can easily be extended to include searchpiysical programming paradigm. Next a realistic problem is con-
for multiple scaling parameters. sidered where we optimize a family of 10 universal motors.
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4 Example Problem: Family of Universal Motors the armature windings, through the shaft of the armature, across
) ] ) another air gap, and back into the metal of the field, thus complet-

4.1 Universal Motors. Universal electric motors are soing a magnetic circuit. When the magnetic field passes though the
named for their capability to function on both direct currédC)  armature windings, the magnetic field exerts a force on the current
and alternating currentAC). Universal motors deliver more carrying wires. Because of the geometry of the windings, current
torque for a given current than any single-phase m@@t. The on one side of the armature is always passing in the opposite
high performance characteristics and flexibility of universal matirection to the current on the other side of the armature. Thus the
tors have led to a wide range of applications, especially in housgrce exerted by the magnetic field on one side of the armature is
hold use where they are found in, e.g., electric drills and sawspposite to the force exerted on the other side of the armature.

blenders, vacuum cleaners, and sewing macHiagps Thereby a net torque is exerted on the armature, causing the ar-
According to Lehnerd24], in the 1970s Black & Decker de- mature to spin.

veloped a family of universal motors for its power tools in re- ) ,
sponse to a new safety regulation: double insulation. Prior to that,4-2 Example Problem. An example using ten universal mo-
they used different motors in each of their 122 basic tools wiflrs is now considered. There are two separate problems that must
hundreds of variations, from jigsaws and grinders to edgers aR@l solved. The first optimization problem involves the minimiza-
hedge trimmers. Through redesign and standardization of th@n of the masgkg) and the maximization of the efficienc9o)
product line, they were able fwoduce all their power tools using for each_motor. There are eight design parameters for each motor.
a line of motors that varied only in the stack lengtind the The design parameters are as follows: the current drawn by the
amount of copper wrapped within the motor. As a result, all of th@otor (I); the wires’ cross-sectional areas A Aya) and the
motors could be produced on a single machine with stack lengtigmbers of turns (N N;) in both the field and the armature; and
varying from 0.8 in to 1.75 in, and power output ranging from 6dhe radius (), thickness(t), and stack lengttiL) of the motor.
to 650 watts. In addition to significant material and labor saving§he constraints are as follows:
new designs were developed using standardized componentdorque,
such as the redes_lgned motor, allowmg products to be introduced, 0_05’0.10,0_125’0_15,0%)]
exploited and retired with minimal expense related to product T=
development. 0.25,0.30,0.35,0.40,0.5
Our goal in this example is to demonstrate the use of the PFPF
in conjunction with the PPCEM to design a family of universal
motors. Specifically, the objective is to: Power,
Design a family of ten (10) universal electric motors that
satisfy a variety of torque and power requirements, built on one or P=300 watts for all ten motors,
more common platforms, and scaled around a set of scalingreasible Geometry,
parameters.
The motor platform is the set of common physical dimensions ro
(design variablgsthat describe the universal motor while the —=1,
scale factor is varied to satisfy the range of torque and power
requirements. ) ) . and Magnetizing Intensity,
A schematic of a universal motor is shown in Fig. 2. As shown
in the figure, a universal motor is composed of an armature and a H=<5000 Amgturns/m.
field, which are also referred to as the rotor and stator, respec
tively. The armature consists of a metal shaft and gatature
poleg around which wire is wrapped longitudinally as many as
thousand times. The field consists of a hollow metal cylind
within which the armature rotates. The field also has wire wrapp sation runs for each motor can be seen in Table 2. The results

longitudinally around interior metal slatfield poleg as many as from this first optimization problem will be used in the formula-

hundreds of times. For a universal motor, the wire WIaPP&ILN of the second optimization problem for starting points. The

around the armature a_nd the_fleld is wired in SEries, which meaiﬂaividually optimized motors will also be used as a baseline to
that the same current is applied to both set of wires. mpare later results
! .

As current passes through the field windings, a large magne%cc)
field is generated. This field passes through the metal of the field Multiple Formulation Method. The first method for determin-
across an air gap between the field and the armature, then throirghwhich design parameter is best suited for the scaling variable
will now be demonstrated. This method is implemented by per-
forming seven separate optimization runs since the eighth variable
current, I, is not considered a candidate for scaling since it is a
state variable. This will be done by forcing the variation of each of
the seven candidates for scaling variable to be zero throughout the
family while letting all other variables be free. The preference
structure for the first optimization run can be seen in Tablal3
the preferences from Table 1 are also Usédbte that the first
variation metric in Table 3 is a Class 3-H, or equality constraint,
while the other variation metrics are Class 2-H, or greater than
constraints. For this problem we took a representative sample of
the motors that were in the family. In other words, we used motors

\ \ 1, 5, and 10 to note the trend in performance that was lost when
LEADS - commonality was forced upon each design parameter.

TERMINA A
[DEF.HDNE In all seven optimization runs, a performance loss was noted for

Nm for each of the ten motors, respectively,

Using the formulation derived in Simpson et 7], from
hapmar{22] and Cogdel[26], a physical programming optimi-
ation formulation was developed. The preferences for the formu-
ion can be seen in Table 1. The results of the individual opti-

SHAFT ! ¢
: \ mass and efficiency in each of the runs. The mass losses when
LAMNATIONS LAMINATIONS each variation metric was minimized can be seen in Fig. 3 while
the efficiency losses can be seen in Fig. 4. Now both of these
Fig. 2 Universal Motor Schematic  (G.S. Electric [25]) performance losses must be combined into one graph to allow the
Journal of Mechanical Design JUNE 2002, Vol. 124 / 167
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designer to use this information to make the best decisions regantkeaningful choices will be used. This will allow for the physically
ing which variable should become the scaling variable. Combimeaningful information from the preferences to be captured in
ing these two sets of results into one graph could be simply dooembining the two objectives.

by adding the percentages lost or gained from mass and efficiencysince we looked at a representative sample of the three motors
additively. However, this would not allow the results to be kept i1, 5, and 10in this case, we will refer to the preferences entered
a truly physically meaningful environment. Meaning that if onén Table 1. A simple method was developed to map these two
objective was more important or weighted more strongly than tliésparate objectives to the same graph. Keeping in mind that the
other, this method would not capture and reflect this physicataling variable should be the design variable with the most per-
meaning. For this case, a method based on the preferences thahance lost, a mapping is created. Since there are two objec-
were previously entered to describe the designer’'s physicatlyes, and the total of the aggregate objective functig®F)

Table 1 Physical programming preferences for example problem

HD D T U HU
ith Objective Class Oi1 gi2 gis Jia gis
Mass - 1 1-S .20 .30 .40 .50 .60
Efficiency - 1 2-S .85 .80 .75 .70 .65
Mass - 2 1-S .25 .35 .45 .55 .65
Efficiency - 2 2-S .80 .75 .70 .65 .60
Mass - 3 1-s .30 .40 .50 .60 .70
Efficiency - 3 2-S .80 .75 .70 .65 .60
Mass - 4 1-S .30 .40 .50 .60 .70
Efficiency - 4 2-S .80 .75 .70 .65 .60
Mass - 5 1-S .30 .40 .50 .60 .70
Efficiency - 5 2-S .75 .70 .65 .60 .55
Mass - 6 1-S .35 .45 .55 .65 .75
Efficiency - 6 2-S .75 .70 .65 .60 .55
Mass - 7 1-S .45 .55 .65 .75 .85
Efficiency - 7 2-S .75 .70 .65 .60 .55
Mass - 8 1-S .45 .55 .65 .75 .85
Efficiency - 8 2-S .70 .65 .60 .55 .50
Mass - 9 1-S .55 .65 .75 .85 .95
Efficiency - 9 2-S .65 .60 .55 .50 .45
Mass - 10 1-S .60 .70 .80 .90 1.0
Efficiency - 10 2-S .60 .55 .50 .45 .40

Unacceptable Acceptable
Mag Int. (1-10 1-H - - - 5000
Feasibility (1-10) 2-H - - i} 1
Power(1-10 3-H - - - 300
HU: Highly Undesirable U: Undesirable T: Tolerable D: Desirable HD: Highly Desirable
Table 2 Individually optimized motors using physical programming
| L Nc Ng R, t Ayt A, Eff. Mass
Motor (Amp) (cm) (turng (turng (cm) (cm) (mm?) (mrr%) (%) (kg)
1 2.97 1.90 691 70 1.70 424 241 241 85.1 0.275
2 3.48 1.97 907 69 1.91 492 216 .216 75.1 0.358
3 3.48 2.11 942 74 2.04 .542 .239 .239 75.0 0.439
4 3.57 2.16 1000 75 2.13 .579 .246 .246 73.1 0.490
5 4.01 2.26 1059 69 2.20 .581 .228 .228 65.0 0.519
6 4.01 2.33 1146 74 2.35 .664 .256 .256 65.0 0.636
7 4.06 2.45 1184 76 2.47 712 274 274 64.3 0.739
8 4.50 2.46 1217 70 2.50 712 .263 .263 58.0 0.740
9 4.74 2.50 1248 68 2.55 .736 .268 .268 55.0 0.784
10 5.22 2.55 1299 64 2.66 .784 .279 279 50.0 0.867
Table 3 Physical programming preferences for example problem

HD D T u HU

«— «— «— «— «—
. o Ji1 Ji2 Ji3 Jia Jis
ith Objective Class Unacceptable Acceptable
Variation of L 3-H 0
Variation of N, 2-H 0
Variation of N 2-H 0
Variation of r, 2-H 0
Variation of t 2-H 0
Variation of Ay 2-H 0
Variation of A, 2-H 0

HU: Highly Undesirable U: Undesirable T: Tolerable D: Desirable HD: Highly Desirable
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should equal one, each objective will have a maximum mapp@did. Figure 7 shows that the radius might be the best choice for

value of 0.5. Figure 5 shows two class functions showing how tfilee scaling variable as opposed to the length, which was chosen

mapping takes place, where R1 through R5 represent the fi@s the problem by Black & Decker.

preference ranges. Table 4 summarizes the range values and givddis provides a good tool for the designer to use; however, by

their mapped values. employing this type of method all of the other design parameters
Using this mapping, the results from mass and efficiency can bee free to vary. Thus, there may be some interactions between

combined into one graph. This is now done in a physically meathese parameters and design objectives that are not being repre-

ing way. If by forcing the variation of a design variable to be zergented clearly. That is why it is desired to optimize everything at

the mass and efficiency objectives end up as two highly undegice and see how the system responds when all design objectives

able results then the mapping would cause the combination of @ in the AOF. This is what will be explained and shown in the

two to total one, or the highest possible total. Two highly desirabfeext sub-section.

results would bring the total to near zero. The higher the total, the

better suited the variable is to become the scaling variable since it

has a large negative impact on the performance of the family if it Table 4 Summary of range values
is taken as common. Figure 6 allows the designer to see the com=
bination of the two objectives after they have been mapped. A Preference Range Value
clearer representation of this is seen in Fig. 7, where the lowest Hu R5 0.500
value for each motor is subtracted to allow the difference between U R4 0.375
the design parameters to be seen. E Eg 8%22
It is seen from Fig. 7 that, when radius is forced to be common HD R1 0.000
across all products, there is a large price in performance to be
B Total 1 EOTotal2 D Totai 3
0.800
B Motor 1 Motor2  [MMotor 3 e
4 0.700
2 -
0.600 » F [
0 . g m
24— g g g 0.500
2
o . %
a 0.300 44~
-8 =
0.200
10
12 0.100 i
|
-14 " i - "
Baseline Length Nfield Narm Radius Thick Awf Awa 0.000 Longth Nam Nfold Radius Thick Aot ‘Awa
Design Variables . Design Variables
Fig. 4 Percent efficienc y - 3 Motors Fig. 6 Mass and efficiency combined
Journal of Mechanical Design JUNE 2002, Vol. 124 / 169

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Wpitterence 1 [ADifference 2 MDitference 8 Table 6 Design metrics variance (%)

0.6 Design Motors Motors Motors Motors
Metric 1,5 5,10 1,5,10 1,3,5,8,10
Var. of L 6.96 5.59 9.09 14.46
0.5 ‘ Var. of N, 6.97 2.37 9.10 8.46
Var. of Ng 6.97 6.98 9.00 5.27
Var. of r, 23.75 21.26 9.64 17.69
0.4 Var. of t 6.96 6.98 9.00 10.90
' Var. of Ay 4.49 151 8.98 13.34
Var. of A, 6.96 6.66 9.00 7.41

Preference Mapping
(=]
@

(=)
N

use three and five motors at a time as the representative sample.
, Upon performing the optimization for motors 1 and 5, and 5 and
0.1 10, we can see the values that were produced for the variation
design metrics in Table 6. Table 6 shows that the hardest variation
design metric to minimize, while taking into consideration perfor-

0.0 ot Nam Nfleld R ThoK v A mance, is the radius. This result agrees with the previous result
obtained using seven optimization runs. This leads us to conclude

Design Variables that radius would be the best suited for the scaling variable. As

) ) o ) can be seen from Table 6, using 2, 3, or 5 motors yields the same
Fig. 7 Design tool for determining scaling parameter conclusion; the radius was shown to be the best choice for a

scaling variable. Radius had the highest percentage variation in
each trial; this means it was the hardest variable to make common

Single Formulation Method. In formulating this problem as a without sacrificing performance.
single optimization, physical programming will be used in a In this type of product family, since the producmiversal mo-
slightly different way than has been discussed in previous papeia) is being scaled to a more powerful version for each succeed-
The physical programming method will be the same, the newg product, choosing representative motors give a sampling of
twist that will be looked at will involve how the results are examthe results. Ideally, all ten motors would be used at once, and there
ined, and will be explained later on in this section. would be one optimization run needed, including all motors.

Physical programmingPP has the unique feature of forming However, the increasing number of conflicting objectives would
its AOF based on physically meaningful preferences. For this ezause the formulation to take an extremely long time to run, and
ample, the general formulation will be the same, the preferencesuld possibly generate many local minima. The average number
from Table 1 will be used, with all of the variation design metricef iterations when using two motors was approximately 4,250;
also being minimized as seen in Table 5. These preferdiieie three motors: 6,770; and five motors: 16,200. Note that the results
5) are percentages of variations, so all variables are treated appatren using 5 motors were found by taking initial conditions close
priately regardless of their magnitude. This formulation uses the the optimal configurations for each motor. When different star-
preferences from Table 1 to minimize the mass of each motamng points were used, other local minimums were captured. This
maximize the efficiency of each motor, and satisfy the given comsas not true for the case of using two motors. Any starting point
straints. This formulation therebgptimizes the performancef resulted in the same solution.
the family of motors. The second set of preferen@esTable 5 Next, we will examine the results for the optimization of the
minimizes the variation between each design variable throughautiversal motor product family. We will also examine the results
the family. Since both of these sets of preferences are actifigm a previous study where physical programming was shown to
against each othdiby increasing commonality it decreases perbe effective in product family optimizatiofi1]. In this previous
formance the AOF can now use the optimization engine to detestudy, length was assumed to be the scaling variable, and the
mine which design parameter affects performance the most. Thimblem was solved using the Compromise DSP and the physical
will cause PP tonot minimize the variation of the design param-programming method. Now, the current physical programming so-
eter that effects performance the most as much as PP will mitition that determined that the radius should be used as the scaling
mize the other design parameters variatidihus, with all of the variable will be compared to these other solutions. This will allow
factors considered in the AOF, by performing a single optimizats to see how changing the radius to be the scaling parameter
tion run, it can easily be seen which factor would be best suitedfects the results. The final results using the PP method with
for the scaling variable. radius as the scaling variable can be seen in Table 7. A comparison

To obtain a representative sample we will first examine twof these results to those from other methods is seen in the next
motors at a time: motors 1 and 5, then motors 5 and 10. We thsection.

Table 5 Physical programming preferences for example problem

HD D T u HU
«— > — «— «—
ith Objective Class 9i1 iz i3 Gia Jis
Variation of L 1-S 15 4.5 7 9 10.5
Variation of N, 1-s 15 4.5 7 9 10.5
Variation of N 1-S 15 4.5 7 9 10.5
Variation of , 1-S 15 45 7 9 10.5
Variation of t 1-S 15 4.5 7 9 10.5
Variation of A 1-S 15 4.5 7 9 10.5
Variation of A, 1-S 15 4.5 7 9 10.5
HU: Highly Undesirable U: Undesirable T: Tolerable D: Desirable HD: Highly Desirable
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Comparison of Results. In making a comparison between theln Table 9, a comparison between the individually optimized
two product family designs using different scaling parameters, vpeoduct family and the physical programming formulation with
first present, in Table 8, a comparison between the individuallgngth as the scaling variable can be seen. Finally in Table 10 we
optimized product family and the product family design using thpresent the results of the current study, showing a comparison
CDSP method employed in the original PPCEM formulafidgh between the individually optimized product family and the physi-

Table 7 Results using PFPF for common platform development

I R, N, Ng L t Aut Ay Eff. Mass
Motor (Amp) (cm) (turns (turns (cm) (cm) (mnP) (mn%) (%) (kg)
1 3.18 1.46 1319 68 2.12 .922 .256 .256 82.0 0.312
2 3.40 1.83 1319 68 2.12 .922 .256 .256 76.6 0.422
3 3.52 1.98 1319 68 2.12 .922 .256 .256 74.1 0.472
4 3.64 211 1319 68 212 922 .256 .256 71.6 0.518
5 3.90 2.33 1319 68 2.12 .922 .256 .256 67.0 0.595
6 4.16 2.48 1319 68 2.12 .922 .256 .256 62.7 0.653
7 4.43 2.59 1319 68 2.12 922 .256 .256 58.9 0.693
8 471 2.65 1319 68 212 922 .256 .256 55.4 0.719
9 4.99 2.68 1319 68 2.12 922 .256 .256 52.2 0.732
10 5.58 2.69 1319 68 2.12 922 .256 .256 46.8 0.734
Table 8 Individual PP vs. CDSP
Ind. PP CDSRLength Scaling Percentage Difference
Motor n (%) m (kg) n (%) m (kg) n (%) m (kg)
1 85.1 0.275 76.8 0.380 -9.7 38.2
2 75.1 0.358 72.2 0.520 -3.8 45.4
3 75.0 0.439 70.0 0.576 -6.7 31.3
4 73.1 0.490 67.9 0.625 -7.2 27.4
5 65.0 0.519 63.9 0.703 -1.8 355
6 65.0 0.636 60.2 0.759 7.4 19.3
7 64.3 0.739 56.8 0.797 —-11.7 7.9
8 58.0 0.740 53.6 0.820 -7.6 10.9
9 55.0 0.784 50.5 0.830 -8.2 5.9
10 50.0 0.867 44.8 0.820 —10.4 —-54
Average Change —7.4 21.6
Table 9 Individual PP vs. PP length scaling
Ind. PP PRLength Scaling Percentage Difference
Motor n (%) m (kg) n (%) m (kg) n (%) m (kg)
1 85.1 0.275 76.1 0.384 —10.5 39.7
2 75.1 0.358 71.9 0.506 —4.2 41.4
3 75.0 0.439 70.0 0.556 —6.7 26.9
4 73.1 0.490 68.1 0.601 —6.9 22.5
5 65.0 0.519 64.5 0.674 -0.8 29.8
6 65.0 0.636 61.2 0.729 -6.0 145
7 64.3 0.739 58.0 0.768 -9.8 3.9
8 58.0 0.740 55.0 0.768 —-5.3 3.8
9 55.0 0.784 52.1 0.809 -5.3 3.2
10 50.0 0.867 46.7 0.811 -6.7 -6.5
Average Change -6.2 17.9
Table 10 Individual PP vs. PP radius scaling
Ind. PP PRRadius Scaling Percentage Difference
Motor n (%) m (kg) n (%) m (kg) n (%) m (kg)
1 85.1 0.275 82.0 0.312 -3.6 13.4
2 75.1 0.358 76.6 0.422 2.1 18.0
3 75.0 0.439 74.1 0.472 -1.3 7.6
4 73.1 0.490 71.6 0.518 -21 5.6
5 65.0 0.519 67.0 0.595 3.0 14.6
6 65.0 0.636 62.7 0.653 —-35 2.6
7 64.3 0.739 58.9 0.693 -84 -6.2
8 58.0 0.740 55.4 0.719 —-4.5 —-2.8
9 55.0 0.784 52.2 0.732 —-5.0 —6.6
10 50.0 0.867 46.8 0.734 —6.5 —15.3
Average Change -3.0 3.1
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