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Introduction of a Product Family
Penalty Function Using Physical
Programming
In an effort to increase customization for today’s highly competitive global markets, m
companies are looking to product families to increase product variety and shorten pro
lead-times while reducing costs. The key to a successful product family is the com
product platform around which the product family is derived. Building on our previ
work in product family design, we introduce a product family penalty function (PFPF
this paper to aid in the selection of common and scaling parameters for familie
products derived from scalable product platforms. The implementation of the PFPF
lizes the powerful physical programming paradigm to formulate the problem in term
physically meaningful parameters. To demonstrate the proposed approach, a fam
electric motors is developed and compared against previous results. We find tha
PFPF enables us to properly balance commonality and performance within the pro
family through the judicious selection of the common parameters that constitute the
uct platform and the scaling parameters used to instantiate the product family.
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1 Frame of Reference: Scalable Product Platforms

In an effort to increase customization for today’s highly co
petitive global markets, many companies are looking to prod
families to increase product variety and shorten product le
times while reducing costs. For example, Kodak’s prod
platform-based response to Fuji’s introduction of the QuickSn
single-use camera in 1987 enabled them to develop prod
faster and more cheaply through effective product family des
allowing them to regain market share and leapfrog Fuji@1#. Simi-
larly, Airbus is currently enjoying a competitive advantage ov
Boeing due to improved commonality, particularly in the cockp
The A330 cockpit is common to all other Airbus types while Bo
ing’s 767-400 cockpit is common only with the 757. This enab
the A330-200, a less efficient ‘‘shrink’’ of a larger aircraft, t
outsell Boeing’s 767-400ER, a more efficient ‘‘stretch’’ design
a smaller aircraft, last year@2#.

As evidenced by these and similar examples in the literat
the key to a successful product family is the common prod
platform around which the product family is derived. As Robe
son and Ulrich@3# point out, ‘‘By sharing components and pro
duction processes across a platform of products, companies
develop differentiated products efficiently, increase the flexibi
and responsiveness of their manufacturing processes, and
market share away from competitors that develop only one p
uct at a time.’’ An effective product platform also facilitates cu
tomization by enabling a variety of products to be quickly a
easily developed to satisfy the needs and requirements of dis
market niches@4#. However, product platform design require
carefully balancing the commonality of the product platform w
the distinctiveness of the individual products that constitute
family.

The prominent approach to product platform and product fa
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ily design is the development of modular product platforms t
can be easily modified through the addition, substitution, and
moval of one or more functional modules@5,6#. An alternative,
and equally important, approach to product family design is
development of common product platforms that can
‘‘stretched’’ or ‘‘scaled’’ in one more dimensions to satisfy a v
riety of market requirements@7#. This approach is frequently em
ployed in aircraft design, whereby an aircraft such as the 777-X
stretched to accommodate more passengers, increase its
range, or carry additional cargo@8#.

To facilitate the design of scalable product platforms, we ha
been developing methods to synthesize common product p
forms that can be scaled into an appropriate family of produ
This work began by employing robust design principles to fi
common product platforms that could be scaled by one or m
scale factors, e.g., the number of passengers on an aircraft@9,10#.
This approach was then formalized into the Product Platfo
Concept Exploration Method~PPCEM!, which employed a two-
stage approach to find a common platform and product fam
based on a known scale factor@7#. Recently, a single-stage ap
proach employing the powerful physical programming paradi
was developed to reduce computational expense and improve
performance of the product family@11#.

In both approaches, the scale factor around which the prod
family was ‘‘stretched’’ was assumed to be knowna priori; how-
ever, this is often not true in practice. In fact, there is a trade
between commonality and performance within a product fam
improving commonality within a product family reduces the d
tinctiveness of the products. Selecting the right combination
common and scaling parameters is critical to the success of
product platform and corresponding family of products. Con
quently, in this paperwe introduce a Product Family Penalt
Function (PFPF) to aid in the selection of common and scali
parameters for families of products derived from scalable prod
platforms.

The paper is organized as follows. Section 2 consists of a b
description of the PPCEM and a synopsis of the physical p
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gramming method. The PFPF is described and developed in
tion 3. An example problem is presented in Section 4. Sectio
provides concluding remarks.

2 Technological Basis

2.1 Product Platform Concept Exploration Method
„PPCM… †7‡. The PPCEM consists of five steps that prescr
how to formulate the product family problem and describe how
solve it; the actual implementation of each step is likely to va
from problem to problem. A quick overview of each step in t
process follows.

Step 1: Create the Market Segmentation Grid—This step in-
volves mapping the overall design requirements into an appro
ate market segmentation grid. The grid allows for identification
potential opportunities for leveraging the product platform.

Step 2: Classify the Factors and Ranges—This step involves
mapping the overall design requirements and market segment
grid into appropriate factors and identifying corresponding ran
for each scale factor. Scale factors should be identified in this
based on the platform leveraging strategies identified in Step

Step 3: Build and Validate Metamodels—This step includes
modeling computationally expensive computer analyses or si
lation codes using computationally inexpensive metamodels~e.g.,
response surfaces, kriging!.

Step 4: Aggregate Product Platform Specifications—This step
includes formulating an optimization problem based on inform
tion from the market segmentation grid, the factors and ran
and the overall design requirements. Physical programmin
used to formulate this problem.

Step 5: Develop the Product Platform Portfolio—Use the opti-
mization formulation from Step 4 to obtain the product platfo
portfolio that optimizes the design objectives.

By using the PPCEM, a strategy for developing a product p
form portfolio based on a single platform is readily availab
however, depending on the optimization formulation, practica
any combination of solutions is possible, including both good a
bad designs. Even if the optimization problem is formulated ca
fully and correctly, bad designs are possible, even likely. A k
reason these potentially bad designs are the poor choices in d
mining common and scaling parameters.

Steps 1 and 2 of the PPCEM utilize market segmentation g
and platform leveraging strategies, but they do not clearly add
the issue of how to choose common and scaling parameters w
the product family. Due to the nonlinear nature of multi-crite
optimization, the task of choosing the scaling parameters ca
rely on intuition. After the physical programming overview in th
next section, we introduce a product family penalty function ba
on the physical programming paradigm to aid in the determina
of common and scaling parameters within a product family.

2.2 Physical Programming Synopsis. This section provides
a synopsis of the physical programming~PP! method. For a com-
prehensive presentation, see Ref.@12#. Physical programming is
intended to be a simple and user-friendly optimization method
requires negligible knowledge of optimization. The application
physical programming employs a flexible and natural problem
mulation framework. In PP, the designer does not need to spe
optimization weights in the problem formulation phase. Rath
the designer specifies ranges of different degrees of desirab
for each design objective.

Physical programming also addresses the inherent multiob
tive nature of design problems, where multiple conflicting obje
tives govern the search for thebestsolution. Physical program
ming provides a flexible and more deterministic approach
obtaining a solution that satisfies the typically complex texture
a designer’s preferences. Physical programming is implemente
the software package entitled PhysPro@13#, which is Matlab
Journal of Mechanical Design
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based. Some of the important concepts used in the PP metho
described as follows. More information on the physical progra
ming method can be found in@14–21#.

Design Metrics. The problem formulation involves identify
ing the characteristics of the system, or design, which allow
designer to judge the effectiveness of the outcome. Those cha
teristics, or design metrics, are denoted bym i , which are compo-
nents of the vectorm5(m1 . . . ,mm). The elementsm i represent
behavior. Design metrics may be quantities that the desig
wishes to minimize; maximize; take on a certain value~goal!; fall
in a particular range; or be less than, greater than, or equa
particular values. The designer defines preference with respe
each design metric by providing certain numerical values. T
design metric may become part of anaggregate objective function
~AOF! that will be minimized, or may instead be treated as
equality or equality constraints that subjugate the aggregate ob
tive function.

Classification of Objectives, and Class Functions.Within the
physical programming procedure, the engineer expresses o
tives with respect to each design metric using four differe
Classes. EachClasscomprises two cases,Hard andSoft, referring
to the sharpness of the preference. AllSoft Class functions will
become constituent components of the aggregate objective f
tion. Figure 1 depicts the qualitative meaning of eachSoft Class.
The value of the design metric under consideration,m i , is on the
horizontal axis, and the function that will be minimized for th
objective,Pi(m i), hereby called theClass function, is on the ver-
tical axis.

The desired behavior of a generic design metric is described
one of eight sub-Classes: four Soft and four Hard. These Cla
are characterized by:

Soft:
Class 1S Smaller-Is-Better, i.e., minimization.

Fig. 1 Class-function ranges for i th generic design metric
JUNE 2002, Vol. 124 Õ 165
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Class 2S Larger-Is-Better, i.e., maximization.
Class 3S Value-Is-Better.
Class 4S Range-Is-Better.
Hard:
Class 1H Must be smaller, i.e.,m i<m i ,max
Class 2H Must be larger, i.e.,m i>m i ,min
Class 3H Must be equal, i.e.,m i5m i ,val
Class 4H Must be in range, i.e.,m i ,min<mi<mi,max.
For each of these Classes, we form aClass function~Fig. 1!.

The Class functions provide the means for a designer to exp
the spectrum of preferences for a given design metric. The C
functions provide information that is deliberately imprecise.
design, the utopian value of each Class functions is zero. Next
explain how quantitative specifications are associated with e
design metric.

Physical Programming Lexicon.Physical programming de
fines a lexicon that provides the means to express preference
flexible way. This lexicon comprises terms that characterize
degree of desirability of six ranges for each generic design me
for Classes 1S and 2S, ten ranges for Class 3S, and eleve
Class 4S. To illustrate, consider the case of Class 1S. The ra
are defined as follows, in order of decreasing preference:

Highly Desirable range (m i<n i1): An acceptable range ove
which the improvement that results from further reduction of
performance objective is desired, but is of minimal addition
value.

Desirable range (n i1<m i<n i2): An acceptable range that i
desirable.

Tolerable range (n i2<m i<n i3): An acceptable, tolerable range
Undesirable range (n i3<m i<n i4): A range that, while accept

able, is undesirable.
Highly Undesirable range (n i4<m i<n i5): A range that, while

still acceptable, is highly undesirable.
Unacceptable range (m i>n i5): The range of values that th

generic objective may not take.
The parametersn i1 throughn i5 are physically meaningful con

stants that are specified by the designer to quantify the prefer
associated with theith design metric. These parameters deline
the ranges for each design metric.

The Class functions map design metrics into non-dimensio
strictly positive real numbers. This mapping, in effect, transfor
design metrics with disparate units and physical meaning on
dimensionless scale through a unimodal function. Figure 1 ill
trates the mathematical nature of the Class functions and sh
how they allow a designer to express the ranges of differing go
ness, or preferences, for a given design metric. Consider the
curve of Fig. 1: the Class function for Class 1S design metrics.
ranges are defined. The parametersn i1 throughn i5 are specified
by the designer. When the value of the objectivem i is less thann i1
~highly-desirable range!, the value of the Class function is sma
which calls for little further minimization of the Class function
When, on the other hand, the value of the objectivem i is between
n i4 and n i5 ~highly-undesirable range!, the value of the Class
function is large; which calls for significant minimization of th
Class function. The behavior of the other Soft Class function
indicated in Fig. 1. Preferences regarding each design metric
treated independently, allowing the inherent multiobjective nat
of the problem to be preserved. This describes the basic proce
physical programming: the value of the Class function for ea
design metric governs the optimization path in objective spac

3 Product Family Penalty Function Development
We propose a Product Family Penalty Function~PFPF! that will

optimize the design of a product family. The PFPF will determ
which parameters should be common throughout the product f
ily and which should be the scaling variables. Here, we assu
the use of a single scaling variable within the product fam
however, the method can easily be extended to include searc
for multiple scaling parameters.
166 Õ Vol. 124, JUNE 2002
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During optimization, the PFPF will penalize design paramet
that are not common throughout the product family while optim
ing the desired objectives. This will allow for identification of th
design parameters that are best declared common and tho
scale the common product platform. If the design parameters
be set at a constant value for all products, with minimal effect
the design objectives, then they should be grouped into the c
mon product platform. If, however, a parameter cannot be m
constant across the products without adversely affecting the
sign objectives, then it should be considered a good candidate
becoming a scaling parameter.

The methodology that is being examined is to first optim
each product individually. This gives two important results:~1! an
optimum configuration for each product, for later comparison, a
~2! initial conditions for the next optimization problem, includin
the minimization of the variation of the design parameters. W
the starting points obtained~optimum individual configurations!,
the second optimization problem can be solved. The desired
sign objectives are optimized, while in addition, the variatio
between the same design parameters across all the products
family are also minimized. As an example, suppose there ak
products in a family. Thevariation for the ith design parameter is
defined as

vari5A(
j 51

k
~xi

j2 x̄i !
2

k

where

x̄i5(
j 51

k
xi

j

k

andxi
j denotes thei-th design parameter for thej-th product. The

variation will always be considered as a percentage of the m
for the variable being considered. That is, as the variables cha
during the optimization, the percentage variation is based on
correct mean of the variables. For this example, we minimize
variation of the design parameters. This results in a set of de
metrics, in addition to the original existing metrics.

In order to demonstrate that physical programming has the a
ity to handle the optimization of numerous objectives and g
reliable results, the first part of the PFPF, finding the varia
best suited for the scaling variable, will be performed using t
methods.

The first method will be more time consuming, where the var
tion of each design parameter will be minimized across the fam
thus the number of optimization runs will be equal to the num
of design parameters that are being considered for scaling pa
eters. Minimizing the variation of each design parameter, wh
letting all others be unconstrained, will in effect allow the d
signer to see how much performance is lost when forcing
variation to go to zero~becoming a variable that is the same,
common, across all products in the family!. When this is per-
formed for all design parameters, one can see how each param
responds to being forced common. The design variable that ca
the largest decrease in performance is deemed best suited to b
scaling variable.

The second method, which will be more efficient and also ta
into consideration all design objectives and constraints in the A
at the same time, will be based on a single formulation using
physical programming method. This method will optimize ea
performance design objective while also minimizing the var
tions of all the design parameters considered for scaling variab
It will later be explained how this can be accomplished in t
physical programming paradigm. Next a realistic problem is c
sidered where we optimize a family of 10 universal motors.
Transactions of the ASME
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4 Example Problem: Family of Universal Motors

4.1 Universal Motors. Universal electric motors are s
named for their capability to function on both direct current~DC!
and alternating current~AC!. Universal motors deliver more
torque for a given current than any single-phase motor@22#. The
high performance characteristics and flexibility of universal m
tors have led to a wide range of applications, especially in hou
hold use where they are found in, e.g., electric drills and sa
blenders, vacuum cleaners, and sewing machines@23#.

According to Lehnerd@24#, in the 1970s Black & Decker de
veloped a family of universal motors for its power tools in r
sponse to a new safety regulation: double insulation. Prior to t
they used different motors in each of their 122 basic tools w
hundreds of variations, from jigsaws and grinders to edgers
hedge trimmers. Through redesign and standardization of
product line, they were able toproduce all their power tools using
a line of motors that varied only in the stack lengthand the
amount of copper wrapped within the motor. As a result, all of
motors could be produced on a single machine with stack len
varying from 0.8 in to 1.75 in, and power output ranging from
to 650 watts. In addition to significant material and labor savin
new designs were developed using standardized compon
such as the redesigned motor, allowing products to be introdu
exploited and retired with minimal expense related to prod
development.

Our goal in this example is to demonstrate the use of the P
in conjunction with the PPCEM to design a family of univers
motors. Specifically, the objective is to:

Design a family of ten (10) universal electric motors th
satisfy a variety of torque and power requirements, built on one
more common platforms, and scaled around a set of sca
parameters.

The motor platform is the set of common physical dimensio
~design variables! that describe the universal motor while th
scale factor is varied to satisfy the range of torque and po
requirements.

A schematic of a universal motor is shown in Fig. 2. As sho
in the figure, a universal motor is composed of an armature a
field, which are also referred to as the rotor and stator, res
tively. The armature consists of a metal shaft and slats~armature
poles! around which wire is wrapped longitudinally as many as
thousand times. The field consists of a hollow metal cylind
within which the armature rotates. The field also has wire wrap
longitudinally around interior metal slats~field poles! as many as
hundreds of times. For a universal motor, the wire wrapp
around the armature and the field is wired in series, which me
that the same current is applied to both set of wires.

As current passes through the field windings, a large magn
field is generated. This field passes through the metal of the fi
across an air gap between the field and the armature, then thr

Fig. 2 Universal Motor Schematic „G.S. Electric †25‡…
Journal of Mechanical Design
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the armature windings, through the shaft of the armature, ac
another air gap, and back into the metal of the field, thus comp
ing a magnetic circuit. When the magnetic field passes though
armature windings, the magnetic field exerts a force on the cur
carrying wires. Because of the geometry of the windings, curr
on one side of the armature is always passing in the oppo
direction to the current on the other side of the armature. Thus
force exerted by the magnetic field on one side of the armatur
opposite to the force exerted on the other side of the armat
Thereby a net torque is exerted on the armature, causing th
mature to spin.

4.2 Example Problem. An example using ten universal mo
tors is now considered. There are two separate problems that
be solved. The first optimization problem involves the minimiz
tion of the mass~kg! and the maximization of the efficiency~%!
for each motor. There are eight design parameters for each m
The design parameters are as follows: the current drawn by
motor ~I!; the wires’ cross-sectional areas (Aw f , Awa) and the
numbers of turns (Ns , Nc) in both the field and the armature; an
the radius (ro), thickness~t!, and stack length~L! of the motor.
The constraints are as follows:

Torque,

T5 H0.05,0.10,0.125,0.15,0.20,
0.25,0.30,0.35,0.40,0.50J

Nm for each of the ten motors, respectively,

Power,

P5300 watts for all ten motors,

Feasible Geometry,

r o

t
>1,

and Magnetizing Intensity,

H<5000 Amp*turns/m.

Using the formulation derived in Simpson et al.@7#, from
Chapman@22# and Cogdell@26#, a physical programming optimi-
zation formulation was developed. The preferences for the form
lation can be seen in Table 1. The results of the individual o
mization runs for each motor can be seen in Table 2. The res
from this first optimization problem will be used in the formula
tion of the second optimization problem for starting points. T
individually optimized motors will also be used as a baseline
compare later results.

Multiple Formulation Method. The first method for determin-
ing which design parameter is best suited for the scaling varia
will now be demonstrated. This method is implemented by p
forming seven separate optimization runs since the eighth vari
current, I, is not considered a candidate for scaling since it
state variable. This will be done by forcing the variation of each
the seven candidates for scaling variable to be zero throughou
family while letting all other variables be free. The preferen
structure for the first optimization run can be seen in Table 3~all
the preferences from Table 1 are also used!. Note that the first
variation metric in Table 3 is a Class 3-H, or equality constra
while the other variation metrics are Class 2-H, or greater th
constraints. For this problem we took a representative sampl
the motors that were in the family. In other words, we used mot
1, 5, and 10 to note the trend in performance that was lost w
commonality was forced upon each design parameter.

In all seven optimization runs, a performance loss was noted
mass and efficiency in each of the runs. The mass losses w
each variation metric was minimized can be seen in Fig. 3 wh
the efficiency losses can be seen in Fig. 4. Now both of th
performance losses must be combined into one graph to allow
JUNE 2002, Vol. 124 Õ 167
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designer to use this information to make the best decisions reg
ing which variable should become the scaling variable. Comb
ing these two sets of results into one graph could be simply d
by adding the percentages lost or gained from mass and effici
additively. However, this would not allow the results to be kept
a truly physically meaningful environment. Meaning that if o
objective was more important or weighted more strongly than
other, this method would not capture and reflect this phys
meaning. For this case, a method based on the preferences
were previously entered to describe the designer’s physic
168 Õ Vol. 124, JUNE 2002
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meaningful choices will be used. This will allow for the physical
meaningful information from the preferences to be captured
combining the two objectives.

Since we looked at a representative sample of the three mo
~1, 5, and 10! in this case, we will refer to the preferences enter
in Table 1. A simple method was developed to map these
disparate objectives to the same graph. Keeping in mind that
scaling variable should be the design variable with the most p
formance lost, a mapping is created. Since there are two ob
tives, and the total of the aggregate objective function~AOF!
75
58
39
90
19
36
39
40
84
67

le
Table 1 Physical programming preferences for example problem

↔
HD

↔
D

↔
T

↔
U

↔
HU

ith Objective Class gi1 gi2 gi3 gi4 gi5

Mass - 1 1-S .20 .30 .40 .50 .60
Efficiency - 1 2-S .85 .80 .75 .70 .65
Mass - 2 1-S .25 .35 .45 .55 .65
Efficiency - 2 2-S .80 .75 .70 .65 .60
Mass - 3 1-S .30 .40 .50 .60 .70
Efficiency - 3 2-S .80 .75 .70 .65 .60
Mass - 4 1-S .30 .40 .50 .60 .70
Efficiency - 4 2-S .80 .75 .70 .65 .60
Mass - 5 1-S .30 .40 .50 .60 .70
Efficiency - 5 2-S .75 .70 .65 .60 .55
Mass - 6 1-S .35 .45 .55 .65 .75
Efficiency - 6 2-S .75 .70 .65 .60 .55
Mass - 7 1-S .45 .55 .65 .75 .85
Efficiency - 7 2-S .75 .70 .65 .60 .55
Mass - 8 1-S .45 .55 .65 .75 .85
Efficiency - 8 2-S .70 .65 .60 .55 .50
Mass - 9 1-S .55 .65 .75 .85 .95
Efficiency - 9 2-S .65 .60 .55 .50 .45
Mass - 10 1-S .60 .70 .80 .90 1.0
Efficiency - 10 2-S .60 .55 .50 .45 .40

Unacceptable Acceptable

Mag Int. ~1-10! 1-H - - - - 5000
Feasibility ~1-10! 2-H - - - - 1
Power~1-10! 3-H - - - - 300

HU: Highly Undesirable, U: Undesirable, T: Tolerable, D: Desirable, HD: Highly Desirable.

Table 2 Individually optimized motors using physical programming

Motor
I

~Amp!
L

~cm!
Nc

~turns!
Ns

~turns!
Ro

~cm!
t

~cm!
Aw f

~mm2!
Awa

~mm2!
Eff.
~%!

Mass
~kg!

1 2.97 1.90 691 70 1.70 .424 .241 .241 85.1 0.2
2 3.48 1.97 907 69 1.91 .492 .216 .216 75.1 0.3
3 3.48 2.11 942 74 2.04 .542 .239 .239 75.0 0.4
4 3.57 2.16 1000 75 2.13 .579 .246 .246 73.1 0.4
5 4.01 2.26 1059 69 2.20 .581 .228 .228 65.0 0.5
6 4.01 2.33 1146 74 2.35 .664 .256 .256 65.0 0.6
7 4.06 2.45 1184 76 2.47 .712 .274 .274 64.3 0.7
8 4.50 2.46 1217 70 2.50 .712 .263 .263 58.0 0.7
9 4.74 2.50 1248 68 2.55 .736 .268 .268 55.0 0.7
10 5.22 2.55 1299 64 2.66 .784 .279 .279 50.0 0.8

Table 3 Physical programming preferences for example problem

↔
HD

↔
D

↔
T

↔
U

↔
HU

gi1 gi2 gi3 gi4 gi5
ith Objective Class Unacceptable Acceptab

Variation of L 3-H 0
Variation of Nc 2-H 0
Variation of Ns 2-H 0
Variation of ro 2-H 0
Variation of t 2-H 0
Variation of Aw f 2-H 0
Variation of Awa 2-H 0

HU: Highly Undesirable, U: Undesirable, T: Tolerable, D: Desirable, HD: Highly Desirable.
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should equal one, each objective will have a maximum map
value of 0.5. Figure 5 shows two class functions showing how
mapping takes place, where R1 through R5 represent the
preference ranges. Table 4 summarizes the range values and
their mapped values.

Using this mapping, the results from mass and efficiency can
combined into one graph. This is now done in a physically me
ing way. If by forcing the variation of a design variable to be ze
the mass and efficiency objectives end up as two highly unde
able results then the mapping would cause the combination o
two to total one, or the highest possible total. Two highly desira
results would bring the total to near zero. The higher the total,
better suited the variable is to become the scaling variable sin
has a large negative impact on the performance of the family
is taken as common. Figure 6 allows the designer to see the c
bination of the two objectives after they have been mapped
clearer representation of this is seen in Fig. 7, where the low
value for each motor is subtracted to allow the difference betw
the design parameters to be seen.

It is seen from Fig. 7 that, when radius is forced to be comm
across all products, there is a large price in performance to

Fig. 3 Percent mas s - 3 Motors

Fig. 4 Percent efficienc y - 3 Motors
Journal of Mechanical Design
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paid. Figure 7 shows that the radius might be the best choice
the scaling variable as opposed to the length, which was cho
for the problem by Black & Decker.

This provides a good tool for the designer to use; however,
employing this type of method all of the other design parame
are free to vary. Thus, there may be some interactions betw
these parameters and design objectives that are not being r
sented clearly. That is why it is desired to optimize everything
once and see how the system responds when all design objec
are in the AOF. This is what will be explained and shown in t
next sub-section.

Table 4 Summary of range values

Preference Range Value

HU R5 0.500
U R4 0.375
T R3 0.250
D R2 0.125
HD R1 0.000

Fig. 5 Mapping the preferences

Fig. 6 Mass and efficiency combined
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Single Formulation Method. In formulating this problem as a
single optimization, physical programming will be used in
slightly different way than has been discussed in previous pap
The physical programming method will be the same, the n
twist that will be looked at will involve how the results are exam
ined, and will be explained later on in this section.

Physical programming~PP! has the unique feature of formin
its AOF based on physically meaningful preferences. For this
ample, the general formulation will be the same, the preferen
from Table 1 will be used, with all of the variation design metri
also being minimized as seen in Table 5. These preferences~Table
5! are percentages of variations, so all variables are treated ap
priately regardless of their magnitude. This formulation uses
preferences from Table 1 to minimize the mass of each mo
maximize the efficiency of each motor, and satisfy the given c
straints. This formulation therebyoptimizes the performanceof
the family of motors. The second set of preferences~in Table 5!
minimizes the variation between each design variable through
the family. Since both of these sets of preferences are ac
against each other~by increasing commonality it decreases pe
formance! the AOF can now use the optimization engine to det
mine which design parameter affects performance the most.
will cause PP to:not minimize the variation of the design param
eter that effects performance the most as much as PP will m
mize the other design parameters variation. Thus, with all of the
factors considered in the AOF, by performing a single optimi
tion run, it can easily be seen which factor would be best su
for the scaling variable.

To obtain a representative sample we will first examine t
motors at a time: motors 1 and 5, then motors 5 and 10. We

Fig. 7 Design tool for determining scaling parameter
170 Õ Vol. 124, JUNE 2002
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use three and five motors at a time as the representative sam
Upon performing the optimization for motors 1 and 5, and 5 a
10, we can see the values that were produced for the varia
design metrics in Table 6. Table 6 shows that the hardest varia
design metric to minimize, while taking into consideration perfo
mance, is the radius. This result agrees with the previous re
obtained using seven optimization runs. This leads us to conc
that radius would be the best suited for the scaling variable.
can be seen from Table 6, using 2, 3, or 5 motors yields the s
conclusion; the radius was shown to be the best choice fo
scaling variable. Radius had the highest percentage variatio
each trial; this means it was the hardest variable to make com
without sacrificing performance.

In this type of product family, since the product~universal mo-
tor! is being scaled to a more powerful version for each succe
ing product, choosing representative motors give a sampling
the results. Ideally, all ten motors would be used at once, and t
would be one optimization run needed, including all moto
However, the increasing number of conflicting objectives wou
cause the formulation to take an extremely long time to run, a
could possibly generate many local minima. The average num
of iterations when using two motors was approximately 4,2
three motors: 6,770; and five motors: 16,200. Note that the res
when using 5 motors were found by taking initial conditions clo
to the optimal configurations for each motor. When different st
ing points were used, other local minimums were captured. T
was not true for the case of using two motors. Any starting po
resulted in the same solution.

Next, we will examine the results for the optimization of th
universal motor product family. We will also examine the resu
from a previous study where physical programming was show
be effective in product family optimization@11#. In this previous
study, length was assumed to be the scaling variable, and
problem was solved using the Compromise DSP and the phys
programming method. Now, the current physical programming
lution that determined that the radius should be used as the sc
variable will be compared to these other solutions. This will allo
us to see how changing the radius to be the scaling param
affects the results. The final results using the PP method w
radius as the scaling variable can be seen in Table 7. A compar
of these results to those from other methods is seen in the
section.

Table 6 Design metrics variance „%…

Design
Metric

Motors
1,5

Motors
5,10

Motors
1,5,10

Motors
1,3,5,8,10

Var. of L 6.96 5.59 9.09 14.46
Var. of Nc 6.97 2.37 9.10 8.46
Var. of Ns 6.97 6.98 9.00 5.27
Var. of ro 23.75 21.26 9.64 17.69
Var. of t 6.96 6.98 9.00 10.90
Var. of Aw f 4.49 1.51 8.98 13.34
Var. of Awa 6.96 6.66 9.00 7.41
Table 5 Physical programming preferences for example problem

↔
HD

↔
D

↔
T

↔
U

↔
HU

ith Objective Class gi1 gi2 gi3 gi4 gi5

Variation of L 1-S 1.5 4.5 7 9 10.5
Variation of Nc 1-S 1.5 4.5 7 9 10.5
Variation of Ns 1-S 1.5 4.5 7 9 10.5
Variation of ro 1-S 1.5 4.5 7 9 10.5
Variation of t 1-S 1.5 4.5 7 9 10.5
Variation of Aw f 1-S 1.5 4.5 7 9 10.5
Variation of Awa 1-S 1.5 4.5 7 9 10.5

HU: Highly Undesirable, U: Undesirable, T: Tolerable, D: Desirable, HD: Highly Desirable.
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Comparison of Results. In making a comparison between th
two product family designs using different scaling parameters,
first present, in Table 8, a comparison between the individu
optimized product family and the product family design using
CDSP method employed in the original PPCEM formulation@7#.
Journal of Mechanical Design
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In Table 9, a comparison between the individually optimiz
product family and the physical programming formulation wi
length as the scaling variable can be seen. Finally in Table 10
present the results of the current study, showing a compar
between the individually optimized product family and the phy
12
22
72
18
95
53
93
19
32
34
Table 7 Results using PFPF for common platform development

Motor
I

~Amp!
Ro

~cm!
Nc

~turns!
Ns

~turns!
L

~cm!
t

~cm!
Aw f

~mm2!
Awa

~mm2!
Eff.
~%!

Mass
~kg!

1 3.18 1.46 1319 68 2.12 .922 .256 .256 82.0 0.3
2 3.40 1.83 1319 68 2.12 .922 .256 .256 76.6 0.4
3 3.52 1.98 1319 68 2.12 .922 .256 .256 74.1 0.4
4 3.64 2.11 1319 68 2.12 .922 .256 .256 71.6 0.5
5 3.90 2.33 1319 68 2.12 .922 .256 .256 67.0 0.5
6 4.16 2.48 1319 68 2.12 .922 .256 .256 62.7 0.6
7 4.43 2.59 1319 68 2.12 .922 .256 .256 58.9 0.6
8 4.71 2.65 1319 68 2.12 .922 .256 .256 55.4 0.7
9 4.99 2.68 1319 68 2.12 .922 .256 .256 52.2 0.7
10 5.58 2.69 1319 68 2.12 .922 .256 .256 46.8 0.7

Table 8 Individual PP vs. CDSP

Motor

Ind. PP CDSP~Length Scaling! Percentage Difference

n ~%! m ~kg! n ~%! m ~kg! n ~%! m ~kg!

1 85.1 0.275 76.8 0.380 29.7 38.2
2 75.1 0.358 72.2 0.520 23.8 45.4
3 75.0 0.439 70.0 0.576 26.7 31.3
4 73.1 0.490 67.9 0.625 27.2 27.4
5 65.0 0.519 63.9 0.703 21.8 35.5
6 65.0 0.636 60.2 0.759 27.4 19.3
7 64.3 0.739 56.8 0.797 211.7 7.9
8 58.0 0.740 53.6 0.820 27.6 10.9
9 55.0 0.784 50.5 0.830 28.2 5.9
10 50.0 0.867 44.8 0.820 210.4 25.4

Average Change 27.4 21.6

Table 9 Individual PP vs. PP length scaling

Motor

Ind. PP PP~Length Scaling! Percentage Difference

n ~%! m ~kg! n ~%! m ~kg! n ~%! m ~kg!

1 85.1 0.275 76.1 0.384 210.5 39.7
2 75.1 0.358 71.9 0.506 24.2 41.4
3 75.0 0.439 70.0 0.556 26.7 26.9
4 73.1 0.490 68.1 0.601 26.9 22.5
5 65.0 0.519 64.5 0.674 20.8 29.8
6 65.0 0.636 61.2 0.729 26.0 14.5
7 64.3 0.739 58.0 0.768 29.8 3.9
8 58.0 0.740 55.0 0.768 25.3 3.8
9 55.0 0.784 52.1 0.809 25.3 3.2
10 50.0 0.867 46.7 0.811 26.7 26.5

Average Change 26.2 17.9

Table 10 Individual PP vs. PP radius scaling

Motor

Ind. PP PP~Radius Scaling! Percentage Difference

n ~%! m ~kg! n ~%! m ~kg! n ~%! m ~kg!

1 85.1 0.275 82.0 0.312 23.6 13.4
2 75.1 0.358 76.6 0.422 2.1 18.0
3 75.0 0.439 74.1 0.472 21.3 7.6
4 73.1 0.490 71.6 0.518 22.1 5.6
5 65.0 0.519 67.0 0.595 3.0 14.6
6 65.0 0.636 62.7 0.653 23.5 2.6
7 64.3 0.739 58.9 0.693 28.4 26.2
8 58.0 0.740 55.4 0.719 24.5 22.8
9 55.0 0.784 52.2 0.732 25.0 26.6
10 50.0 0.867 46.8 0.734 26.5 215.3

Average Change 23.0 3.1
JUNE 2002, Vol. 124 Õ 171
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cal programming formulation with radius as the scaling variab
Figure 8 shows graphically how the three solutions compare
each other.

The lower-leftmost corner in Fig. 8 is the most desirable lo
tion, as mass is decreasing and efficiency is increasing. Kee
mind that this is only one of the possible Pareto solutions to
problem based on the given preferences. The two solutions w
length was used as the scaling parameter can be seen on the
side of the graph. The CDSP Length Scaling solution gained
proximately 21.6% in mass and lost approximately 7.4% in e
ciency. The PP-Length Scaling solution gained approxima
17.9% in mass and lost approximately 6.2% in efficiency. T
was slightly better than the CDSP method; however, by determ
ing which parameter was best suited for the scaling param
through the newly introduced PFPF optimization method, it c
now be clearly seen that using radius as the scaling param
provides significant improvement over using length. The P
Radius Scaling solution yielded a gain of only 3.1% in mass a
only a 3.0% decrease in efficiency. This results in a signific
improvement when using radius as the scaling variable rather
the stack length.

5 Concluding Remarks
The main objective in this paper was to introduce a method

aid in the selection of common and scaling parameters for fam
of products derived from scalable product platforms to prope
balance commonality and performance within a product family
this study we found radius to be the best suited for the sca
variable as opposed to length, which has been used in prev
studies. The PFPF is an important addition to the PPCEM
particular, and product family design, in general. The art of u
covering which parameters should be common and which sh
be used for scaling is an important and difficult task. In prod
family design it is crucial to know which design variable shou
be the scaling parameter. Even if an efficient optimization met
is used to find the optimally designed product family, if it is n
based on using the best choice for a scaling parameter, the
truly optimal product family design cannot be achieved. Phys
programming was able to effectively and efficiently find t
proper scaling variable using a single optimization problem f
mulation. Thus, all design objectives could be considered in
AOF, allowing the optimization engine and the PP method to
termine the best solution.

Fig. 8 Comparison of solutions
172 Õ Vol. 124, JUNE 2002
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