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Nowadays, the existing blind source separation (BSS) algorithms in rotatingmachinery fault diagnosis can hardlymeet the demand
of fast response, high stability, and low complexity simultaneously.Therefore, this paper proposes a spectrum correction based BSS
algorithm.Through the incorporation of FFT, spectrum correction, a screen procedure (consisting of frequencymerging, candidate
pattern selection, and single-source-component recognition), modified 𝑘-means based source number estimation, and mixing
matrix estimation, the proposed BSS algorithm can accurately achieve harmonics sensing on field rotating machinery faults in case
of short-sampled observations. Both numerical simulation and practical experiment verify the proposed BSS algorithm’s superiority
in the recovery quality, stability to insufficient samples, and efficiency over the existing ICA-based methods. Besides rotating
machinery fault diagnosis, the proposed BSS algorithm also possesses a vast potential in other harmonics-related application fields.

1. Introduction

As one of themost common classes ofmechanical equipment,
rotating machinery plays a significant role in industrial
applications. Meanwhile, since it generally operates under
harsh working conditions, it is likely to suffer from failures,
which may cause the machinery to break down or decrease
machinery service performance such as manufacturing qual-
ity and operation safety. Nowadays, rotating machineries
in modern industry tend to be larger, more precise, and
more automatic, which further increases the difficulty of the
potential faults detection.

Blind source separation (BSS), which can recover under-
lying sources from observations without the knowledge of
the mixing system, is widely used in machinery fault diag-
nosis [1–5], speech recognition [6], wireless communication
[7], and so on. Nowadays, BSS techniques applied in the
machinery fault diagnosis mainly focus on two aspects: (1)
removal of interferences and disturbances and (2) parameter
modeling and feature detection for mechanical faults.

On the one hand, as is known, rotating components (such
as gears and bears) are the common and key components of
modern machinery [8]. Affected by a lot of field factors (such

as multiple motors that are fixed to the same structure or
several fault events that happen simultaneously), the signal
recorded from a sensor cannot solely reflect the operating
state of a specific component. Furthermore, in industrial
applications, these recorded signals are inevitably disrupted
by the environment (ambient noise, other mechanical sys-
tems, etc.). Hence, BSS can act as an effective preprocessing
procedure [9] to remove these interferences from other com-
ponents or the disturbances arising from the environment.
Wu et al. [10] proposed a BSS algorithm to remove the inter-
ferences of acoustic emission signals from amultiple cylinder
diesel engine. In [11], an improvedmorphological component
analysis (MCA) is proposed to diagnose compound faults
of gearboxes. Cui et al. [4] put forward a null-space pursuit
(NSP) BSS algorithm to diagnose compound faults of roller
bearings.

On the other hand, due to the effect of several rotor oper-
ations at some speeds, the signal recorded from a vibration
sensor is mainly composed of multiple periodic harmonic
components. For different categories of faults, the spectra of
these recorded vibration signals exhibit distinct harmonics-
related features. For example, a vibration signal caused by
rotor misalignment is mainly characterized with the 2nd

Hindawi Publishing Corporation
Shock and Vibration
Volume 2016, Article ID 9564938, 10 pages
http://dx.doi.org/10.1155/2016/9564938



2 Shock and Vibration

harmonic component [12]. The loosening of the bearing
in the bearing block often generates components higher
than 10th harmonic (even up to 20th harmonics). The fault
of oil whirl [13] always gives rise to some subharmonics
approximating half harmonic, and so forth. Hence, BSS is
expected to accurately extract these harmonic features of
individual sources. What is more, the model-based fault
identification assumes that there exists a certain model to
characterize a mechanical structure, in which the variation
of model parameters can reflect the abnormal behaviors of
the machinery system [14]. As a result, BSS can be utilized to
identify the model parameters.

Hence, a lot of studies of BSS problem have been made
in the feature extracting and model identification fields. For
example, sparse component analysis based [15] and inde-
pendent component analysis (ICA) based [14] BSS methods
were employed to estimate the vibration signals’ modal
parameters. Following this, Žvokelj et al. [1] proposed the
ensemble empirical mode decomposition based multiscale
ICA (EEMD-MSICA)method and applied it into the bearing
fault detection. Li et al. [16] proposed the supervised order
tracking bounded component analysis (SOTBCA) based BSS
algorithm for gear fault detection, which is suitable for
dealing with the situation that the vibration signals do not
satisfy the independent condition.

To reduce the loss arising from fault accidents, it is
urgently demanded in field operations that rotating machin-
ery fault analysis should be as fast as possible. One possible
solution is to implement the BSS in a short period of observa-
tions.

However, these existing BSS methods can hardly work
well in case of short-sampled observations. For example, the
mainstream BSS method in rotating machinery fault diagno-
sis is the ICA [17]. A lot of ICA-based methods [18, 19], or
improved ICA like second-order ICA [20], nonlinear adap-
tive ICA [21], and kernel ICA [22], are applied into the failure
detection and analysis. As will be elaborated in this paper,
ICA is likely to fall into nondeterministic solutions when
provided only short-sampled observations. This arises from
the fact that ICA is based on optimizing a kurtosis-related
objective function. As a fourth-order cumulant statistic, the
calculation of kurtosis needs to consume a large amount of
samples. In fact, other statistics-based BSS methods, such
as fourth-order-only blind identification (FOOBI) method
[23] which is based on constructing high-order tensors, also
exhibit poor performance in short-sampled situations.

Hence, in this paper, we propose a novel blind source
separation method which works well in both long observa-
tions and short observations. Due to the incorporation of
spectrum correction and a phase coherence criterion, this
BSS method can accurately extract harmonic features (fre-
quency, amplitude, and phase) of individual sources. In case
of short-sampled observations, which reduce the frequency
resolution of fast Fourier transform (FFT) spectrum and
thus deteriorate the picket-fence effect, the proposed BSS can
also estimate harmonic parameters by means of spectrum
correction. Moreover, a frequency screening procedure con-
sisting of frequencymerging, candidate pattern selection, and
single-source-component recognition is able to exclude the

interference between individual harmonics-related compo-
nents.Therefore, unlike ICAor FOOBImethod, the proposed
BSS is competent in dealing with case of insufficient samples.
In addition, the proposed BSS algorithm does not require
the a priori source number. Both numerical simulation and
practical experiment verify the proposed BSS algorithm’s
superiority in efficiency and accuracy over the existing ICA-
based methods.

2. Blind Source Separation Model

2.1. Temporal Model. Consider 𝑁 underlying sources and
𝑀 recording sensors. Suppose that the structure under
investigation has a high rigidity, and the transmission delays
in the mechanical structure are negligible compared to the
sampling period [24]. In this case, the mixing system can be
treated as an instantaneous one, which can be modeled as

x (𝑡) = As (𝑡) + n (𝑡) . (1)

In (1), s(𝑡) = [𝑠
1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝑁
(𝑡)]
𝑇 is the source vector,

x(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑀
(𝑡)]
𝑇 is the observation vector,

n(𝑡) = [𝑛
1
(𝑡), 𝑛
2
(𝑡), . . . , 𝑛

𝑀
(𝑡)]
𝑇 is the additive noise vector,

and A is the mixing matrix. The task of short-sampled BSS
is to recover the sources 𝑠

1
(𝑡) ∼ 𝑠

𝑁
(𝑡) from the observations

𝑥
1
(𝑡) ∼ 𝑥

𝑀
(𝑡) without the knowledge of mixing matrix A in

the small sample number situation.
According to the relative relationship between 𝑁 and

𝑀, the BSS problem can be divided into 2 conditions, the
overdetermined or determined BSS (𝑁 ≤ 𝑀) and the
underdetermined BSS (𝑁 > 𝑀). This paper focuses on the
overdetermined condition.

Since the vibration of somemechanical component stems
from the rotation of the rotor, 𝑛th source can be formulated
as a combination of individual harmonics: that is,

𝑠
𝑛
(𝑡) =

𝑃
𝑛

∑

𝑝=1

𝑐
𝑛,𝑝

cos (2𝜋𝑓
𝑛,𝑝
𝑡 + 𝜃
𝑛,𝑝
) , (2)

where 𝑃
𝑛
is the number of components and 𝑐

𝑛,𝑝
, 𝑓
𝑛,𝑝
, and 𝜃

𝑛,𝑝

are the amplitude, frequency, and phase parameters of 𝑝th
component of 𝑛th source, respectively.

Based on this model, this paper aims to develop a BSS
algorithm, which consumes a small amount of samples to
estimate the mixing matrix A and recover all sources 𝑠

1
(𝑡) ∼

𝑠
𝑁
(𝑡). Besides, it should be emphasized that, in industrial

applications, the source number 𝑁 is usually not known in
advance. Therefore, this paper also addresses the problem of
source number estimation.

2.2. Harmonics Based BSS Model. Combining (1) and (2),
we can find that if an observation can be further linked to
3 harmonic-related parameters 𝑐

𝑛,𝑝
, 𝑓
𝑛,𝑝
, and 𝜃

𝑛,𝑝
, then the

matrix A is expected to be estimated.
Since a real signal contains two conjugate side spectra, we

rewrite 𝑠
𝑛
(𝑡) in (2) as

𝑠
𝑛
(𝑡) = �̃�

𝑛
(𝑡) + �̃�

∗

𝑛
(𝑡) , (3)
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where

�̃�
𝑛
(𝑡) =

1

2

𝑃
𝑛

∑

𝑝=1

𝑐
𝑛,𝑝

exp [𝑗 (2𝜋𝑓
𝑛,𝑝
𝑡 + 𝜃
𝑛,𝑝
)] . (4)

Further, if the harmonic frequency 𝑓
𝑛,𝑝

is far from direct
component (DC), only a single side spectrum is enough to
achieve BSS. In combination with (1), we have a frequency-
domain model:

X̃ (𝑓) = AS̃ (𝑓) . (5)

As is known, the ideal Fourier transform of a complex
exponential signal is a dirac function. Hence, the spectrum
of 𝑛th source �̃�

𝑛
(𝑡) in (4) is

�̃�
𝑛
(𝑓) = 𝜋

𝑃
𝑛

∑

𝑝=1

𝑐
𝑛,𝑝
𝛿 (𝑓 − 𝑓

𝑛,𝑝
) 𝑒
𝑗𝜃
𝑛,𝑝 . (6)

Denote the mixing matrix A as [a
1
, . . . , a

𝑁
]. Substituting (6)

into (5), we have

[
[
[
[
[
[
[
[
[
[
[

[

�̃�
1
(𝑓)

.

.

.

�̃�
𝑚
(𝑓)

.

.

.

�̃�
𝑀
(𝑓)

]
]
]
]
]
]
]
]
]
]
]

]

= 𝜋 [a
1
, . . . , a

𝑁
]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃
1

∑

𝑝=1

𝑐
1,𝑝
𝛿 (𝑓 − 𝑓

1,𝑝
) 𝑒
𝑗𝜃
1,𝑝

.

.

.

𝑃
𝑛

∑

𝑝=1

𝑐
𝑛,𝑝
𝛿 (𝑓 − 𝑓

𝑛,𝑝
) 𝑒
𝑗𝜃
𝑛,𝑝

.

.

.

𝑃
𝑁

∑

𝑝=1

𝑐
𝑁,𝑝
𝛿 (𝑓 − 𝑓

𝑁,𝑝
) 𝑒
𝑗𝜃
𝑁,𝑝

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(7)

To determine each column vector of the mixing matrix
A, some particular frequency 𝑓

𝑝
∗ which is only included in

a single source and excluded by other sources, is considered;
that is, 𝑓

𝑝
∗ should satisfy

𝑓
𝑝
∗ = 𝑓
𝑛,𝑝
, 𝑝 ∈ {1, . . . , 𝑃

𝑛
}

𝑓
𝑝
∗ ∉ {𝑓

𝑛,𝑝
, 𝑝 = 1, . . . , 𝑃

𝑛
} , 𝑛 = 1, . . . , 𝑁, 𝑛 ̸= 𝑛.

(8)

Then, substituting (8) into (7) and combining with the
sampling property of the dirac function “𝛿(⋅)” in (7), we have

[
[
[
[
[
[
[

[

�̃�
1
(𝑓
𝑝
∗)

�̃�
2
(𝑓
𝑝
∗)

.

.

.

�̃�
𝑀
(𝑓
𝑝
∗)

]
]
]
]
]
]
]

]

= 𝜋a
𝑛
𝑐
𝑛,𝑝
𝑒
𝑗𝜃
𝑛,𝑝 . (9)

Then, it can be inferred from (9) that the frequency-
domain vector X̃(𝑓

𝑝
∗) corresponding to the component 𝑓

𝑝
∗

is parallel to a
𝑛
. Hence, as long as sufficient single-source

components 𝑓
𝑝
∗ are collected, every column of the mixing

matrix A can be sequentially determined.

2.3. Difficulty of Short-Sampled BSS. Note that (7) is an ideal
Fourier model of the BSS system, in which the frequency 𝑓 is
a continuous variable.However, as is known, the ideal Fourier
transform is unrealizable since it consumes infinite numbers
of samples.

In practice, the ideal Fourier transform is replaced by a
𝐿-point discrete Fourier transform (DFT) (“𝐿” refers to the
number of consumed samples), in which 𝑓 in (7) only allows
being one of 𝐿 frequencies 𝑘Δ𝑓, 𝑘 = 0, 1, . . . , 𝐿 − 1 (Δ𝑓 =

𝑓
𝑠
/𝐿 is the frequency resolution and 𝑓

𝑠
refers to the system

sampling rate). Thus, the DFT spectrum of each observation
will suffer from severe picket-fence effect.

In addition, it is very likely that the frequency 𝑓
𝑛,𝑝

of 𝑛th
source is not exactly the integer times of the DFT frequency
resolution Δ𝑓 = 𝑓

𝑠
/𝐿, resulting in the fact that the dirac

function 𝛿(𝑓 − 𝑓
𝑛,𝑝
) in (7) cannot achieve an ideal sampling

result.This deviation is also reflected in𝑀 observations’ DFT
spectra �̃�

𝑚
(𝑘Δ𝑓) (𝑚 = 1, . . . ,𝑀), which exhibit the effect of

the spectral leakage.
Without loss of generality, denote the frequency 𝑓

𝑛,𝑝
of

𝑛th source as the summation of integer times and fractional
time of Δ𝑓: that is,

𝑓
𝑛,𝑝
= (𝑘
𝑛,𝑝
+ 𝛿
𝑛,𝑝
) Δ𝑓,

𝑘
𝑛,𝑝
∈ 𝑍
+
, 𝛿
𝑛,𝑝
∈ (−0.5, 0.5] .

(10)

When the sample length 𝐿 becomes smaller, the DFT
frequency unit Δ𝑓 = 𝑓

𝑠
/𝐿 gets larger and thus the DFT

spectrum gets coarser. Limited by the picket-fence effect, in
fact, the fractional item “𝛿

𝑛,𝑝
Δ𝑓” in (10) cannot be directly

obtained from DFT bins and thus the frequency 𝑓
𝑛,𝑝

has to
be treated as the integer times of Δ𝑓 (i.e., �̂�

𝑛,𝑝
= 𝑘
𝑛,𝑝
Δ𝑓),

which corresponds to several peak DFT spectral bins of
the observations. As a result, large deviation of frequency
estimation inevitably occurs.

Furthermore, as (7) shows, since an observation contains
multiple components, severe interinterferences surely occur
among distinct components when these frequency estimates
�̂�
𝑛,𝑝

are inaccurate. As a result, the recovered spectrum of
�̂�
𝑛
(𝑓) is bound to be greatly different with the ideal spectrum,

thereby increasing the BSS difficulty in the case of short-
sampled observations.

To overcome this difficulty, we introduce spectrum cor-
rection to solve this problem.

3. Spectrum Correction Based BSS

3.1. Spectrum Correction. In this paper, we apply the ratio-
based spectrum correction method addressed in [25] to 𝑚th
(𝑚 = 1, . . . ,𝑀) observation to overcome the short-sampled
difficulty. The spectrum correction consists of the following
steps:



4 Shock and Vibration

(1) Implement Hanning-windowed DFT on the 𝐿-
length observation and acquire its DFT spectrum
𝑋
𝑚
(𝑘) (𝑘 = 0, 1, . . . , 𝐿 − 1).

(2) Collect all the peak indices of 𝑋
𝑚
(𝑘). For the peak

index 𝑘
𝑚,𝑝
𝑚

, 𝑝
𝑚
= 1, . . . , 𝑃

𝑚
(𝑃
𝑚
is the peak number

of𝑋
𝑚
(𝑘)), calculate the amplitude ratio V

𝑚,𝑝
𝑚

between
𝑋
𝑚
(𝑘
𝑚,𝑝
𝑚

) and its subpeak neighbor: that is,

V
𝑚,𝑝
𝑚

=


𝑋
𝑚
(𝑘
𝑚,𝑝
𝑚

)


max {𝑋𝑚 (𝑘𝑚,𝑝𝑚 − 1)

,

𝑋
𝑚
(𝑘
𝑚,𝑝
𝑚

+ 1)

}
. (11)

Further, a variable 𝑢
𝑚,𝑝
𝑚

can be obtained as

𝑢
𝑚,𝑝
𝑚

=
(2 − V

𝑚,𝑝
𝑚

)

(1 + V
𝑚,𝑝
𝑚

)
. (12)

(3) Adjust 𝑢
𝑚,𝑝
𝑚

to estimate the fractional number as

�̂�
𝑚,𝑝
𝑚

=
{

{

{

𝑢
𝑚,𝑝
𝑚

, if 𝑋𝑚 (𝑘𝑚,𝑝𝑚 + 1)

>

𝑋
𝑚
(𝑘
𝑚,𝑝
𝑚

− 1)


−𝑢
𝑚,𝑝
𝑚

, else.

(13)

Then, the accurate frequency estimate is

�̂�
𝑚,𝑝
𝑚

=
(𝑘
𝑚,𝑝
𝑚

+ �̂�
𝑚,𝑝
𝑚

) 𝑓
𝑠

𝐿
. (14)

(4) Acquire the corrected amplitude estimate �̂�
𝑚,𝑝
𝑚

and
phase estimate �̂�

𝑚,𝑝
𝑚

as

�̂�
𝑚,𝑝
𝑚

= 2𝜋

�̂�
𝑚,𝑝
𝑚

(1 − �̂�
2

𝑚,𝑝
𝑚

)

𝑋
𝑚
(𝑘
𝑚,𝑝
𝑚

)


sin (𝜋�̂�
𝑚,𝑝
𝑚

)
,

�̂�
𝑚,𝑝
𝑚

= angle [𝑋
𝑚
(𝑘
𝑚,𝑝
𝑚

)] −
𝜋�̂�
𝑚,𝑝
𝑚

(𝐿 − 1)

𝐿
,

(15)

where “angle(⋅)” is the acquiring angle operator.

After spectrum correction, 3 harmonic parameter sets
{�̂�
𝑚,𝑝
𝑚

}, {�̂�
𝑚,𝑝
𝑚

}, and {�̂�
𝑚,𝑝
𝑚

} of 𝑚th observation (𝑚 =

1, . . . ,𝑀) can be acquired.
Further, as (8) and (9) demonstrate, for an estimated

frequency �̂�
𝑚,𝑝
𝑚

, only when it is included by a single source
can it be utilized to estimate a column of the mixing matrix
A. Hence, it is necessary to screen those single-source related
frequencies from {�̂�

𝑚,𝑝
𝑚

},𝑚 = 1, . . . ,𝑀.

3.2. Screening Single-Source Components. The proposed
scheme of screening single-source components consists of 3
stages: frequency merging, candidate pattern selection, and
single-source-component recognition.

3.2.1. Frequency Merging. Its noteworthy that, affected by
noise and interferences, even for the same single-source
component, its frequency estimates of all the observations
obtained by spectrum correction still exhibit tiny differences.
Hence, a frequency merging procedure should be imple-
mented.

If we put all these frequency estimates together and sort
them in an ascending order, the aforementioned frequency
estimates of tiny differences tend to converge into a cluster.
Assuming altogether that 𝑃 clusters are formed, without loss
of generality, denote 𝑝th (𝑝 = 1, . . . , 𝑃) cluster as {�̂�

𝑝,𝑞
, 𝑞 =

1, . . . , Γ
𝑝
} (Γ
𝑝
refers to 𝑝th cluster’s size).Then, Γ

𝑝
elements of

this cluster can be merged by their average:

𝑓
𝑝
=
1

Γ
𝑝

Γ
𝑝

∑

𝑞=1

�̂�
𝑝,𝑞
. (16)

3.2.2. Candidate Pattern Selection. Theoretically, in terms of
the BSS model (1), as long as the mixing matrix A does
not contain zero elements, any source component should
be included in all the observations. In other words, those
corrected frequencies not contained by all the observations
can be treated as fake components and should be removed.

In practice, given a small threshold 𝜀 > 0, for a merged
frequency𝑓

𝑝
, if for each observation index𝑚 (𝑚 = 1, . . . ,𝑀)

there exists only one peak subscript 𝑝
𝑚
satisfying


�̂�
𝑚,𝑝
𝑚

− 𝑓
𝑝


< 𝜀, (17)

𝑓
𝑝
can be regarded as an effective component. Accordingly,

in combination with (9), a pattern vector z
𝑝
relevant to this

component’s 𝑀 corrected parameter pairs (amplitude and
phase) can be selected as a candidate vector to estimate a
column of the matrix A; that is,

z
𝑝
=

[
[
[
[
[
[
[
[
[
[
[
[

[

�̂�
1,𝑝
1

𝑒
𝑗�̂�
1,𝑝
1

.

.

.

�̂�
𝑚,𝑝
𝑚

𝑒
𝑗�̂�
𝑚,𝑝
𝑚

.

.

.

�̂�
𝑀,𝑝
𝑀

𝑒
𝑗�̂�
𝑀,𝑝
𝑀

]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝑝 = 1, . . . , 𝑃. (18)

After candidate pattern selection, the number of merged
frequencies is reduced from 𝑃 to 𝑃.

3.2.3. Single-Source-Component Criterion. In rotational
machinery fault analysis, it is likely that multiple sources
contain some common harmonic components (i.e., the
overlapping frequencies). Obviously, these frequencies are
not in accordance with (8) and (9) and should not be adopted
to estimate the mixing matrix A. Hence, these overlapping
components are invalid and should be removed from the
candidate frequencies {𝑓

𝑝
}.

Assume that among 𝑃 candidate frequencies {𝑓
𝑝
}, only

𝑃
∗ frequencies {𝑓

𝑝
∗ , 𝑝
∗

= 1, . . . , 𝑃
∗
} are single-source
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components. Since 𝑓
𝑝
∗ only belongs to a single source,

in combination with (9), its corresponding single-source-
component vector z

𝑝
∗ (i.e., the item X̃(𝑓

𝑝
∗) in (9)) should be

parallel to a column of the mixing matrix A.
Furthermore, since the matrix A is real-valued, from (8)

and (9), one can find that 𝑀 phases of all the entries of
X̃(𝑓
𝑝
∗) originate from the same phase 𝜃

𝑛,𝑝
of a single source’s

component 𝑓
𝑝
∗ (i.e., 𝑓

𝑛,𝑝
in (8)) and thus should be equal to

each other.
Thus, a single-source-component vector z

𝑝
∗ should

exhibit two special properties:

(1) Its amplitude vector is parallel to a column of the
mixing matrix A.

(2) Its phase vector possesses a property of coherence, in
which any two phase entries of z

𝑝
∗ should approxi-

mately point to the same direction. In other words,
the following inequality of single-source-component
criterion should be satisfied:

1

𝐶2
𝑀

∑

𝑟,𝑙


�̂�
𝑟,𝑝
∗ − �̂�
𝑙,𝑝
∗


< 𝜉, (19)

where 1 ≤ 𝑟, 𝑙 ≤ 𝑀, 𝑟 ̸= 𝑙, and 𝜉 is a small positive
value.

3.3. DB-Index Based Source Number Estimation and 𝑘-Means
Clustering. If the source number “𝑁” is known, one can
directly employ a clustering algorithm (such as 𝑘-means
clustering) on single-source-component vectors {z

𝑝
∗ , 𝑝
∗
=

1, . . . , 𝑃
∗
} to estimate all the𝑁 columns of the mixing matrix

A. However, in industrial applications, the source number
“𝑁” is usually unknown in advance. Therefore, this section
combines DB-index [26] with 𝑘-means clustering to estimate
𝑁 and A.

Clearly, if the number of clusters is specified as 𝐼, then,
the conventional 𝑘-means clustering algorithm can classify
{z
𝑝
∗ , 𝑝
∗
= 1, . . . , 𝑃

∗
} into 𝐼 clusters 𝐶

𝑖
(𝑖 = 1, . . . , 𝐼), whose

entries can be denoted as
𝐶
𝑖
= {ż
𝑖,𝑟
𝑖

, 𝑟
𝑖
= 1, 2, . . . , 𝑅

𝑖
} . (20)

The relationship between these clusters and the entire set of
single-source-component vectors can be expressed as

𝐼

⋃

𝑖=1

𝐶
𝑖
= {z
𝑝
∗ , 𝑝
∗
= 1, . . . , 𝑃

∗
} ,

𝐼

∑

𝑖=1

𝑅
𝑖
= 𝑃
∗
.

(21)

Davies Bouldin index (DB-index) is used to evaluate
the appropriateness of data partitions [26] of a clustering
algorithm.The definition of the DB-index is formulated as

𝐷
𝐼
=
1

𝐼

𝐼

∑

𝑖=1

max
𝑗

(
𝐺
𝑖
+ 𝐺
𝑗

𝑀
𝑖,𝑗

) , (22)

where 𝐺
𝑖
, 𝐺
𝑗
represents the dispersion measurement of two

distinct groups 𝐶
𝑖
, 𝐶
𝑗
(assuming their cluster centers are

c
𝑖
, c
𝑗
) and 𝑀

𝑖,𝑗
refers to the similarity between these two

groups. They are calculated with the following two formulas:

𝐺
𝑖
=
1

𝑅
𝑖

𝑅
𝑖

∑

𝑟
𝑖
=1


ż
𝑖,𝑟
𝑖

− c
𝑖


,

𝑀
𝑖,𝑗
=

c
𝑖
− c
𝑗


.

(23)

Apparently, on the one hand, the larger𝑀
𝑖,𝑗
is, the less the

similarity between 𝑖th and 𝑗th clusters is, that is, the better the
partition discrimination is.On the other hand, the smaller the
dispersion degree 𝐺

𝑖
is, the higher the concentration degree

of the group 𝐶
𝑖
is. As a result, the smaller the DB-index

is, the more appropriate the data partition is. Therefore, the
source number estimation can be realized by searching out
the minimum DB-index of the 𝑘-means algorithm: that is,

𝑁 = argmin
𝐼

𝐷
𝐼
. (24)

Once the source number𝑁 is determined, themagnitude
parts of cluster centers c

1
, . . . , c

𝑁
of groups 𝐶

1
, . . . , 𝐶

𝑁
gen-

erated by 𝑘-means algorithm can be directly treated as the
columns of the mixing matrix estimate Â.

3.4. Summary of the Proposed BSS Recovery Algorithm. Hav-
ing obtained the overdetermined mixing matrix estimate Â,
the sources can be recovered by

ŝ (𝑡) = Â−1x (𝑡) , (25)

where Â−1 refers to the pseudoinverse of Â.
To summarize, the proposed BSS algorithm is listed as

follows.

Step 1. Implement the procedure of spectrum correction
addressed in Section 3.1 on 𝑥

𝑚
(𝑡), 𝑚 = 1, . . . ,𝑀, to acquire

the corrected frequency set {�̂�
𝑚,𝑝
𝑚

}, amplitude set {�̂�
𝑚,𝑝
𝑚

},
and phase set {�̂�

𝑚,𝑝
𝑚

}.

Step 2. Merge the corrected frequencies {�̂�
𝑚,𝑝
𝑚

} using (16).
Further, use (17) and (18) to acquire the candidate vectors
{z
𝑝
, 𝑝 = 1, . . . , 𝑃}. Then, in terms of the screening criterion

(19), pick out single-source-component vectors {z
𝑝
∗ , 𝑝
∗
=

1, . . . , 𝑃
∗
} from these 𝑃 candidate patterns.

Step 3. Implement the modified 𝑘-means clustering on
single-source-component vectors {z

𝑝
∗ , 𝑝
∗
= 1, . . . , 𝑃

∗
} to

obtain the final estimate of the source number𝑁 and mixing
matrix Â.

Step 4. Calculate the pseudoinverse Â−1 of Â and recover the
source ŝ(𝑡) by (25).

4. Experiment

In this section, both numerical simulation of synthesis signals
and practical mechanical diagnosis experiment are con-
ducted to verify the performance of proposed BSS algorithm.
As a comparison, the results of fast-ICA are also presented.
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Table 1: The recovery correlation coefficients and successful times of numerical experiment.

Sample length 𝐿 400 200 100 70

ICA
𝑠
1
(𝑡)

Successful times 999 685 575 544
Correlation coefficient 0.9724 0.9961 0.9727 0.9093

𝑠
2
(𝑡)

Successful times 1000 456 645 620
Correlation coefficient 0.9987 0.9386 0.9027 0.8334

Proposed
𝑠
1
(𝑡)

Successful times 1000 1000 1000 1000
Correlation coefficient 1.0000 1.0000 1.0000 1.0000

𝑠
2
(𝑡)

Successful times 1000 1000 1000 1000
Correlation coefficient 1.0000 1.0000 1.0000 1.0000

4.1. Numerical Simulation. Consider a 3 × 2 mixing system
expressed as

A = [[
[

0.59 0.89

0.97 0.47

0.51 0.53

]
]

]

. (26)

Two sources 𝑠
1
(𝑡) and 𝑠

2
(𝑡) are formulated as

𝑠
1
(𝑡) = cos(2𝜋100𝑡 + 𝜋

9
) + 1.4 cos(2𝜋200𝑡 + 2𝜋

9
)

+ 1.85 cos(2𝜋400𝑡 + 𝜋
3
) ,

𝑠
2
(𝑡) = 1.7 cos(2𝜋50𝑡 + 𝜋

36
)

+ 0.8 cos(2𝜋80𝑡 + 5𝜋
18
)

+ 1.2 cos(2𝜋800𝑡 + 5𝜋
12
) .

(27)

The sampling rate was fixed as 𝑓
𝑠
= 2000Hz and 4 cases

of sample length (𝐿 = 400, 200, 100, 70) were taken into
account. Since fast-ICA needs several iterative operations to
optimize a kurtosis-related objective function, which starts
from a random initialization on the demixing matrix, it is
likely to fall into failure in case of insufficient samples. Hence,
for each sample length case, 1000 trials were conducted.
The times of successful trials of both BSS algorithms were
recorded in Table 1. Moreover, among these successful trials,
correlation coefficients between the recovered signals and the
sources were statistically averaged and also listed in Table 1.
Figures 1 and 2 present the recovered results of these two
BSS algorithms in case of long observations (𝐿 = 400), while
Figures 3 and 4 present the short observation case (𝐿 = 70).

As Figures 1 and 2 depict, both the fast-ICA and proposed
algorithm can acquire high-quality recovered waveforms in
case of long observations (𝐿 = 400, limited by page layout,
only half-duration waveforms are plotted). However, when
the sample length reduces into 𝐿 = 70, one can observe that
obvious distortions appear in the waveforms recovered by
fast-ICA in Figure 3. In contrast, there exist no distortions
in the recovered waveforms in Figure 4, reflecting that the
proposed BSS algorithm outperforms fast-ICA in dealing
with insufficient samples.
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Figure 1: Numerical results of fast-ICA (𝐿 = 400).

Table 1 shows that as the sample length decreases, the
times of successful recovery of fast-ICA decline sharply, and
the average correlation coefficient also tends to be slightly
smaller, accordingly. In contrast, as Table 1 lists, all the trials
of the proposed BSS algorithm for different sample lengths
are successfully conducted and all correlation coefficients
remain 1. This is because, unlike fast-ICA, the proposed BSS
algorithm is based on spectrum correction related harmonics
analysis rather than statistical analysis and thus it is insensi-
tive to the sample length.

4.2. Mechanical Diagnosis Experiment. In this section, two
practical fault signals 𝑠

1
(𝑡), 𝑠
2
(𝑡) collected from field rotating

machineries are treated as sources. 𝑠
1
(𝑡) is an imbalance

fault signal with the rotating frequency 89.6853Hz, and 𝑠
2
(𝑡)

is a misalignment fault signal with the rotating frequency
102.8811Hz. The mixing system is the same as the matrix
A in (26). Different sample lengths (𝐿 = 400, 200, 100, 70)
were considered. In each case, 1000 trials were conducted.
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Figure 2: Numerical results of proposed BSS algorithm (𝐿 = 400).
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Figure 3: Numerical results of fast-ICA (𝐿 = 70).

Figures 5–8 present the recovery results of both BSS algo-
rithms. Table 2 lists their recovery performance indexes.

From Figures 5 and 6, one can see that, just like the
recovery of synthesis signals in (27), both the fast-ICA and
the proposed BSS algorithm can achieve excellent recovery
results in the long-sample situation (𝐿 = 400). Nevertheless,
when it comes to the short-sample situation (𝐿 = 70), the
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Figure 4: Numerical results of proposed BSS algorithm (𝐿 = 70).
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Figure 5: Practical results of fast-ICA (𝐿 = 400).

proposed BSS algorithm exhibits better performance than the
fast-ICA does.

From Table 2, one can see that, as the sample length
decreases from 𝐿 = 400 to 70, the proposed BSS algo-
rithm’s superiority over fast-ICA becomes more obvious. In
particular, due to the effect of field noise, the correlation
coefficients resulting from the proposed algorithm do not
remain 1 but approximate to 1. Hence, the proposed BSS
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Table 2: The recovery correlation coefficients and successful times of numerical experiment.

Sample length 𝐿 400 200 100 70

ICA
𝑠
1
(𝑡)

Successful times 908 922 912 874
Correlation coefficient 0.9734 0.9390 0.9778 0.9724

𝑠
2
(𝑡)

Successful times 912 902 900 734
Correlation coefficient 0.9270 0.9140 0.9193 0.9316

Proposed
𝑠
1
(𝑡)

Successful times 1000 1000 1000 1000
Correlation coefficient 0.9995 0.9973 0.9992 0.9870

𝑠
2
(𝑡)

Successful times 1000 1000 1000 1000
Correlation coefficient 0.9908 0.9803 0.9727 0.9881
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Figure 6: Practical results of the proposed BSS algorithm (𝐿 = 400).

algorithm outperforms the fast-ICA in rotating machinery
fault diagnosis.

5. Conclusion

This paper proposes a novel blind source separation algo-
rithm based on spectrum correction. Both numerical sim-
ulation and practical experiment verify the proposed BSS
algorithm’s excellent performance. In general, this algorithm
possesses the following 4 merits:

(1) Compared to classical fast-ICA algorithm, the pro-
posed algorithm can achieve a higher-quality source
recovery even in case of short-sample observations.
Thismeets the demand of fast response of the rotating
machinery fault analysis.

(2) The spectrum correction involved in the proposed
algorithmdoeswell in harmonics information extrac-
tion and thus is especially suitable for rotating
machinery fault analysis. As is known, most of these
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Figure 7: Practical result of fast-ICA (𝐿 = 70).

faults arise from the rotor malfunction, which gener-
ates a lot of rotating-frequency related harmonics.

(3) The proposed BSS algorithm can accurately deter-
mine the underlying source number by means of the
modified 𝑘-means clustering, which is in accordance
with practical situation of rotating machinery opera-
tions.

(4) Unlike fast-ICA, the proposedBSS algorithmdoes not
involve random initialization and iterative operations
and thus possesses a higher stability and lower com-
plexity, which enhances the reliability and efficiency
of the rotating machinery fault analysis.

In fact, besides rotating machinery fault analysis, har-
monics analysis is also frequently encountered in a lot of
fields such as power harmonics analysis, channel estimation
in communication, radar, and sonar. Hence, the proposed
BSS algorithm possesses a vast potential in a wide range of
applications.
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Figure 8: Practical result of proposed BSS algorithm (𝐿 = 70).
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