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Abstract— Centralized nonlinear fusion filter design problem 
is to construct an asymptotically stable observer that leads to a 
stable estimation error process whose L2 gain with respect to 
disturbance signal is less than a prescribed level for state 
estimation of the multi-sensor fusion system. This paper tries to 
resolve the problem in using of H∞ filtering theory and LMI 
methods under certain conditions. Finally, a simulation example 
is given to illustrate the effectiveness of our methods. 
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I.  INTRODUCTION  
In recent years, Kalman filter theory applied in linear fusion 

system became more and more sophisticated[1-4]. And at the 
same time, the state fusion estimation and parameter estimation 
of multi-sensor system also had great development. More study 
works were obtained refer to different sensor system, such as 
uncertain multi-sensor system, heterogeneity multi-sensor 
system, multi-resolution system, nonlinear system, etc[5-10]. For 
nonlinear fusion system, EKF was widely used as the 
approximate method to solve the non-Gaussian nonlinear 
problem which is put forward by Anderson and Moore since 
1979. This method is base on system state evolution function 
and the first order Taylor expansion of measure function to 
obtain the MMSE estimation. It is actually approximate state 
evolution equation by local linearization of system predictive 
state. However, this local linearization may lead to filter’s 
divergence. GSF combines a number of Gaussian models to 
approximate the posterior probability of system state. It equals 
to a group of EKFs which have the same drawbacks as EKF. 
Another method to solve the nonlinear non-Gaussian problems 
is base on stochastic sample filtering. Its main idea is using a 
series of weighted stochastic sample sets in state space to 
approximate the posterior pdf of system state, it is a statistical 
filtering base on simulation. 

Recently, the H∞ filtering becomes another important 
method in the estimation theory of stochastic system. If the 
measurement of definite system has known white noise or 
spectral density noise, the variance of estimation error can act 
as the filter’s performance index, and the optimum filter can be 
designed by minimizing the performance index. When the 
statistical character of system disturbance is unknown, the 
disturbance can be regarded as random signal which has finite 
energy. Therefore, the filter performance index is the H∞ norm 

of transfer function which is from disturbance input to 
evaluated error. We needn’t know the definite statistical 
characteristic of disturbing signal, and only demand it should 
be finite energy signal in H∞ filter, which is different from 
Kalman filter. The H∞ filtering has very good robustness for 
uncertain system[11-14]. In [11], a bounded real lemma was 
presented for linear continuous-time stochastic uncertain 
systems, according to which full-order robust H∞ filtering 
problems for stationary continuous-time linear stochastic 
uncertain systems were discussed by [13]. The above works are 
limited to the linear stationary stochastic systems, whereas [16] 
investigated the same problem for a class of special nonlinear 
stochastic systems. [14] presented a nonlinear stochastic H∞ 
filtering design by means of Hamilton-Jacobi inequality (HJI). 

In the present paper, we consider the centralized nonlinear 
fusion filter design problem in using of H∞ filtering theory. Our 
goal is to construct an asymptotically stable (in some sense) 
observer that leads to a stable estimation error process whose 
L2 gain with respect to disturbance signal is less than a 
prescribed level for state estimation of the centralized nonlinear 
fusion system. We also give a simulation example to show the 
effectiveness of our theory. 

For convenience, we adopt the following traditional 
notations: 

A′ : transpose of the matrix A . 
)0(0 >≥ AA : A  is a positive semidefinite (positive 

definite) matrix.  
I : the identity matrix.  
x : Euclidean 2-norm of n-dimensional real vector x. 

),( l2 RRL + : the space of nonanticipative stochastic 

processes )(ty with respect to filtration tF  satisfying 
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II. PROBLEM FORMULATION 
Consider the following nonlinear stochastic fusion system 
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Where nRtx ∈)(  is called the system state, rRty ∈)( is 
the measurement; )(⋅W  is a standard  one dimensional Wiener 
process defined on a complete filtered space 

),}{,,( PFF Rtt +∈Ω  with a filtration { }
+∈RttF satisfying usual 

conditions; mRtz ∈)(  is the state combination to be 

estimated, and piRRLv vn
i ,...,1,0),,(2 =∈ +  stands for 

the exogenous disturbance signal. )),(()),(( txgtxf i  

pi ,...,2,1= are smooth functions with 0)0()0( == gfi ,A, 
B, Ci, Di (i=1, 2,…,p) and L are constant matrices of the 
appropriate dimensions. 

For centralized fusion system, the measurement model can 
be denoted as the following augmented measurement 
equations: 

dttDvxGtCxtdy ))()()(()( ++=                      (2) 
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So, system (1) can be simply expressed as: 
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Where ])(),([)(~
0 ′′′= tvtvtv . 

In what follows, we construct the following filtering 
equation for the estimation of )(tz : 
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Set ])(ˆ)([)( ′′′= txtxtη , and let 
))(ˆ)(()(ˆ)()(~ txtxLtztztz −=−=                        (5) 

denote the estimation error, then we get the following 
augmented system(the time variable t is suppressed): 
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For a given scalar 0>γ , we define the following 
performance index: 

222
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LLs tvtzJ γ−=                              (7) 

In our paper, we are look for an H∞ fusion estimator of the 
form (4) such that for all nonzero )(~ tv , the above performance 
index 0<sJ ,  and the system (5) is asymptotically internally 
stable when 0tv =)(~ . 

We first put forward to the following lemma which is very 
useful for the proof of our main theorems. 

Lemma 1.1[15]: 
Consider the following nonlinear stochastic system: 
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)(),(),(),( xsxgxhxf  are smooth functions. Assume there 

exists a positive Lyapunov function )()( 2 nRCxV ∈  
satisfying 
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for all nonzero nRx∈ , then, the equilibrium point 0≡x  of 
(8) is globally asymptotically stable in probability. )(xVLv  is 
called the infinitesimal operator of (8). 
Lemma 1.2 (Schur’s complement): 
For real matrices ,N ,MM ′= 0RR >′= , the following 
two conditions are equivalent 
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Lemma 1.3 :  
Let 0, and , >∈∈ εnn RyRx  then we have 
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III. ASYMPTOTIC STABILITY 
In order to guarantee the stability of system (6) when design 

the fusion filter, we firstly give the following theorem: 

Theorem 3.1: 

 If there exist scalars 00,0,,0 >>>> βαλµ  and a 

positive definite matrix 0>P , 



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2
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following inequalities(9), then the system (6) will be 
asymptotically stable. 

IP α≤                                         (9a) 

02)(2~~ 222 <−+++′+ IIPPAAP βλαµλ   (9b) 
IBPB ff β≤′ 2                                   (9c) 

Proof: Take the Lyapunov candidate as ηηη PV ′=)( , 

where P>0, and Let vL~ˆ  be the infinitesimal operator of 
equation (6), then 
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Substituting (13)-(14) into (10), we have 
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If there exists k>0 such that  
kIIIPPAAP −<−+++′+ βλαµλ 222 2)(2~~

   (16) 
Therefore 

2
0~ )(ˆ ηη kVLv −≤=  which yields (6) being asymptotically 

stable for 0~ =v according to lemma 1.1, and the proof of 
Theorem 3.1 is completed. 

IV. H∞ FUSION FILTER DESIGN 
In order to solve the filtering problem for centralized 

nonlinear fusion system, some linearization procedures have to 
be adopted in this section. By using stability Theorem 3.1 and 
LMI techniques, we give the following theorem: 

Theorem 4.1:  

Given scalars 00,0,,0 >>>> βαλµ , If there exist 
matrices { }2121 ,,0P,0 ZZP >>  solving the linear matrix 
inequalities (17)-(19), then the system (6) is asymptotically 
stable and have a robust H∞ performance level of γ , 
furthermore, the desired parameters { }ff BA ,  of estimator is give 
by  (20). 
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Proof: Note that for any T>0 
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According to Theorem3.1, inequalities (9) should also be 
satisfied. Obviously, if (21) is satisfied, so is (9b). According to 
Lemma 1.2 ,  inequality(9c) can be rewrote as 

0
)()(

22

2

22

2 <







−

′−
=








−
′−

PZ
ZI

PBP
PBI

f

f βαβα
       (23) 

Inequality (9a) can directly lead to (19), and the proof of 
Theorem 4.1 is completed. 

V. SIMULATION EXAMPLE 
Consider the following nonlinear multi-sensor fusion 

system with two sensors: 
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where ])()([)( 21 ′= txtxtx , 2,1i(t),yi =  are the 
measurement signals, 2,1i,vik =  are the measurement noises 

of the two sensors, with mean zero and variance are 2
v1σ  and 

2
v2σ . 02v  is the system noises with mean zero and variance 
2
v02

σ . u is the set value. Our aim is to find the H∞ fusion filter 
of form (6). 

From the fusion system (24), we obtain 
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Set 027,.0,101.0,021.0,1 v2v1v02
==== σσσu  the 

initial value of x1 and x2 are 0. 
Obviously, )(xF and )(xG  satisfy (11) with 1=µ  and 

2=λ . According to Theorem 4.1 with 71.0=γ , we 
solve the LMIs (17)-(19) together with the constraints 0>α  
and 5=β , we obtain the following results: 

.8512.12,
3461.03267.0
3461.03267.0

,
3954.365.0

5.03954.36
,

8837.60
08837.6

,
1.67080.5869
0.58692.0268

2

121

=







=









−−

−−
=








=








=

αZ

ZPP

Then 

.
0496.00475.0
0496.00475.0

,
5.2872-0.0726-
0.0726-5.2872-








=






= ff BA  

The simulation outputs are showed in Fig 1 and Fig 2.  

 

 
Fig. 1. The trajectories of 1x and 1x̂  



         

 

Fig. 2. The trajectories of 2x  and 2x̂ . 

VI. CONCLUSIONS 
In above sections, we have discussed fusion filtering 

problem of centralized multi-sensor nonlinear fusion system. 
By giving Theorem 3.1 and Theorem 4.1, we can present a new 
approach to design the asymptotically stable and effective H∞ 
fusion filter. We also give a simulation example to illustrate the 
effectiveness of our theorems. It is very valuable in the study of 
stochastic H∞ fusion filter for the nonlinear multi-sensor 
system, while many other problems merit further study. 
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