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Abstract

We consider a generalized version of the rooted connected facility location problem
which occurs in planning of telecommunication networks with both survivability
and hop-length constraints. Given a set of client nodes, a set of potential facility
nodes including one predetermined root facility, a set of optional Steiner nodes,
and the set of the potential connections among these nodes, that task is to decide
which facilities to open, how to assign the clients to the open facilities, and how to
interconnect the open facilities in such a way, that the resulting network contains
at least λ edge-disjoint paths, each containing at most H edges, between the root
and each open facility and that the total cost for opening facilities and installing
connections is minimal. We study two IP models for this problem and present a
branch-and-cut algorithm based on Benders decomposition for finding its solution.
Finally, we report computational results.

Keywords: Connected facility location, survivability, integer programming.

1 Introduction

A typical metropolitan telecommunication network consists of several local
access networks, that are connected by a (regional) core network to a central
hub node, that provides connectivity to the national or international backbone.
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The traffic originating at the clients is sent through the access networks to the
(regional) core nodes. From there, it traverses the core network(s) to reach the
national core or the access network of its destination. Routing functionalities
are typically only available at the regional or central core nodes. As the core
networks play a primary role for the service availability and the service quality
in such networks, it is common to require that these networks are fault-tolerant
and lead to short routing paths. To model such a network planning scenario,
we introduce a generalized version of the rooted connected facility location
problem considering both survivability and hop-length constraints.

In the Survivable Hop-constrained Connected Facility Location problem
(SHConFL), we are given an undirected graph G = (V,E) with V = R∪̇S,
where R is the set of clients and S is the set of (potential) core nodes. The
set F ⊆ S is the set of potential facilities and r ∈ S \ F is the root facility
opened in advance, which corresponds to the central hub node. Only edges in
E(S) := {uv∈E : u, v∈S} may be used in the (regional) core. Furthermore,
we are given the costs fi ∈Z≥0 for opening facility i∈F , the costs aij ∈Z≥0
for assigning customer j ∈ R to facility i ∈ F∪{r}, and the costs ce∈Z≥0 for
installing edge e∈E(S) in the (regional) core. Finally, we have an integer hop
limit H≥1, and an integer connectivity requirement λ≥1. We seek for a sub-
set I⊆F of facilities to open, a function σ(j) :R→I∪{r} assigning the clients
to the open facilities, and an edge set E ′ ⊆ E(S) such that (S,E ′) contains,
for each facility i∈I, at least λ edge-disjoint (r, i)-paths of length at most H.
The objective is to minimize the total cost

∑
i∈Ifi+

∑
j∈Raσ(j)j+

∑
e∈E′ce.

The SHConFL has not yet been studied in the literature. However, it is
related to two other problems, namely the Hop-Constrained Connected Fa-
cility Location (HConFL) [4] and the Hop-Constrained Survivable Network
Design Problem (HSND) [3,5]. The HConFL problem is a special case of the
SHConFL with λ = 1. An overview of formulations and polyhedral results
for HConFL can be found in [4]. The HSND problem also can be viewed as a
special case of the problem where the set of facilities given in advance. Models
for HSND can be found in [3,5].

In this paper we present two strong extended formulations for the SHConFL,
inspired by the known formulations for HSND, and present computational re-
sults obtained with our implementation of a branch-and-cut algorithm. To
make the stronger model computationally tractable, we applied Benders de-
composition approach, projecting out the extended flow variables. To speed
up the algorithm, we primarily separate connectivity inequalities stemming
from (and valid for) the corresponding problem with connectivity constraints
but without hop constraints. We only solve the computationally expensive
separation problem for Benders cuts if the (computationally much easier) sep-
aration of connectivity inequalities fails.
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2 IP Formulations

2.1 Multi-Commodity Flow Based Formulation.

For each facility i ∈ F , we create a directed layered graph Gi = (Si, Ai) with

Si = {r0} ∪ {uh : u ∈ S, 1 ≤ h < H u 6= r} ∪ {iH} and

Ai = {(uh−1, vh) : uh−1, vh ∈ Si, uv ∈ E(S), 1 ≤ h ≤ H} .

The copy of node u in layer h of Gi is denoted by uh and each edge uv has
two directed copies (uh−1, vh) and (vh−1, uh) between layers h− 1 and h of Gi.

Clearly, any (r, i) path of length h ≤ H in the (core) graph corresponds to
a directed path of the same length from r0 to ih in Gi.

We introduce binary variables xij, yi, and zuv indicating whether customer
j is assigned to facility i, facility i is opened, and edge uv ∈ E(S) is selected,
respectively. Additional binary variables f ihuv indicate if a path from r to facility
i contains arc (u, v) in position h. Using these variables, a compact flow-based
formulation for the problem is obtained as follows:

(MCF ) min
∑
i∈F

fiyi +
∑
j∈R

∑
i∈F∪{r}

aijxij +
∑

e∈E(S)

ceze

∑
i∈F∪{r}

xij = 1 ∀j ∈ R (1)

yi − xij ≥ 0 ∀i ∈ F, j ∈ R (2)∑
(vh−1,uh)∈Ai

f i(h−1)vu −
∑

(uh,vh+1)∈Ai
f ihuv = 0 ∀i ∈ F, uh ∈ Si;u /∈ {r, i} (3)

H−1∑
h=0

∑
(uh,ih+1)∈Ai

f ihui = λyi ∀i ∈ F (4)

f i0rv ≤ zrv ∀i ∈ F, rv ∈ E(S) (5)
H−2∑
h=1

(f ihuv + f ihvu) ≤ zuv ∀i ∈ F, uv ∈ E(S), u, v /∈ {r, i} (6)

H−1∑
h=1

f ihui ≤ zui ∀i ∈ F, ui ∈ E(S), u 6= r (7)

x, y, z, f ∈ {0, 1} (8)

Constraints (1) and (2) state that any customer has to be assigned to an open
facility. Constraints (3) and (4) ensure flow conservation in each layered graph
Gi, which guarantees λ length bounded flow paths between r and each open
facility. Constraints (5)-(7) finally guarantee the edge-disjointness of these
paths and the correct setting of the edge variables ze.
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2.2 Hop-Level Multi-Commodity Flow Based Formulation.

Recently, Mahjoub et al. [5] introduced a new idea to extend the general hop
constrained formulation using additional variables indicating the distance of
each core node from r in the solution. The formulation presented above can be
improved by applying this idea. Given a solution (I, σ, E

′
), one can partition

S into H+2 levels according to their distance from r: Level 0 only contains
r; level l, 1≤ l ≤H, contains nodes with distance l form r; and level H+1
contains the nodes that are not connected to r in E

′
. We introduce binary

variables wlu indicating if vertex u is in level l (according to its distance from
r in the solution) and alkuv indicating if edge uv belongs to the solution with u
in level l and v in level k, respectively. Remark that |k−l| ≤ 1. Together with
the variables x, y, and z, we obtain a new formulation HL-MCF as follows.

Let E
′
S = E(S)\δ(r). With the following constraints, any binary vector

(y,z) defines binary values (w, a) where each node is assigned to a single level.

H+1∑
l=1

wlu = 1 ∀u ∈ S \ {r} (9)

wH+1
i ≤ 1− yi ∀i ∈ F \ {r} (10)

w1
v = a01rv = zrv ∀rv ∈ ES (11)H−1∑

l=1

alluv +
H−1∑
l=1

(al(l+1)
uv + al(l+1)

vu ) = zuv ∀uv ∈ E ′S (12)

a11uv + a12uv ≤ w1
u ∀uv ∈ E ′S (13)

a11uv + a12vu ≤ w1
v ∀uv ∈ E ′S (14)

alluv + al(l+1)
uv + a(l−1)lvu ≤ wlu ∀uv ∈ E ′S, 2 ≤ l ≤ H − 1 (15)

alluv + al(l+1)
vu + a(l−1)luv ≤ wlv ∀uv ∈ E ′S, 2 ≤ l ≤ H − 1 (16)

a(H−1)Hvu ≤ wHu ∀uv ∈ E ′S (17)

a(H−1)Huv ≤ wHv ∀uv ∈ E ′S (18)

wlv −
∑

(u,v)∈δ(v),u 6=r

a(l−1)luv ≤ 0 ∀v ∈ S, 2 ≤ l ≤ H (19)

w, a, y, z ∈ {0, 1} (20)

Constraints (9)-(10) state that each node should be in exactly one of the
possible levels and chosen facilities must be reachable. Constraints (11) and
(12) make the connection between (w, a) variables and variables z. Constraints
(13)-(18) ensure that a variable alkuv can only be 1 if both wlu and wkv are one.
Constraints (19) state that a node can only be in level l if it is reached by at
least one edge from level l−1.

Like in [5], it can be shown that a fractional (w, a) splits nodes and edges
into different levels, which might increase the length of paths between r and
open facilities in the level-expanded network induced by (w, a). Enforcing the
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existence of hop-limited arc-disjoint paths between r and open facilities in the
level-expanded network, we can thus strengthen the formulation as follows.

For each facility i∈F , we create a directed layered graph Gi
H =(SiH , A

i
H),

where SiH ={r00} ∪ {ulh : u∈S, 1≤ l≤h≤H−1, u 6= r} ∪ {ilH : 1≤ l≤H} and
AiH = {(ulh−1, vkh) : ulh−1, v

k
h ∈ SiH , uv ∈ E(S), 1 ≤ h ≤ H, |l−k|≤1} ∪

{(ilh, ilh+1) : 1≤ l≤ h≤H−1}. The copy of node u in layer h and level l is
denoted by ulh, while (ulh−1, v

k
h) denotes the directed arc corresponding to the

copy of edge uv with node u in layer h − 1 and level l and node v in layer h
and level k. For each such arc, we have a binary flow variable gihlkuv indicating
that a path from r to facility i goes from u at level l to v at level k in hop h.

The following constraints ensure the existence of the λ arc-disjoint paths.∑
(vkh−1,u

l
h)∈A

i
H

gi(h−1)klvu −
∑

(ulh,v
k
h+1)∈A

i
H

gihlkuv = 0 ∀i ∈ F, ulh ∈ SiH , u 6= r, h ≤ H − 1 (21)

H∑
l=1

∑
(vkH−1,i

l
H)∈AiH

g
i(H−1)l
vi = λyi ∀i∈F (22)

gi001rv ≤ a01rv ∀i∈F, rv∈E(S) (23)
H−2∑
h=l

(gihlluv + gihllvu ) ≤ alluv ∀i∈F, uv∈E ′S\δ(i), 1≤ l≤ H−2 (24)

H−2∑
h=l

gihl(l+1)
uv +

H−2∑
h=l+1

gih(l+1)l
vu ≤ al(l+1)

uv ∀i∈F, uv∈E ′S\δ(i), 1≤ l≤H−2 (25)

H−1∑
h=l

gihllui ≤ allui ∀i∈F, ui∈δ(i)\δ(r), 1≤ l ≤ H−1 (26)

H−1∑
h=l

g
ihl(l+1)
ui ≤al(l+1)

ui ∀i∈F, ui∈δ(i)\δ(r), 1≤ l≤ H−1 (27)

Constraints (21)-(22) are the flow conservation constraints at every node of
the layer- and level-extended graphs, guaranteeing λ units of flow from r to
each open facility. Constraints (23)-(27) link the flow to the a variables.

The complete HL-MCF formulation is given by the objective function
(MCF) subject to constraints (1)-(2) and (8)-(27).

Lemma 2.1 Formulation HL-MCF is at least as strong as formulation MCF.

3 Benders Decomposition for HL-MCF

In our implementation, we use a Benders decomposition approach to efficiently
handle the huge number of variables and constraints of HL-MCF. However, we
cannot directly apply Benders decomposition method, because all variables of
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HL-MCF are integer and classical duality theory does not allow to project out
integer variables. Similar to Botton et al. [3], we therefor relax the integrality
restrictions of the flow variables in HL-MCF and apply Benders decomposition
to this relaxation, called R-HL-MCF. We shall discuss whether R-HL-MCF
provides the same optimal design variables x, y, and z as HL-MCF.

The master problem is given by the objective function (HL-MCF) subject
to constraints (1)-(2), and (8)-(20). A solution ȳ, x̄, z̄, w̄, ā of the master prob-
lem defines a feasible solution for the R-HL-MCF if and only if for each i ∈ F
there exist fractional flow values satisfying (21)-(27) with yi = ȳi and a = ā.

To apply Farkas lemma to this linear system called SUBi, we define dual
variables πhu,l, π, σ

0(1)
rv , σ

l(l)
uv , σ

l(l+1)
uv , σ

l(l)
ui , σ

l(l+1)
ui associated to the constraints

(21)-(27), respectively. Let Π(i) be the set of extreme rays of the corresponding
dual system. It can be shown that the Benders reformulation of R-HL-MCF
is given by adding the following Benders cuts to the master problem:

λyiπ̄ −
∑

(u,v)∈E(S),0≤l,k≤H−1

alkuvσ̄
l(k)
uv ≤ 0 ∀(π̄, σ̄) ∈ ∪i∈FΠ(i) . (28)

Let ξint and ξfrac denote the set of all binary vectors (x̄, ȳ, z̄) for which there
exists an integral or a fractional solution for (SUBi), ∀i ∈ F , respectively.
Since ξint ⊆ ξfrac, any Benders cut (28) is a valid inequality for conv(ξint),
as well. Following Lemma shows that these Benders cuts are sufficient to
describe ξint in some special cases, but not in general.

Lemma 3.1 ξint and ξfrac are equal for H=2, 3 with any λ, and H=4 with
λ=2. For H ≥ 4, there exist a λ ≥ 2 for which ξint ( ξfrac, unless P=NP.

The results follow immediately from the corresponding results for the HSND
problem given by Botton et al. [3] (see also [2]).

For general λ and H, we retreat to the generation of Benders feasibility
cuts to cut off infeasible integer solutions (x̄, ȳ, z̄) ∈ ξfrac\ξint. For this, we
solve an integer programming formulation to check if there exist integral flows
satisfying (21)-(27) with y = ȳ and a = ā; see [3] for more details.

4 Branch-and-cut algorithm

We implemented a branch-and-cut algorithm based on the Benders decomposi-
tion discussed above. In every node of the branch-and-bound tree, we first sep-
arate (non-hop-restricted) connectivity inequalities of the form z(δ(U)) ≥ λyi
with U ⊆ S, r 6∈ U , i ∈ U for some facility i ∈ F via max-flow min-cut
computations. Only if no violated connectivity cuts are found, we check for
violated Benders cuts, which is computationally far more expensive. Formally,
in every node of the (B&B) tree the algorithm works as follows:

(i) Solve the master problem; take the optimal (fractional) solution
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(ii) Check if the current solution satisfies the connectivity requirements be-
tween root and facilities. As long as there are violated connectivity cuts,
add them to the master and goto (i).

(iii) Solve the linear Benders subsystems (SUBi) for the current solution. If
this results in a violated Benders cut, add it to the master and goto (i).

(iv) Only at integer nodes of tree (and if needed; see Lemma 3.1): Solve the
integer Benders subsystems (SUBi) for the current solution. If infeasible,
add corresponding feasibility cut to the master and goto (i).

Our computational experiences (see Section 5) show that connectivity cuts
generated early in step (ii) are very important to avoid the exploration of too
many infeasible nodes and to reduce the time spent in the computationally
expensive generation of Benders cuts.

5 Computational Study

The algorithm has been implemented in C++, using SCIP [1] as a framework
and CPLEX 12.4 as a LP solver, and run on a machine with a AMD Phe-
nom(tm) II X6 1090T 3GHz and 8 GiB RAM. To generate our instances, we
combine benchmarks from the HSND problem and benchmarks from unca-
pacitated facility location problem (UFL) for the core and access part of our
instances, respectively. We follow Botton et al. [3] and generate the core graph
as follows. Instances are complete graphs whose node set is of size 60 randomly
placed among integer points of a grid 100 × 100. The first |F | ∈ {20, 30, 40}
nodes are selected to be potential facilities and the node with index 1 is se-
lected as the root node. The edge costs are set to be the Euclidean distance
between any two points. Now given an instance of UFL, |F | ∈ {20, 30, 40} fa-
cilities are randomly selected. The number of customers, facility opening costs
and assignment costs are provided in UFL instance. We consider a set of 6
instances obtained by combining two UFL instances mp1 and mq1 4 (of size
200×200 and 300×300, respectively) with the three generated core instances.

Table 1 reports number of cuts of types “connectivity cut”and “Benders
cut” generated throughout the execution of the algorithm (no feasibility cuts
have been generated in any instance), denoted by “C(C)”, and “C(B)”, re-
spectively, the number of branch and bound nodes visited, denoted by “B&B”,
the total time to solve the instances in seconds, denoted by “T(s)”. Results
in Table 1 show that easily computable connectivity cuts are very important
to avoid generating many expensive Benders cuts.

For the algorithm without Step (ii), Table 2 reports the number of gener-
ated Benders cuts, the number of “B&B” nodes, and the running times. The
results in Table 2 (compare to same results in Table 1) show the practical

4 Available at http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib.
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λ = 3 λ = 5

Instances H C(C) C(B) B&B T(s) C(C) C(B) B&B T(s)

mp1-20 3 148 7 54 84 286 9 56 209

mp1-20 5 199 19 101 478 231 2 32 448

mp1-30 3 67 0 5 25 40 1 1 17

mp1-30 5 69 0 7 78 55 4 1 39

mp1-40 3 575 14 136 457 1483 374 620 950

mp1-40 5 301 69 215 819 379 186 528 1092

mq1-20 3 73 2 29 83 99 0 14 57

mq1-20 5 91 0 33 163 95 2 8 198

mq1-30 3 231 16 87 210 159 31 54 601

mq1-30 5 146 50 92 476 120 27 91 969

mq1-40 3 986 458 679 568 813 5 352 683

mq1-40 5 440 268 935 1426 560 16 241 980

Table 1
Results of our algorithm on the set of instances

improvement of the algorithm due to the addition of cuts stemming from the
plain (non-length-restricted) connectivity problem.

H=3, λ=3 H=3, λ=5

Instances Cut B&B T(s) Cut B&B T(s)

mp1-20 654 216 283 642 107 366

mp1-30 144 9 93 58 12 47

mq1-20 178 6 163 185 4 194

mq1-30 466 111 385 454 67 872

Table 2
Results of our algorithm without Step (ii) on a subset of the instances

References

[1] Achterberg, T. Constraint Integer Programming. PhD Thesis, TU Berlin, 2007.

[2] Bley, A., J. Neto. Approximability of 3- and 4-Hop Bounded Disjoint Paths
Problems. In Proc. of IPCO 2010, pages 205-218.

[3] Botton,Q., B. Fortz, L. Gouveia, M. Poss. Benders Decomposition for the
Hop-Constrained Survivable Network Design Problem. INFORMS Journal on
Computing 25, pages 13-26, 2013.

[4] Ljubic, I., S. Gollowitzer. Layered Graph Approaches to the Hop Constrained
Connected Facility Location Problem, INFORMS Journal on Computing, DOI:
10.1287/ijoc.1120.0500, 2012

[5] Mahjoub, R., L. Simonetti, E. Uchoa. Hop-Level Flow Formulation for the Hop
Constrained Survivable Network Design Problem. Networks 61, pages 171-179,
2013.

8


	Introduction
	 IP Formulations
	Multi-Commodity Flow Based Formulation.
	Hop-Level Multi-Commodity Flow Based Formulation.

	Benders Decomposition for HL-MCF
	 Branch-and-cut algorithm
	Computational Study
	References

