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A calculation method is presented for the simultaneous 
solution of aerodynamic and structural loads on arbitrary 
high aspect ratio wings. The wing aerodynamics are mod- 
eled using lifting line theory with roll rate, yaw, and yaw 
rate effects included. The wing structure is modeled as a 
nonlinear beam with vertical and horizontal displacement 
and torsional degrees of freedom. Axial compression effects 
are also incorporated to permit modeling of wings with ex- 
ternal bracing struts or wires. The aerodynamic and struc- 
tural problems together constitute a coupled nonlinear sys- 
tem for the aerodynamic and structural unknowns, which 
is discretized anci solved using a global Newton method. 
The overall procedure permits computationally economical 
prediction of: 

1. Aerodynamic and structural loads for a very wide 
range of operating conditions. 

2. Induced drag with static wing twist effects included. 

3. Lateral and longitudinal wing static stability deriva- 
tives and roll-yaw coupling forces incorporating wing 
deflections. 

4. Static divergence and aileron reversal speeds. 

5. Buckling loads for externally braced wings. 

Examples are drawn from the wing design of the 
Daedalus human powered aircraft. 

Nomenclature 

Coordinates  and dimensions 

wingspan 
local wing chord 
spanwise node index and maximum index 
chordwise shear center location 
Cartesian coordinates fixed to aircraft 
local coordinates fixed to wing section 
s location of strut or wire attach point 
spanwise Glauert coordinate 
angle of external bracing wire 
local angle of attack (no loads) 
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S t ruc tu ra l  p a r a m e t e r s  

tensile stiffness of external strut or wire 
in-plane bending stiffness 
out-of-plane bending stiffness 
n deflection bending stiffness 
z,n deflection bending cross-stiffness 
z deflection bending stiffness 
torsional stiffness 
point load due to fuselage 
external bracing wire tension 

Local  s t ruc tu ra l  solution variables 

z,z deflections 
z,z deflection angles 
z,z deflection angles at zero load 
torsional twist angle 
torsional twist angle at zero load 
axial tension force 
z,n shear forces 
z,n bending moments 
torsion moment 

Global  variables a n d  ope ra t ing  p a r a m e t e r s  

a, overall wing angle of attack 
P ,  b, p yaw angle , yaw rate , yaw acceleration 

$, 4, 4 roll angle, roll rate, roll acceleration 
An bound circulation Fourier coefficients 

Aerodynamic  quant i t ies  

two-dimensional airfoil lift-curve slope 
induced angle of attack 
bound circulation 
local profile drag and lift coefficient 
local profile pitching moment coefficient 
total lift 
total rolling moment 
total yawing moment 
air density 
local and centerline air velocity 

Di s t r ibu ted  loads  

moment about z-axis 
moment about local spanwise axis 
moment about local wing-normal axis 
moment about z-axis 
moment about local spanwise axis 
moment about local wing-normal axis 
wing mass density per unit span 
gravitational acceleration 



1 Introduction 

A standard practice in the calculation of wing aerody- 
namic forces and resulting structural loads involves decou- 
pling the two problems. Some geometry is assumed, typ- 
ically corresponding to the unloaded wing or some simple 
assumed deflection mode, and this geometry is then used 
for aerodynamic force calculations. This is a very effec- 
tive approach for moderate to low aspect ratios, where the 
deflections are small and hence have little effect on the aero- 
dynamics. A substantial improvement in accuracy over the 
decoupled procedure can be obtained by incorporating lin- 
earized structural deflections into a linear aerodynamic so- 
lution and vice-versa via influence coefficients. An example 
of this technique is given by Caap and Elmeland [I] for 
a compact fighter configuration. For very high aspect ra- 
tios, however, nonlinear structural theory may be required 
for sufficient accuracy, especially a t  limit loads where pre- 
diction accuracy is most important. Typical examples are 
high performance sailplanes, human powered aircraft, and 
ultralight high-altitude long endurance aircraft. If exter- 
nal bracing at small angles to the wing axis is employed, 
nonlinear effects can become especially important in load 
prediction. The Daedalus wing is one example where non- 
linear effects dominate near limit-load conditions. 

A further complication which arises from large structural 
deflections is that the applied aerodynamic loads are altered 
nonlinearly. Indeed, in the Daedalus , the nonlinear interac- 
tion between the static deflection and sideslip is relied on as 
the sole roll control mechanism! The brute-force approach 
to solving such a problem would involve iterating repeat- 
edly between the aerodynamic and structural calculations 
until the overall structural-aerodynamic solution converges. 
This tends to be an expensive procedure which is not al- 
ways guaranteed to converge, especially if the structure is 
near buckling (as in an externally-braced wing). Underre- 
laxation may be required, which further slows the conver- 
gence. 

This paper presents a robust and economical procedure 
for solving the aerodynamic and nonlinear structural prob- 
lems as a fully-coupled system for a high aspect ratio wing. 
Lifting line theory governs the spanwise aerodynamic force 
distributions, and nonlinear bending/torsion beam theory 
is used to govern the structural response. The structural 
formulation is assumed static except for rigid-body acceler- 
ations. The resulting overall problem for the aerodynamic 
and structural unknowns is non-linear, but can be readily 
solved by a global Newton method. Examples are drawn 
from the Daedalus human powered aircraft wing. 

2 Structural Formulation 

A system of Cartesian coordinates z, y, z is fixed to the 
aircraft as shown in Figure 1. For a high aspect ratio wing 
with large deflections, modeling the wing as a nonlinear 
beam is very accurate. In most actual applications such as 
the Daedalu~ wing, only the vertical displacements need to 

Figure 1: Coordinates and freestream rotation angles. 

Figure 2: Displacements and structural loads. 

be treated nonlinearly, however. It is therefore appropriate 
to define a local z,  s, n coordinate system attached to the 
wing which undergoes a simple rotation from the Cartesian 
z, y,z frame by a simple rotation t9 about the z axis as 
shown in Figure 1. 

Figure 2 shows the sign conventions for the structural 
displacements u, w of the wing reference axis in the Carte- 
sian frame. The wing reference axis is defined to lie at the 
shear center location (z/c),, of each spanwise station. The 
torsional twist angle t is defined about this reference axis. 

The fully nonlinear beam equations as given in Rivello [2] 
are suitably simplified by assuming the twist angle t to be 
small, and the fore and aft wing bending deflection u to be 
small. Only the wing up and down bending deflection w is 
assumed to be large enough to require non-linear structural 
analysis. The vertical deflection angle t9 and the fore and 
aft deflection angle p are related to the deflections u and 
w as follows. 



dw 
sin V = - 

ds 

Because even small twist angles can have a significant 
effect on the aerodynamic loading, torsion effects must 
be included in the overall analysis. These are generally 
small enough, however, to permit small-angle simplifica- 
tions. Similarly, fore and aft deflections can have a sub- 
stantial effect on the pitching moments of the entire wing 
as well as affecting the torsion indirectly. For this reason, 

X 
the fore and aft deflections must be retained even if they 
are very small. Relation (1) could therefore be safely ap- 
proximated as (P = du/ds although this would not produce Figure 3: Principal bending axes in the Daedalus wing 

a significant computational advantage. structure. 

With the wing modeled as a slender beam, only the lo- 
cal bending *tiffnesses EI,,, EI,,, EI,,, and the torsional twist t, the resulting stiffnesses in the s-n frame are given 

stiffness G J  are needed for a full structural description of by the following relations. 

the wing. These are defined in the local rotated wing co- 
ordinates z,  s ,  n, as are the tension load PI shear loads S, 

EI,, = EI;, sin2(f+t) + Elout cos2(f+t) (12) 

bending moments M ,  and torsion T. EI,, = (Elout - EI;,) sin(f+t) cos(Gt) (13) 
The beam equilibrium equations in their nonlinear form EInn = EI;, cos2(Lt) + Elout sin2 ( h t )  (14) 

are given by Rivello [2]. 

The standard slender beam stress-deflection relations are 
used to close the equation system, with (PO, 80, to, denoting 
the zero load (built-in) deflection angles. 

d 
T = GJ-(t - to) 

ds (11) 

The local section bending stiffnesses EI,,, EI,,, and EI,,, 
are obtained from the specified in-plane and out-of-plane 
stiffnesses El;,, Elout. For convenience, these are assumed 
to be defined in the wing's principal bending axes in which 
the cross-product stiffness vanishes. The principal axes in 
the unloaded condition are set at the known angle f to the 
z-y plane. In the Daedalus wing, a forward main spar is the 
only significant torsion and out-of-plane bending member. 
A small rear spar supplies in-plane bending stiffness only. 
For this case, the in-plane principal axis goes through both 
spar centers, and the shear center is located at the main 
spar as shown in Figure 3. Accounting for the structural 

The force loading functions p,, p,, p,, and moment load- 
ing functions m,, m,, m,, arise from distributed wing 
weight, inertial reactions, aerodynamic forces, and exter- 
nal point loads. Examples of point loads are those due to a 
fuselage, external stores, or external bracing struts or wires. 
The Daedalus wing employs one lift wire with an angle of - 
19 attached at s = s, (approximately the midspan). This 
exerts a force F, at a point having a small normal offset 
an ,  from the spar neutral plane as illustrated in Figure 4. 
The force is applied directly under the shear center (spar 
position), so that no applied moment about the s axis re- 
sults, but the offset an ,  causes an applied moment about 
the z axis. The fuselage weight exerts a central point load 
Fj at s = 0. The aerodynamic lift forces are assumed to 
act at the quarter chord location and normal to the wing's 
axis and the local relative airflow, with the profile pitch- 
ing moment coefficient assumed to be constant. The drag 
forces are taken to act along the relative airflow, whose di- 
rection is altered from that of the freestream by the induced 
downwash angle a; and roll rate 4, which accounts for in- 
duced drag and roll-yaw coupling. Both angle corrections 
are assumed small. The local airspeed is altered from the 
centerline airspeed via the yaw rate 8. 

The loading functions for the Daedalus wing example are 
given below, with the point loads repreeented with the unit 
impulse function 6. 

p. = F, cos(6-8) 6(s-s,) - mgsin t9 (17) 

m, = F,, cos(&8) 6(s-s,) an, (18) 



Figure 4: Daedalus wing external wire bracing geometry. 

In the case of the Daedalus wing, the loading functions 
depend on the applied forces of the lift wire tension Fw, 
and the fuselage vertical force F,. The angle 6 of the lift 
wire in the y - z plane is related t o  the overall geometry 
and the wing displacements w(sw) a t  the wire attach points 
(see Figure 4). 

The lift wire tension is proportional to  its strain which 
arises directly from the wing displacement at  the two lift 
wire attach points. The wire tension Fw in equations (17), 
(18), (19) can therefore be expressed in terms of the local 
deflection w(sw) by the following stress-strain relation. 

With a first order system of eleven equations, eleven 
boundary conditions must be imposed t o  obtain a unique 
solution. For computational symmetry, however, it is bet- 
ter to  treat the two wing halves as two coupled structural 
problems. A total of twenty-two boundary conditions and 
compatibility conditions between the two halves are then 
imposed. At each wingtip ( s  = &b/2), zero shear, axial 
tension, bending moment, and torsion are specified: 

At the wing center, deflections, deflection angles, and twist 
angles are specified for each wing half. 

These conditions ensure compatibility between the two 
wing halves a t  the centerline. Also, the center point load Fj 
in equation (17), assumed to be applied a t  s = 0, no longer 
enters the formulation explicitly. The above conditions as- 
sume that  the wingroot is clamped. The Daedalus wing 
mount is rather unique in that  it is pinned in in roll, and 
hence can transmit no significant rolling moments into the 
wing. For this special case, the two constraints on t9(*0) 
must therefore replaced by conditions of slope and moment 
continuity. 

3 Aerodynamic Formulation 

A lifting-line formulation with non-uniform spanwise dis- 
tribution of the air velocity V is used as the aerodynamic 
model of the wing. Allowing for the effects of structural 
twist t ,  roll rate 4, and coupling between sideslip (yaw) P 
and local dihedral angle 6 = arcsin(dw/ds), the local r is 
given by 

with a being the local angle of attack defined from the local 
zero-lift line relative to  the z axis and with the local twist 
t = 0. 

Although the bending deflections were not assumed small 
in the structural formulation, here the wing is assumed t o  
be flat t o  permit the application of standard lifting-line 
theory. This assumption will have a relatively minor effect 
on the overall aerodynamic solution if the deflections are 
not too excessive, such as for the Daedalus wing examples 
which will be presented. More exact aerodynamic formu- 
lations (such as vortex lattice) could be incorporated to  
properly account for very large deflections, but a t  consid- 
erably greater computational effort. 

With the flat wing assumption, the Cartesian coordinate 
y in equation (27) can be replaced by the structural span- 
wise coordinate s. Following standard lifting-line wing the- 
ory, this in turn is expressed by the spanwise Glauert coor- 
dinate 6. 

b 
s = - cos6 

2 (28) 

This coordinate permits an efficient discretization of r as a 
Fourier series. 

I'(0) = A, sin n6 



For computational purposes, the infinite series can be safely 
truncated to  as few as ten terms for most cases. If geo- 
metrical discontinuities due to  aileron or flap deflection are 
present, more terms may be required for adequate accuracy. 
The induced angle corresponding to the bound circulation 
and associated trailing vorticity is given by 

m 
1 sin no 

a i (e )  = - 1 n ~ , -  
2 V b  sin 0 

n = l  

where V is the local s i r  velocity which can have a spanwise 
variation due t o  yaw rate. 

In terms of the Fourier coefficients, equation (27) becomes 
the following. 

With the infinite aeries in equation (32) truncated to  N 
terms, N independent equations for the Fourier coefficients 
A, (n = 1 , 2 , .  . . , N )  are obtained through a Fourier de- 
composition. 

/ {equation ( 3 2  sin 0 dB 
0 

/' {equation (32)) sin 28 dB 
0 

equation (32)) sin Ne db' (33) 

These equations depend on the structural twist t and deflec- 
tion angle 6 ,  and hence the Fourier coefficients are coupled 
to the structural solution, as well as the aircraft angle of at- 
tack a,, sideslip P ,  and roll rate $. None of these quantities 
are known a priori in the general case, where for example 
only the overall lift or rolling moment, and/or yawing mo- 
ment may be known or prescribed. Hence, a, p,  and 4 
require additional constraints t o  fix them. These are read- 
ily obtained as appropriately weighted spanwise integrals 
of the aerodynamic, gravitational, and inertial forces. 

The moment definitions (35), (36), use the spanwise arc 
length coordinate s as the moment arm for the forces a t  

that  spanwise location. This is an approximation made for 
computational simplicity. The associated errors are negli- 
gible, since precise knowledge the overall roll and yaw mo- 
ments is not very important for accurate structural load 
predictions. The lift can be very important however, and in 
equation (34) force components are accounted for to  second 
order in the wing deflection. Note that  the rolling moment 
definition (35) includes the inertial reaction from the roll 
acceleration $, so that  M as defined will invariably be zero 
in actual applications (aswming of course that  the wing 
accelerates in roll as a rjgid body). External yaw moments 
can be applied a t  the wing root with the rudder, however, 
meaning that  U will not necessarily be zero. The  moment 
definition equations (35), (36) assume that  the wing is sym- 
metric in mass distribution. Accounting for non-symmetry 
would result in only minor complications. 

4 Coupled System Solution 

The structural problem to be solved is defined by the 
two displacement-angle relations (1) - (2), the six equilib- 
rium equations (3) - (8), and the three stress-deflection re- 
lations (9) - (11). These constitute a first-order system 
of eleven equations in the eleven unknowns u ,  w, p, 6, t,  
P, SZ, S,, M,,  Mn, T. These unknowns are local in the 
sense that  they are functions of the spanwise coordinate 
s. The first order system also depends on global unknowns 
which appear in the loading functions defined by equations 
(16) - (21). These are the circulation Fourier coefficients 
Al,..Az, .:.. A N ,  and the global operating parameters a,, P ,  
,B, P, +, 4. The N Fourier coefficients are constrained by N 
equations (33). The applied forces are either specified, or 
related t o  the attachment point displacements as in equa- 
tion (23). The operating parameters are either specified, or 
implicitly defined by enforcing any number of the three lift 
and moment relations (34), (35), (36). 

4.1 Discretization 

The structural problem is discretized using the well- 
known Keller's Box finite difference scheme [4], which is 
second-order accurate for arbitrary grid node distributions. 
The wing is divided into a suitable number of spanwise sta- 
tions (or grid nodes) a t  0 = O,, with j being the spanwise 
index ( - J  5 j 5 J ) .  An ideal distribution for resolving 
the steep circulation gradients near the wingtips is a uni- 
form node spacing in 0, which produces a "cosine" spacing 
in the physical spanwise coordinate s. The  structural solu- 
tion, however, dictates a more or less uniform discretization 
in s. An effective compromise is struck with the following 
distribution formula for 0,. 

For a given total number of nodes 25,  this results in the 
node spacing a t  the wing center being reduced by a factor 



Note that  for the zero-width (j, , j, + 1) interval where t,he 
lift wire is attached, equation (41) sutomaticslly reverts to 

s=o 5-S,  s=& 

I I .' I '  piw+l - pi, = -Fw cos (s - oj,) (43)  
\ . ::. : r ,  

' A'\ i )  .I? ;* 
j=  -2 -101 2 j W c l  J,$ J-1 J which simply causes the axial load P of the wing to correctly 

i u m ~  bv an amount equal to  the axial load applied by the 

Figure 5: Node indexing. 

of 0.5 from the pure cosine spacing. The tip spacing is 
increased by a factor of 1.5, but still decreases sufficiently 
towards the tip to  properly resolve the circulation gradient. 

The node distribution defined by equation (37) is mod- 
ified slightly to  ensure that  a node falls wherever a point 
load is applied. In the case of the Daedalus wing, this cor- 
responds to  the wing center where the fuselage is attached 
by a point support, and the station where the lift wire is 
attached. This index of the latter node is denoted by j, so 
that  sj, = s,. Also, the j, + 1 node is placed at  the same 
location, so that  sj,+l - sj,,, = 0 (see Figure 5). This 
zero-width interval permits the lift wire load to be intro- 
duced as a perfect discontinuity in the shear (for example), 
with no significant modifications t o  the  finite difference for- 
mulas. Likewise, the j = -1 ,0 ,1  nodes all coincide a t  the 
centerline for the same reason. 

The Keller box differencing scheme applied to  the first 
order structural system results in eleven finite difference 
equations a t  each ( j ,  j + l )  interval. For example, equation 
(1) is discretized as 

- - -  
wire. Again, no special differencing form is required at  this 
interval. As a final example, equation (5) is discretized as 
follows. 

Again, for the zero-width (j, , j, 4 1) interval, equation 
(44) automatically reverts to  

which gives the correct jump in the shear S, due to the 
normal lift wire load component. 

The equations (33) which constrain the Fourier circula- 
tion coefficients are put into discrete form by simple trape- 
zoidal summation. 

3-1 

C sin B,+ + A B  . A 
I +  2 

where j=- J 

asj++ = S j + l  - s j  

Note that  a t  the zero-width (j, , j ,+l) interval for which 
A S  = 0 , the above equation automatically assumes the 
correct u-displacement continuity form 

with no special treatment. Equation (?), after being \-nrn- 
bined with the distributed spanwise load definition (I$), is 
discretized as follows. 

Pj+l - Pj where the subscript i + implies an average between j + 1 

+ FW cos (s-* '+~+*~) 6j,jw s R r j  = 0 
2 

(41) 4.2 Newton System 

In the above equation, the wire angle 4 and tension F, are The nonlinear system t o  be  solved has the form 
defined in terms of e,, by relations (22) and (23). Also, 
the product asb(s-s,) has been replaced by the Kronecker R(U) = 0 (47) 

delta, defined as 
where U is the unknown vector whose components consist 

if j = jw of all the local structural unknowns, and global aerody- 

0 
(42) namic unknowns. R is a vector function whose components 

if i # jw consist of local finite-difference residual functions such as 



R,,, Rp j, or R s j  as defined by equations (39), (41), (44), 
or discretized global constraint residuals such as R A ~  as 
defined by equation (46). Given an approximate solution 
U Y  at iteration level v, the change 6 U  needed to obtain an 
improved guess u"+' is determined by solving exactly the 
linearized form of (47) 

which drives the residual vector R closer to zero. The 
known Jacobian matrix BRIBU in equation (48) consists 
of a block tridiagonal matrix with 2 5  rows of 11 x 11 blocks 
filled with partial derivatives of the structural residual func- 
tions such as (44) 

evaluated with the current approximate solution. Each 
block row also contains a number of full columns corre- 
sponding to the global variables, since R s  j also depends on 
the global variables A1 , Az , . . . AN , 4. The Jacobian ma- 
trix also contains an additional small number of rows (one 
for each global variable) corresponding to the linearized 
global constraint functions such as 

which is given fully by equation (33). However, since R A ~  
depends on structural variables at all spanwise stations, 
these rows are generally full. This precludes solving the 
linear Newton system (48) by a standard block-elimination 
algorithm. To simplify the overall solution procedure, the 
Newton system is split into two systems - a large, sparse, 
strictly block-triagonal system for the changes in the local 
structural unknowns 6Ut,  and a relatively small, generally 
full system for the changes in the global aerodynamic un- 
knowns and operating parameters 6Ug. 

Equation (50) with the multiple righthand sides is readily 
solved by a standard block elimination method to give 

which is substituted into (51) to produce 

which is a full but relatively small system involving only the 
global unknown changes 6U,, and is easily solved by Gaus- 
sian elimination. By substituting the now known global 

variable changes into the partially determined system (52), 
the local variable changes 6Ug are completely determined. 
The local and global solution can now be updated, 

and the overall process repeated if the changes are above a 
convergence tolerance. For the Daedalus wing in level flight 
conditions, about three Newton iterations are required to 
converge to machine accuracy. If the solution is close to a 
structural instability, however, as many as eight iterations 
may be required. 

5 Validation and Applications 

The complexity and degree of generality of the present 
method makes thorough validation of the theoretical for- 
mulation and the computational implementation quite dif- 
ficult. Limiting problems for which analytic solutions are 
available can be calculated to validate the bulk of the im- 
plementation. A further test of the overall coupled struc- 
tural/aerodynamic formulation results from comparisons 
with structural measurements of the Daedalus wing under 
load. 

5.1 ElIipticalIy-loaded wing 

If the following simplifications are made, an analytically 
tractable aerodynamic/structural problem results: 

1. Deflections and structural twists are made small by 
specifying EI;, , Elout, G J >> L: b2 , rng = 0. 

2. The external loads and spar compression are zero F,  = 
P = 0. 

3. The wing has no twist ( a  = constant) and has an el- 
liptical planform c = c, sin 8. 

4. Yaw and roll angles, rates, and accelerations are zero . .. . .. p = p = p = o , , p = , p = , p = o .  

5. Nonuniform bending stiffnesses of the form EI sin8 
are chosen. 

The latter assumption also tests the representation of a 
non-uniform beam. 

According to classical lifting-line theory, a wing with an 
elliptic planform and no twist experiences an elliptic span- 
wise circulation distribution r = A1 sine. The first har- 
monic coefficient is given by 

and all higher harmonics are zero. By specifying a zero wing 
mass distribution, excluding all point loads and acceleration 
effects, and assuming negligible induced drag (high aspect 
ratio), the only loading function is 



Figure 6: Test comparison of computed (lines) and analytic 
(symbols) solution for high aspect ratio elliptical wing. 

for which an analytic solution can be obtained for all the 
structural variables. 

Figure 6 compares the computed circulation distribution 
r, bending moment M,, and deflections u and w with the 
analytical solution for a high aspect ratio ( b/co = 100 ) 
elliptical wing for which all the above assumptions hold. 
The in-plane and out-of-plane bending stiffnesses were cho- 
sen so that EI;, = 3EIOut, and the wing's local principal 
bending axis angle was specified to be at f = 45' to the 
z - y plane. This tests the implementation of the local 
stiffness relations (12 - 14) and the cross-coupling in the 
moment-deflection relations (9 - 10). Despite the relatively 
small number of points (J = l l ) ,  the solutions match per- 
fectly. Since the aerodynamic formulation determines the 
beam loading and the structural formulation determines the 
resulting structural moments and deflections, both formula- 
tions are checked for correctness in this test. The computa- 
tion time required for this case was 5s CPU on a MicroVax 
11. 

5.2 Daedalus wing - level flight 

The present calculation method was extensively em- 
ployed in the wing design for the Daedalus human powered 
aircraft. The actual planform and structural parameters of 
this wing are shown in Figure 7. The parameter disconti- 
nuities are due to stepping of the graphite-epoxy plys in the 
main spar. The wing's overall aspect ratio is 38, making it 
an ideal application for the present method. 

Figure 8 shows the computed loading, shear, and moment 
distributions on the wing in level flight. A typical airspeed 
of 22 ft/s and a gross weight of 240 lb were specified for 
this case, and the corresponding overall angle of attack a, 
was automatically determined by the global Newton solu- 
tion scheme. Also shown is a photograph of the aircraft in 
flight under these operating conditions. The calculated and 
observed wing deflection shapes agree perfectly within plot- 
ting accuracy. Note that the structural load discontinuities 
due to the wire and fuselage loads are captured exactly as 
discussed previously. This calculation was performed with 
J = 51 points on each wing half, and N = 11 circulation 

Figure 7: Planform and structural parameters of the 
Daedalus wing. L,,f = 230 lb. 

Figure 9: Calculated structural loads on the Light Ea- 
gle wing in level flight, with measured bending moment 
range. 

harmonics. Three Newton iterations were required with a 
total of 60 s CPU time. 

In-flight strain gauge measurements were taken on the 
Light Eagle aircraft which served as a prototype for the 
Daedalus . Figure 9 shows the bending moment distribu- 
tion with the range of values measured just outboard of 
the wire attachment points. The strain gauges were cali- 
brated by directly applying known bending moments to the 
wing in the hangar. A 10 Hz data sampling rate used over a 
flight period of several minutes gave a large number of quite 
reliable data points. The spread in the measurements is ap- 
parently caused mainly by gust loads. The mean measured 
moment compares quite well with the calculation. 



Figure 8: Calculated structural loads on the Daedaluo wing in level flight, with photograph of actual aircraft. 



Figure 
10: Calculated structural loads on the Daedalus wing in 
a 1.8-g pullup. 

5.3 High-lift and Maneuvering Loads 

Due to very strong pitch damping and a cruise lift coeffi- 
cient close to  stall, i t  is nearly impossible to  exceed 1.1 g's 
on the Daedalus with full stick deflections, as the Light Ea- 
gle flight tests have shown [5]. Nevertheless, the wing must 
be stressed to higher g-loads since gusts, higher speeds, and 
slipping maneuvers greatly aggravate the situation. 

The Daedalus wing was nominally stressed to 1.8 g's [6]. 
A straight-pullup calculation, with the normal level-flight 
lift and the wing mass distribution both multiplied by the 
1.8 load factor, is shown in Figure 10. A relatively high air- 
speed of 28 ft/s is specified t o  avoid unrealistically high lift 
coefficients. The wing is in no danger of buckling, although 
material stresses are just exceeded in the wing spar. 

In Figure 11, a p = 30" sideslip is combined with a 
1.6-g pullup. Such seemingly extreme sideslip angles were 
actually measured on the LightEagle aircraft which was 
equipped with an air da ta  system. This maneuver is rep- 
resentative of a Upanic recoveryn from an imminent spiral 
dive - not an infrequent occurrence in human powered air- 
craft. The wing has nearly snapped through on the right 
wing (yawed into the airstream), with the attendant bend- 
ing moment increases. Specifying a load factor of 1.65 g's 
results in failure of the Newton algorithm to converge, in- 
dicating buckling. This shows the dramatic effects on the 
load margin which can result from unfavorable flight atti- 
tude combinations. I t  must be stressed that  the nonlinear 
fully-coupled formulation of the present analysis is essential 
to  capture this behavior, and was crucial in the structural 
design of the Daedalus wing for actual flight conditions. 

It is important to  point out that  in addition t o  the sideslip 
p, the calculated loads can be quite sensitive to  the partic- 
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Figure 11: Calculated structural 
loads on the Daedalus wing in a 1.6-g pullup with a 30" 
sideslip angle. 

ular values of yaw rate ) and roll rate 4 selected. For the 
above case, a zero roll rate 4 = 0 was specified, and the yaw 
rate ) was implicitly determined by specifying a zero net 
rolling moment M with equation (35). This corresponds 
to  a steady-state turn with the constant sideslip P over- 
coming the inward rolling moment due to  the yaw rate. 
Equivalently, a zero yaw rate f i  could be specified, and the 
roll rate 4 determined as a result. This flexibility is very 
valuable in quickly investigating various flight situations to  
determine the likeliest failure scenario. For any flight sit- 
uation, aerodynamic performance values such as induced 
drag are also determined, allowing the estimation of drag 
penalties from maneuvering flight. 

5.4 Divergence speed 

The current method is capable of estimating the speed 
a t  which structural divergence occurs. Figure 12 shows 
the structural solution of the Daedalus wing for the rather 
high speed of 45 ft/s. The wing is very severely twisted 
due to the airfoil pitching moment, and the wing tips are 
close to  "tuck-inn. If a flight speed of 48 ft/s is specified, 
the Newton algorithm refuses t o  converge, indicating di- 
vergence. For this particular aircraft, this divergence speed 
could only be achieved with an unreasonably steep dive. 

A very similar approach could be used to determine 
aileron reversal speeds. The effect of an aileron is incor- 
porated by a modification of the local aerodynamic angle 
a and pitching moment coefficient c,. By monitoring the 
net rolling moment on the aircraft, it is a simple matter 
t o  determine the reversal airspeed a t  which the structural 
twist t over the entire wing caused by the additional aileron 
pitching moment overcomes the effective addition to  a at  
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Figure 12: Calculated structural loads on the 
Daedalus wing near divergence speed. 

the aileron location. 

6 Conclusions 

A method for the simultaneous calculation of aerody- 
namic and structnral loads has been developed and applied 
to the design and analysis of a flexible high aspect ratio 
wing. The strong coupling between static deflections and 
aerodynamic loads has been treated by solving the entire 
nonlinear aerodynamic/structursl equation set as a fully- 
coupled system by a global Newton method. The ov~ra l l  
scheme is very accurate, robust, and computationally eco- 
nomical. 

Calculated examples illustrated the versatility of this nu- 
merical tool for the prediction of structural loads for design 
and limit loads, and the determination of lateral stabiiity 
derivatives and aerodynamic performance in the presence 
of large static deflections. Flight modes which include any 
combination of roll and yaw angles, angle rates, and angu- 
lar accelerations can also be simulated to determine loads 
and aerodynamic performance under these conditions. 

Although the present method is applicable to any moder- 
ate to high aspect ratio wing, it is especially valuable in rel- 
atively flexible aircraft. Applications for which the present 
method is particularly well suited include human powered 
aircraft, very high altitude remotely piloted vehicles, and 
high performance sailplanes. 
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