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Abstract

The dynamic behaviour of the strongly coupled twin-stripe semiconductor laser is studied theoretically in dependence on
the pumping strength (current injection). With the aid of power spectra, next-maximum maps, and estimates of the attractor
dimensions bifurcations from a three-torus to a two-torus and from two-tori to chaotic attractors are identified.

1. Introduction

Frequently, the dynamics of arrays of coupled lasers
has been modelled by discrete coupled nonlinear os-
cillators [ 1-3], involving ordinary differential equa-
tions. In this paper, we analyze the dynamics of the
twin-stripe semiconductor laser based on a system of
phenomenological partial differential equations allow-
ing for a continuous description of the transverse op-
tical pattern [4-6]. In previous numerical simulations
based on this model it has been observed that the twin-
stripe laser may exhibit three dynamical regimes [6],
depending on the separation between the laser stripes:
(i) For separation s =~ 5 um the lasers are strongly
coupled and show tori and low-dimensional chaos. (ii)
With increasing stripe separation the correlations be-
tween the two stripes gradually become weaker and
more complex spatio-temporal behaviour indicative of
higher dimensional chaos is observed. (iii) At a cer-
tain critical maximum stripe separation the two stripes
start to behave as individual lasers, each of which ex-
hibits the typical relaxation oscillations of single-stripe

semiconductor lasers.

The focus of our attention in this paper is the
strongly coupled twin-stripe laser (i) where the sep-
aration between the two laser stripes is of the order
of the diffusion length of the charge carriers. We will
concentrate on analyzing its dynamics with methods
of time-series analysis. There, as will be shown in the
following, the variation of the pumping-strength, i.e.,
the injection current, has tremendous influence on the
dynamics.

2. Modelling spatio-temporal dynamics

The dynamics of the longitudinally (in the z-
direction, cf. Fig. 1) slowly varying counterprop-
agating optical fields E¥ and the dynamics of the
electron-hole density N are described by a model sys-
tem of coupled nonlinear partial differential equations
[4-6]. In the following simulation (with the excep-
tion of Fig. 2) we use a mean-field approximation [ 7]
for the longitudinally averaged field E = E*t=E-,
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Fig. 1. Schematic structure of a combined gain- and index-guided
GaAs/AlLGay . As twin-stripe laser.
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The optical gain and the change of the retractive index
of the active medium arc modeled by the phenomeno-
logical lincar gain-function g(N) = a(N - Ny} and
Sn = -aaN/kg, respectively | 8], where the differen-
tial gainisa = 1.5x 107'%cm?, Ny = 0.64 < 10'¥¢m
is the carrier density at transparency, n; = 3.59 is the
refractive index of the active semiconductor layer, kg =
277/ A is the wavenumber in vacuum, A = 815 nm the
optical wavelength, ¢ the speed of light and &g 15 the
vacuum permittivity. The linewidth enhancement or
anti-guiding factor & = 2 is assumed as constant. Spa-
tial and temporal variations of & which become impor-
tant, ¢.g.. in broad-area semiconductor lasers [9.10]
are thus disregarded.

The non-radiative decay ot the clectron-hole den-
sity is represented by the recombination time 7
5 ns. The diffraction coefficient D, = (2n;kq)
18 % 107% m results from the paraxial ray approxi-
mation | I |} which has been performed to obtain (1)
from Maxwell’s equations [ 4]. The transverse passive
waveguiding properties are characterized by 7(x)
ko (e — ’ld»‘f) forx;—w/2 < x < x;+w/2and 7(x)
kone in the regions between the stripes, where v, f =
1, 2. is the center of the ith laser, w = 5 pm its width,
nerr = 3.42 its effective index, and n. = 3.35 is the re-
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Fig. 2. Computed near-field intensuty /¢ v 1) for the strongly con
pled twin-stripe semiconductor laser with & stripe separation of
s =5 wm and an injection current J = 50 mA per laser stripe
Bright colors represent high light intensity, dark shading indicates
low intensity values.

fractive index of the cladding layer. The confinement
factor ['(x) =0.5149 for v, w/2 < v < x, + w2,
and I'(x) = 0.5013 between the laser stripes. repre-
sents the transverse dependence of the vertical con-
finement of the optical field to the active layer. The
distributed loss at the facets is represented by the pa-
rameter y,, = In\/RiR2/2L. where Ry = (.32 and
Ry = 0.99 arc the reflectivities of the faccet mirrors at
s =0and 7 = L =250 um, respectively. The rrans-
verse boundary conditions 2E/dx = ~aE.dN/dx =
—aN at x = +W/2 and 8E/dx = +ay £, ON/dx =
+ag N, at x = -W/2 where W = s+ 2w -+ 2w, with s
being the stripe separation, account for the absorption
(a, =30 cm~') in the “wings” (w, = 10 um) out-
side the laser stripes, and the charge carrier recombi-
nation effects ( ay ) at the surface of the structure. The
surface-recombination coefficient [ 12] ay = 14/ Ds
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Fig. 3. Three typical examples of the time-series /(¢) obtained
by transverse spatial averaging from the simulated spatio-temporal
intensity distribution for s = 5.5 um and different injection currents
J. (a) J =47 mA, (b) J =51 mA, and (c) J =45 mA.

includes the diffusion coefficient D¢ = 30 cm?/s and
the surface recombination velocity vg = 10 m/s. The
coupled system of nonlinear partial differential equa-
tions (1), (2) is discretized in time (¢) and space
{x, z) and the resulting finite-difference equations are
integrated using the Hopscotch method (5,13].

The transversely dependent excitation of the two
oscillators — determined by the injection of charge
carriers through the two contact stripes (hatched in
Fig. 1) at the top of the device - is applied at t = 0
with a step-function and held constant in time. It is
represented by the pumping term A(x) = jn;/ed for
xi—w2<x < x5+ w/2 and A(x) = O otherwise.
The injection current density is denoted by j, n; = 1
representing the injection efficiency has been assumed,
e is the electron charge and d = 0.15 pum the (vertical)
thickness of the layer.

Fig. 2 shows as an example the dynamics of
the output intensity at the front facet I(x,?) =
T\E(x,0)|*/Z, Z = m/eoc and Ty = 1 — Ry be-
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Fig. 4. Power spectra of the time series in Fig. 3. (a) J =47 mA,
(b) J=51 mA, and (c) J =45 mA.

ing the optical wave-resistance in the semiconductor
medium and the transmittivity of the front mirror,
respectively. The separation s = 5 um between the
two laser stripes is within the typical diffusion length
of the change carriers which are injected through the
two current stripes on the top of the laser. In the fol-
lowing, however, we will concentrate on the analysis
of the dynamics of the transversely averaged optical
intensity — as frequently done in experiments - and
vary the injection current J = jwL which is applied
to the twin-stripe laser. Note that in spite of this av-
eraging the consideration of the spatial dimension
in the simulation is vital. It has been shown [14]
using empirical orthogonal functions that the bifurca-
tions discussed below are accompanied by qualitative
changes of the spatio-temporal patterns. However, in
this paper we focus on the temporal dynamics.

3. Dynamics and bifurcations

In Fig. 3 we have plotted the transversely averaged
optical intensity 7 (¢) for three different injection cur-
rents. The time series in Fig. 3a (J = 47 mA) shows
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Fig. 5. Map of consccutive maxima of the spatially averaged intensity. (a) J =47 mA, ¢by /

oscillations with varying amplitudes. More informa-
tion than by mere visual inspection can be obtained
from a Fourier transform of the time serics. In the cor-
responding power spectrum, where data from the in-
terval from 40 to 100 ns have been used, the frequency
peaks in Fig. 4a can be explained by lincar combi-
nations of two incommensurate fundamental frequen-
cies f) and f3, suggesting dynamics on a two-torus.
The frequency peaks in Fig. 4b, corresponding to the
time series in Fig. 3b, however, cannot be explained
by two frequencies alone. Careful analysis of the spec-
trum reveals that more than 15 peaks can be explained
as a superposition of three incommensurate frequen-
cies f1. fr. and f3. Hence, a three-torus is indicated,
According to theorems by Ruclle, Takens, and New-
house { 15.16] such three-tori are not generic and, con-
sequently, small variations ol parameters should give
frequency locking or strange attractors | 17]. Indeed,
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the spectrum in Fig. 4. corresponding to the time se-
ries of Fig. 3c. is profoundly difterent from the spectra
in Figs. 4a and 4b. and indicates chaotic dynamical
behaviour.

We emphasize that our simulations involve a large
number of spatial degrecs of freedom, and the possi-
bility of artificially generated “numerical noise™ due
to the discretization procedure cannot be a priori ex
cluded. Therefore in the following we apply several
methods of time-series analysis (o substantiate our hy-
pothesis that the dynamics can be interpreted in terms
of bifurcations from a three-torus to a two-torus or 1o
a chaotic attractor.

At first we consider maps ol consecutive maxima
of the intensity which are topologically equivalent to
Poincar¢ sections of the dynamic flow. Fig. 5a. corre-
sponding to the injection current J = 47 mA, suggests
indeed that the dynamics of the twin-stripe laser s
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Fig. 6. Near-neighbour dimension D versus embedding dimension
m. Time delay T =52.3 ps, neighbour order k = 100. (a) J =47
mA, (b) J =51 mA, and (c) J =45 mA.

confined to a two-torus. The plots in Figs. 5b and 5¢ in-
dicate higher dimensional attractors. For the proposed
three-torus (Fig. Sb), the points are more strongly
confined distributed than for the chaotic time-series
(Fig. 5¢) which gives a hint of the difference between
both situations.

In order to analyze the attractors quantitatively we
have estimated the corresponding fractal dimensions
using a nearest neighbour algorithm ! [18,191. It is
based on the calculation of the distances d; in a recon-
structed pseudo-phase space between attractor points
and their kth neighbour. Denoting the number of points
chosen for the calculation of the mean distance (dy)
by N, it was shown that {(d}) scales ~ N~'/P. We have
carefully checked the dependence of the estimated di-
mension D on the parameters of the phase space re-
construction (embedding dimension m, delay time 7)
and on the order k of the neighbours. It turned out that
the number of available data points Ny, = 8192 is suf-
ficient to get reasonable estimates for D < 3. Fig. 6
displays the dependence of the estimate of D on the
embedding dimension m. The convergence of D in
curves (a) and (b) of Fig. 6 to values around 2 and 3,
respectively, is consistent with the results in our pre-
vious analysis. The chaotic time series (Fig. 3c) does
not show such a saturation at integer values. Hence,
with the available number of data points the dimen-
sion cannot be determined quantitatively.

! We used an implementation by E. Kostelich.
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Fig. 7. Frequency bifurcation diagram. The normalized frequen-
cies and their linear combinations are plotted as a function of the
injection current J. The bold lines denote incommensurate fre-
quencies. The hatched areas mark the chaotic regimes.

So far we have analyzed three representative time-
series for injection currents J =45, 47, and 51 mA. It
turned out that the dynamics is governed by the inter-
action of three frequencies. In order to get a systematic
overview of the bifurcations due to varying current we
have plotted in Fig. 7 the dominant frequency peaks
as a function of J. For convenience, the frequencies
are normalized to f) which is in the order of 8 GHz.

Besides the frequencies f> and f3 also the harmon-
ics 2fy, 2f3 and the linear combinations f; — fs,
J2 — f3 and —f + 3 f; are clearly visible. Note, that
the three fundamental frequencies are incommensurate
only in those regimes where they are marked by bold
solid lines, i.e., a three-torus is found only where three
solid lines coexist. Thus, with increasing J, a two-
torus, a chaotic band with a quasiperiodic window, a
two-torus, and a three-torus, subsequently appear. A
bifurcation from the two-torus to a chaotic attractor
occurs at J = 43.5 mA. With decreasing J, frequency
locking from the three-torus to the two-torus happens
at J =~ 48 mA, where f, = 2f3, and the two-torus
eventually breaks up into a chaotic attractor at J ~
46.6 mA. In the two chaotic regions (hatched) there
still exist frequency peaks in the broad-band noise un-
derground which fit into the global scheme.
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4. Discussion

We have analyzed the dynamical behaviour of the
strongly coupled twin-stripe laser and obscerved b
lurcations i the time dependence of the spatially
averaged output intensity between quasiperiodic and
chaotic attractors upon variation of the applied injec
tton current. By calculating the power spectra of the
fime serics. next-maximum maps, nearest-neighbout
dimensions and, in particular. by a detatled analysis
ol the peaks of the spectrum, bifurcations between
two- and three-tori and temporally chaotic behaviour
are identified.

Motivated by the theorctical considerations ot Ru-
clle, Takens, and Newhouse, Grebogi et al. have stud-
icd in detail bifurcations from N-tori |17}, In their
numerical work they found that at parameters adjacent
to u three-torus in most cases two-tori and. 1o a lesser
extent, limit cycles and strange attractors appear. OQur
results can be regarded as an exemplification of such
a destruction of three-tori.

The underlying physical mechanisms of the gen-
cration of a second and third frequency are not yct
clear. It is worth mentioning that for stripe separations
s < 5 um the oscillations are symmetric with respect
o stripes 1 and 2 and with increasing distances be
tween the stripes the appearence of complex dynamics
around s = 5 pm is preceded by a breaking of the sym-
metry. Although the structure of the twin-stripe laser
is synumetric, in all our simulations reported above
onc of the stripes had a higher mean intensity than the
other one. By choosing other initial conditions the cor-
responding mirror-image of this asymmetric attractor
can be selected.

In conclusion, we emphasize that semiconductor
laser arrays, which are technologically important de-
vices, appear 1o offer interesting applications of theo-
retical concepts from nonlinear dynamics.
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