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ABSTRACT 

The study of particles containing heavy quarks is currently a major topic in 
High Energy Physics. In this paper. neural net trigger algorithms are developed 
to distinguish heavy quark (signal) events from light quark (background) events 
in a fixed target experiment. The event tracks which are parametrized by the 
impact parameter D and the angle @ of the track with respect to the beam line, 
vary in number and in position in the Q-D plane. An invariant second order 
moment feature set and an invariant D-sequence representation are derived to 
characterize the signal and background event track patterns in the Q-D plane. 
A 3-layer perceptron is trained to classify events as signal/background via the 
moments and D-sequences. A nearest neighbor classifier is also developed to 
serve as a benchmark for comparing the performance of the neural net triggers. 
Results indicate that the selected moment feature set and the D-sequence rep- 
resentation contain essential signal/background discriminatory information. 
The results also show that the neural network trigger algorithms are superior 
to the nearest neighbor trigger algorithms, A very high discrimination against 
background events and a very high efficiency for selecting signal events is ob- 
tained with the D-sequence neural net trigger algorithm. 



SUMMARY 

The study of particles containing heavy quarks is currently a major topic in 
High Energy Physics and, in this paper, neural net trigger algorithms are 
developed to distinguish heavy quark (signal) events from light quark 
(background) events in a fixed target experiment. The event tracks which are 
parameterized by the impact parameter D and the angle 4, of a track with 
respect to the beam line vary in number and in position in the 0-D plane and 
cannot, therefore, be used as inputs to a neural network directly. This problem 
is overcome by deriving an invariant second order moment feature set and a D- 
sequence representation to characterize the signal and background tracks in 
the Q-D plane. The moments feature set characterizes the dispersion of the 
tracks and the orientation of the tracks in the (P-D plane. The D-sequence 
which is obtained through a simple set of transformations captures the track 
variations along the D-axis. A 3-layer perceptron is trained to classify events 
as signal/background via the normalized moments feature set and the D- 
sequences. The key to a successful study of heavy quark physics is a very high 
discrimination against background events and a high efficiency for selecting 
signal events. A training strategy is developed to keep the background misclas- 
sifications at a minimum. A nearest neighbor classifier is also developed to 
serve as a benchmark for comparing the performance of the neural net trigger 
algorithms. The very high efficiency obtained for rejecting background events 
and for selecting signal events clearly indicate that the selected moment feature 
set and the D-sequence representation contain essential signal/background 
discriminatory information. The results obtained also show that the neural net 
triggers are superior to the nearest neighbor triggers and the D-sequence 
neural net trigger is superior to the moments neural net trigger. It is important 
to note that the results obtained are very impressive as tests on randomly 
selected events indicate that, in many cases, it is impossible to visually distin- 
guish between signal and background events from the track patterns in the O- 
D plane. 
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1. INTRODUCTION 

This paper focuses on developing neural net trigger algorithms to distinguish a 

heavy quark event from a light quark event in a fured target experiment. 

Currently, a major topic in High Energy Physics research is the study of par- 

ticles containing the “heavy” quark flavors, “charm” and “beauty”, and the 

search for the yet unseen top quark 111. Particles containing heavy quarks, 

called charmed or beauty particles, or simply heavy flavor particles, can be 

produced in the interaction of a beam of high energy particles either with sta- 

tionary nuclei (fixed target experiments) or with another beam of particles 

(collider experiments). In order to accurately catalog the properties of these 

particles, it is necessary to obtain relatively large samples of them, ranging 

from hundreds of events to millions or even hundreds of millions of events. At 

the same time, processes which produce heavy quarks (signal events) are very 

rare compared to less interesting background processes resulting in the “light” 

quarks (background events). The key to a successful study of charmed or 

beauty particles is thus a very high discrimination against background 

processes and a very high efficiency for selecting signal events [2]. 

The task is made even more diEcult by the very high rate at which the 

data is produced. Since processes which produce heavy quarks are very rare, 

it is necessary to use the highest achievable beam intensities to ensure that the 

required data samples can be obtained in a reasonable amount of time 

(typically a year for an experimental run). Whatever the rate of signal produc- 

tion, however, the rate of background production will be much higher, almost a 

million times higher in the case of the NAxx fixed target test experiment at the 
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European Center for Nuclear Research (CERN) [21. It is not feasible to record 

all of the events produced on storage media to evaluate offline. It is, therefore, 

necessary to make a decision online whether or not to record an event as it oc- 

curs, The amount of time available to make such a decision is typically in the 

order of ten microseconds. 

A device called an experimental trigger which can determine, in a micro- 

second order time, whether a given event is likely to be a heavy flavor event or 

background event is required. Very fast experimental triggers have tradition- 

ally been built using custom made high speed digital and/or analog electronics 

coupled with high speed microprocessors. Such triggers, however, have in the 

past been used to make relatively “simple” trigger decisions, for example, to 

detect a charged particle with momentum above some threshold in a particular 

detector, or, to sum the total energy in an event and determine if this sum is 

above a threshold. Such simple criteria can hardly provide the necessary ef- 

ficiency and background rejection for the high statistics study of heavy flavor 

events [I]. 

Recently it has been suggested that hardware neural networks could be 

used in experimental triggers for high energy physics experiments [3,4]. Feed 

forward neural networks are known to be able to perform a wide range of pat- 

tern recognition tasks, and the hardware implementations of such networks 

are very fast, with times to solution in the order of one microsecond. This 

paper describes a neural network approach to triggering based upon simulated 

data from the NAxx experimental project, 
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2. SECONDARY VERTEX CRITERION 

The most promising criterion for distinguishing heavy flavor events from back- 

ground events is the presence of a displ~aced vertex in heavy flavor events. 

High energy particle collisions typically produce many final state particles 

which emerge from a highly localized interaction point called the primary ver- 

tex. Final state particles containing heavy quarks are, however, unstable and 

will decay into daughter particles after travelling a small distance, producing a 

displaced, secondary vertex. There are background processes which can also 

produce secondary vertices such as strange particle production, but the dis- 

tance travelled by heavy flavor particles before decay and the multiplicity of 

tracks produced in their decays are excellent criteria for distinguishing heavy 

flavor events from background events. In order to make use of the secondary 

vertex criterion, it is necessary to measure points along the trajectories of all 

primary and secondary tracks, to reconstruct the tracks and extract the 

parameters of the trajectories, and to reliably ascertain whether the tracks 

emerge from one or multiple vertices. 

3. THE NAxx FMED TARGET EXPERIMENT 

In the NAxx project study, a proton beam p of energy 450 GeV/c2 is extracted 

from the CERN super proton synchrotron and directed onto a thin metal target. 

Particles originating in the proton-nucleus interaction emerge in the forward 

direction at small angles to the beam direction and are detected in a set of 

silicon microstrip detectors as shown in Figure 1. The detectors are normal to 

the beam direction and measure the intercept of the track at each plane using 

metallized microstrips which collect the ionization produced by the particle in 

the silicon. Signals on the microstrip are amplified and pass via cables to a 

data acquisition system where they are digitized. The data acquisition system 
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uses the strip information to calculate the hit positions, which in turn, are sent 

to a set of associative memory chips where the track parameters are found (5). 

The strip information from each silicon plane passes serially through the as- 

sociative memories, but the different planes are dealt with in parallel by the 

memories. The track parameters of detected tracks are available after all the 

hits have passed through the memories. The tracks may be parameterized by 

the impact parameter D which measures the distance of closest approach of 

the track to the origin, and Q which is the angle of the track with respect to the 

beam line. The microstrips are oriented in three different directions to allow 

three dimensional reconstruction of the tracks, but here only one strip orienta- 

tion is considered. 

The Q, and D values for typical signal and background events are plotted 

in Figure 2. @ is the abscissa and D is the ordinate of a track in the plots. The 

units of Q and D are radians and centimeters respectively. In the background 

events, the tracks lie roughly on a horizontal line because all the tracks have 

come from a point in the thin target at D=f, where 6 is the displacement of the 

beam particle from the origin. Often, there are tracks with large values of D in 

the signal events. This is because particles containing heavy quarks have 

travelled some distance from the interaction point and subsequently decayed 

into several more particles, These particles will have values of D that are dif- 

ferent from those from the primary vertex. For each secondary vertex, in the 

limit of no measurement errors, the tracks from a secondary decay will lie upon 

a line whose slope with respect to the horizontal is proportional to the distance 

that the heavy flavor particle travelled from the origin (assuming the opening 

angle of the decay products is small, which is always the case). 

What makes this a challenging pattern recognition problem is that in 

many cases, it is impossible to visually distinguish between a signal event and 
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a background event from the track patterns in the O-D plane. Additionally, the 

number of tracks and the position of the tracks vary in the Q-D plane. It is 

therefore clear that the classification must compensate for or be invariant to 

the number of tracks and the position of the tracks in Q-D plane. The charac- 

teristics that prove to be useful for event classification are the variations in the 

impact parameter D and/or the dispersion of the tracks in the Q-D plane. 

4. NEURAL NETWORK APPROACH 

Neural networks are very effective in solving pattern classification problems [6- 

121. The neural network selected for the signal/background event 

classification problem is the multilayer perceptron. Generally, for a I-layered 

network which is fully inter-connected between adjacent layers, the output 

Xi(k). k=1,2....Ni of element k in lay er i, i=1,2 , . . . .I is given by 

Xi(k) = fI,~~I-liW(i~l~llM J$Jj) - @i(k) I. 

X0(k), ll;k<No is the input vector: No is the dimension of the input vector: Ni is 

the number of elements in the i th layer: Wo(j,k) is the connection matrix be- 

tween the input and the first layer: Wi(j,k), l&(1-1) is the connection matrix 

between the i 
th th and the (i+l)th layer: ei(k) is the internal offset in the k element 

in layer i; f(.) is the sigmoid function, 

The multilayer perceptron is trained under supervision using the back- 

propagation algorithm. Learning parameters of the backpropagation algorithm 
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include a gain term E and a momentum term CL The interconnection weights 

are adjusted recursively and the weights at the (t+l) th iteration are given by 

W&j.k) 1 (t+l) = WB-l)Wd 1 t + E $(WX$) 

+ a[ w(i-l) (j,k) It - W(i-I)(i.k) I (t-l) 1, l<i<I 

where 

6i(k) =Xio’)l 1 - X,(k)lI dkl - Xi(k) I. i=I 

= xp 1 - x,(k)l( ~~:+l)B(i+I)(m)W(i+l)(k.m) I. lsis(I-I), 

and d(k) is the desired output of node Zf(k). 

The design of a multilayer perceptron for a particular classification 

problem involves determining: 

(a) The number of layers. 

(b) The number of elements in each layer. 

(c) The format of the input to the network. 

The complexity of the decision regions formed by the neural network can be in- 

creased by increasing the number of layers. When no prior knowledge of the 

decision region in the pattern space is assumed, a multilayer perceptron with 3 

layers is a good choice because it is capable of forming arbitrarily complex deci- 

sion regions. The number of elements in the input and output layers are 

governed by the input dimension and the number of classes respectively, and 

the number of hidden layer elements may be determined empirically. 

Generally, the output layer has one element per class. The input to the net- 

work must have a vector format and it is important to note that the dimension 
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and ordering of the input vector must be fixed. A three layer perceptron is 

shown in Figure 3. 

In the training stage, all interconnection weights are initialized to small 

random values with zero mean and the input training vectors belonging to the 

C different classes are presented cyclically until the net converges to the 

desired outputs. That is. the output Xc= X3(c) associated with class c. 

c=1,2 ,...,C is trained using the backpropagation algorithm to respond “high” 

when the input belongs to class c and respond “low” when the input does not 

belong to class c. 

In the testing stage, the test vector is presented to the network input and 

the test event is assigned to the class cc of the network output that yields the 

maximum value. That is 

c* = arg rnp [Xc], c=1,2 ,..., C. 

A more complex rule based on thresholding the outputs to avoid ambiguous 

classifications may also be used. For correct classification, the thresholding 

scheme at the output layer requires a fuced combination of outputs to be above 

or below preset thresholds. 

In developing neural net trigger algorithms for the signal/background 

classification problem, it is clear that the track data cannot be fed directly to 

the neural network because the number of tracks and the position of the tracks 

varies in the Q-D plane. One possible approach to solve this problem is to ex- 

tract a feature set from the track data which is invariant to the number of 

tracks and the position of tracks and use these features as inputs to the net- 

work. Another possibility is to derive a normalized representation of the track 

data which could be used as a neural net input. The derivation of an invariant 
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feature set based on moments and a D-sequence transformation are described 

in the following sections. 

5. MOMENT3 

Moments and functions of moments have been widely used in pattern analysis 

and classification problems [13-17). The (p,q) 
th moment of a function f(x.y) is 

defined as 

mpq= I I xpyqf(x.y)dxdy. p,q=O.1,2,.... 
-co-cu 

and the (p,q) 
th 

central moment is defined as 

~~~ = j j (x-~lp~-~lq f(x,y)dx dy. p.q = 0,1,2,..., 
-co-cu 

where, x = mlO/mOO and y = mol/mOO. 

The order of a moment is defined as (p+q). Let F(@.D) represent the track pat- 

tern of an event in the (QD) plane. To facilitate the computation of the 

moments, the tracks in F@,D) are assumed to be “1” and all other points are 

assumed to be “0”. The moments of F&D) are then estimated as 

1 
mPq=M 

z:D’, p,q=O,1,2 ,...a 

= Lz (QG)‘(D-D)‘, p,q = 0.1.2 ,...., 
lrPq M 

where the summation is taken over all the M track points and (@,D) are the 

coordinates of a track point. Central moments are invariant to position in the 

(@,D) plane. Invariance to scaling corresponds to making poo equal to unity. 
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That is, the normalized central moments TJ 
Pq 

that are invariant to the track posi- 

tions and invariant to the number of tracks are given by 

‘lpq = ~.r~~/(l.r~~l~. where y = [(p+q1/21+1 for (p+q) = 2.3,.... 

In any classification technique based on moment features, it is important 

to select a set of moments which contains the most class-separation informa- 

tion as the set of all possible moments is not necessarily the best feature set for 

a given problem. From a computational point of view, it is advantageous to 

keep the moment feature set small. Generally, only the lower order moments 

are used in analysis and classification problems. Higher order moments tend 

to be unreliable due to their sensitivity to noise. 

From the observations of the track patterns noted in Section 3, it is clear that 

the classification of an event into a signal or a background event can be ac- 

complished by making use of moments which characterize track dispersion and 

track orientation information. projection moments no2 and nzo characterize dis- 

persion (variances) and rl I I characterizes the orientation (covariance). Although 

higher order projection moments may contain additional information such as 

skew and kurtosis, they are not considered as features so as to keep the com- 

putation of the feature set as small as possible. After a further study of the 

second order normalized moments derived from the signal and background 

events, the moment n20 is dropped as a feature since it does not contain reliable 

class separation information, This is because the track angle @ varies highly in 

both classes. The moment no2 is always positive whereas n I I may be positive or 

negative. In order to reduce the intraset variability in the feature set, only the 
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magnitude of n 1 1 is considered. Hence, the normalized second order moments 

ho,)* 1 q 1 1 I 1 are selected as features to characterize the events. 

The 3-layer perceptron moments classifier has two output elements Xs 

and X,, corresponding to the signal and background events and 2 input ele- 

ments for the normalized moments [(no2), I nill 1 I]. The hidden layer dimension 

was empirically chosen as 8. The network is tested with [(qo2), 1~)~ 1 I] of a test 

event in order to classify the event as a signal or background event. Since q 
02 

and lrllI I can take on extremely small values and present a problem in net- 

work training, the two normalized moments are scaled by a factor 106. A 

similar scaling operation is performed on the normalized moments of a test 

event. 

6. D-SEQUENCES 

Let the tracks in the signal and background events be represented by their 

coordinates in the Q-D plane. That is, signal event i. i=1,2,....... is represented 

by 

(@F ,,Dy J, n=1,2 ,..., n. 
I , 1,s 

and background event J. ]=1.2....,... is represented by 

(Qr n,Djb d+ n=1,2,....nj b, 
. 9 

where, n. andn are the number of tracks in the i 
th th 

1,s j,b 
andj signal and back- 

ground events respectively. Let 

si = (si(ll.si(21.....si(ni ,)I. 
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be a sequence which represents the distance between the tracks of signal event 

th 
i and a horizontal line that passes through the centroid of the tracks. The k 

sample of si is given by 

si(k) = I Ds k- Dr I, k=1,2 ,..., ni s, 

where 

Ds = (Molly / boo)s. 

and (mpq)s is the (pq) 
th moment of signal event i. 

Similarly, a sequence 

bj = @j(I),b,(2).....bj(nj,b)l 

is derived to represent the track variations of the background event j along the 

D-axis. Although the sequences si and b, contain the track variations in the D- 

axis, the variations do not follow any particular pattern along the Q-axis. The 

degree of variability and hence the intraset distances in the sequences can be 

reduced through a rank ordering transformation. The sequences si and bj are 

rank ordered such that 

si(k) s si(k+l), k=1,2 ,..,, (ni s - 1) and 

bj(k) I bj(k+l), k=1.2 ,..., (n 
0 

- 1). 

The rank ordered sequences can be used as feature vectors in the 

signal/background event classification problem. In order to use a 3-layer per- 

ceptron to classify signal and background events via the rank ordered 

sequences, the sequences need to have a futed duration N (N is the dimension 

the input layer). Using a linear curve fit and a uniform resampling procedure 

[18,19]. the sequences are normalized to have a duration N. The rank ordered 
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and duration normalized sequences are referred to as “D-sequences”. The i 
th 

signal and jth background D-sequences are denoted by 

Si = iSi( Si(2L..SiNl and 

respectively. 

The 3-layer perceptron D-sequence classifier has two output elements Xs 

and Xl, corresponding to the signal and background events and 12 input ele- 

ments (12 represents the mean number of tracks in the N signal and N 

background events selected to train the network). The hidden layer dimension 

was empirically chosen as 8. The network is tested with the D-sequence of a 

test event in order to classify the event as a signal or background event. In or- 

der to facilitate training, the D-sequences of the training events are scaled by a 

factor 100. A similar scaling operation is performed on the D-sequences of test 

events. 

7. NEAREST NEIGFIBOR CLASSIFIER 

Given the moments feature vector and the D-sequence vector of the signal and 

background events, the nearest neighbor classification rule [20] may be used to 

classify the events. The performance of the nearest neighbor classifiers serve 

as benchmarks for evaluating the performance of the neural net classifiers. Let 

si, i=1,2 ,..,, Ns be the i th training signal event feature vector, bj, j=1,2....,Nb be 

the1 
th 

training background event feature vector, t be the test feature vector, 
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and d[...] be an appropriate distance measure. N, and Nb are the number of sig- 

nal and background events in the training set. Let Dis = d[t.si]; db = d[t.b,]: Ds= 

min IDis]: Db= min[ I+ b], The nearest neighbor rule assigns the test event repre- 

sented by the vector t to the class of its nearest neighbor in the ~feature space. 

That is, the classifier assigns the test event to the class c* given by 

c* = arg min [Ds, Dbl. (s=signal, b=background). 

The k-nearest neighbor classifier is an extension of the nearest neighbor clas- 

sifier. The k-nearest neighbor rule assigns a test event to the majority of its k- 

nearest neighbors in the pattern space. 

8. NETWORK TRAININ G AND PERFORMANCE 

A total of 2,500 signal and 2.500 background events were available for training 

and testing. In order to compare the performances, the training set was 

derived from exactly the same 100 randomly selected background and 100 ran- 

domly selected signal events for all trigger algorithms. Due to the similarity of 

many signal and background track patterns in the Q-D plane, an overlap be- 

tween the moments and the D-sequences belonging to the signal and 

background classes is expected. The overlap results in false alarms 

(background misclassifications) and misses (signal misclassifications]. The per- 

formance of the trigger algorithms are measured by the false alarm and the 

miss probabilities. The number of misclassified background events divided by 

the number of background events tested gives an estimate of the false alarm 

probability Pf and the number of misclassified signal events divided by the 

number of signal events tested gives an estimate of the miss probability Pm, A 
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tradeoff between Pf and Pm can be approldmately controlled by carefully select- 

ing from the training set an appropriate training sub-set which controls the 

decision boundary formed by the neural network. As noted in Section 1, it is 

crucial to keep the false alarm rate as low as possible. The background 

misclassifications are kept at a minimum by selecting from the training set, a 

training sub-set which consists of the background points that outline the back- 

ground boundary estimated from the training set and signal points that lie just 

outside this estimated background boundary on the signal side. The decision 

boundary formed by the neural network trained with the sub-set will thus be 

forced to approximate the estimated background boundary. Special attention 

is focused on excluding points that appear to be background outliers i.e. points 

with significantly different values which occur with extremely low probabilities. 

Additionally, signal points that fall on the background side of the estimated 

background boundary are excluded from the training sub-set. 

The above training strategy is easily applied to determine the training set 

for the moments neural net trigger as the dimension of the feature space is 2. 

A total of 15 background points along the estimated background boundary. 15 

signal points just outside this boundary, and 5 background and 5 signal points 

centered around the centroids of the background and signal clusters were 

initially used to tram the network. One background point with unusually high 

moments was regarded as an outlier and was excluded from the training sub- 

set. The remaining 79 background points and 80 signal points in the training 

set were tested and the misclassified events were noted. All of the 5 misclas- 

sified background events were included in the training sub-set and the network 

was retrained with the augmented training sub-set. To keep the number of sig- 

nal and background training events equal, 5 signal points centered around the 

signal centroid were also added to the augmented training sub-set. The final 
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training sub-set for the moments neural network, therefore, consisted of 25 

background and 25 signal events. 

Since the D-sequence feature space ,dimension is 12, the training set 

determination strategy is not directly applicable. Because the variations of the 

background events are typically smaller than that of the signal events, a rough 

grouping of background training events can be made by examining the rank 11 

and rank 12 values of the events. In order to keep the background misclas- 

sifications at a minimum, 15 background D-sequences with high rank 11 and 

12 values were selected to train the network for the background class. One 

background event with an unusually large rank 12 value was regarded as an 

outlier and was exluded from the training set. 15 signal D-sequences with 

rank 11 and 12 values slightly higher than the highest of the selected back- 

ground D-sequences were chosen to train the network for the signal class. 

Additionally, 5 background D-sequences and 5 signal D-sequences with rank 

11 and 12 values close to the mean rank 11 and 12 values were added to the 

training sub-set. The remaining 79 background events and the 80 signal 

events were tested and the misclassified events were noted. AI1 of the 4 

misclassified background events and 4 signal events with relatively large rank 

11 and 12 values were included in the training sub-set and the network was re- 

trained with the augmented training sub-set. The final training sub-set for the 

D-sequence neural network, therefore, consisted of 24 background and 24 sig- 

nal events. 

The test set consisted of the remaining 2.400 background and 2,400 sig- 

nal events that were not used in determining the training sub-sets. The 

reference moments and D-sequence vectors for the nearest neighbor triggers 

were exactly the same vectors (final training sub-sets] used to train the mo- 

ments and D-sequence neural networks. The false alarm and miss 
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probabilities of all trigger algorithms are given in Table 1. In the k-nearest 

neighbor category. k was varied between 1 and 5. The best result was obtained 

for k=l and this result is shown in the table. The Euclidean distance metric 

was used as a distance measure. 

9. CONCLUSION 

This paper describes neural net trigger algorithms designed to distinguish 

heavy quark events from a light quark events in a fuced target High Energy 

Physics experiment. Nearest neighbor triggers are also developed to serve as a 

benchmarks to evaluate the performance of the neural net trigger algorithms. 

The tracks produced by the events in the fxed target experiment vary in num- 

ber and in position in the Q-D plane and cannot, therefore, be used as inputs to 

a 3-layer perceptron directly, This problem is overcome by deriving an in- 

variant moment feature set and a D-sequence representation to characterize 

the signal and background tracks in the (D-D plane. The moment feature set 

characterizes the dispersion of the tracks along the D-axis and the orientation 

of the tracks in the Q-D plane. The D-sequence which is obtained through a 

simple set of transformations captures the track variations along the D-axis. 

Results indicate that the moment feature set and the D-sequences contain es- 

sential signal/background discriminatory information. A training strategy is 

developed to keep the background misclassifications at a minimum. This train- 

ing strategy is extremely useful in aiding the network to converge to a solution 

when pattern classes overlap. The results show that the neural net triggers are 

superior to the conventional nearest neighbor triggers. Highly acceptable false 

alarm and miss probabilities are obtained especially by the neural net D- 

sequence trigger algorithm. It is important to note that the results are very 

impressive as tests on randomly selected events indicate that, in many cases, it 
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is impossible to visually distinguish between signal and background events 

from the track patterns in the Q-D plane. 
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