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Abstract 
Continuum manipulators are robotic manipulators built 
wing one continuous, elastic, and highly deformable 
%ackbone” instead of multiple rigid links connected by 

joints. This paper eztends a previous control result for  pla- 
nar continuum robots b y  proposing a new asymptotic wn-  
vergence argument for a PD-plw-feedforward controller. 
The benefit of the asymptotic a w m e n t s  is that the back- 
bone bending stifness can be adpatively updated by  the con- 
troller if it is not known a priori. 

1 Introduction 
“Continuum robots”, a phrase referenced from a survey 
paper by Robinson and Davies 111, refers to a class of IO- 

botic manipulators that essentially discard the traditional 
robot design paradigm that joins stiff, rigid links with ro- 
tational or prismatic joints. That this design methodology 
has been highly successful in the past is certainly not un- 
der debate; in fact, here and in previous work we suggest 
that rigid-link designs will continue to ful6ll the majority 
of automation and manipulation need for the foreseeable 
future. However, rigid-link design and analysis seems to 
have reached some practical limits. Among these, it is 
difficult and often expensive to design compliance into a 
rigid-link robot at any point except the end-effector. We 
are beginning to see that compliance is a critical ingre- 
dient in the creation of safe, comfortable and interactive 
human-robot environments [Z]. Compliance is also a sig- 
nificant asset for the manipulation or exploration of nn- 
known or delicate environments, such as in a laparascopic 
procedure, 131. Additionally, rigid-link robots generdly do 
not have the ability to use their entire structure to manip 
ulate things, called “wholearm manipulation”, and tend 
to be complex to build, heavy (in order to impart stiffness) 
and somewhat bulky. 

Some of the aforementioned issues are being addressed 
by creative mechanical designs, which often accept some 
Bexibility and vibration in the robot links in exchange for 
lighter weight, less complexity and greater safety margin. 

Figure 1: A two-section continuum robot adopts a typical 
pose. 

Inspired by trunks, tentacles and snake backbones, con- 
tinuum manipulators such as the simple prototype seen 
in figure 1 are among those designs. However, with new 
properties and capabilities, continuum robots also empha- 
size the need for new or expanded results in some areas 
that long ago matured for rigid-link robots. The author’s 
previous work established a basic but extremely important 
result in continuum manipulator control, namely, that a 
PD-plusfeedforward controller can exponentially regulate 
the position of a continuum robot 1121 - a result long un- 
derstood for rigid-link designs. The main drawback of 
that work was the dependence of the control law on exact 
knowledge of the “backbone” bending stiffness, a quan- 
tity that is difficult to measure. The objective of this 
paper, therefore, is to present an alternative (aymptotic) 
convergence argument for the PDplwfeedforward con- 
troller, including an adaptive update law for the unknown 
stiffness term. 

0-7803-78601/03/517.W 0 2003 IEEE 2779 

mailto:Ian-Gravagne@baylor.edu


2 Background 
The author’s work in continuum manipulators grew out 
of the early studies of hyper-redundant and high-degree- 
of-keedom (HDOF) devices. Some of the initial HDOF 
design attempts appear in 141, [5] and [19]. More recent 
designs appear in [6] and [q, though this is certainly not 
an exhaustive list. For background into the kinematics 
and path-planning of continuum and hyper-redundant rc- 
bots, see [SI-[lo] and [14]-1171. References [11]-[13] and [20] 
discuss the dynamics and control of continuum and hyper- 
redundant robots. Some of the fundamentals in this work 
are derived from the field of elastica mechanics, and details 
can be found in (181-[23]. 

3 Dynamics and Control Law 

cross-section inertial density.); it also has rotational and 
translational inertial densities of I, and p respectively, as 
well as a distributed damping coefficient b. Through c& 
bles or some other mechanism, a torque T ( t )  is applied 
to the free end of the manipulator to bend it and cause 
a subsequent change in its end-effector position. Given 
these parameters and coordinates, the system dynamics 
follow as 

-I,e-id+qTSf+EIB” - -  = 0 ( 1 4  

-pZ+f‘ = - 0 Ob) 
i - 9  = 0 ( 1 4  
e(o,t )  = o (Id) 

EIB’(L,t) = 7 ( 1 4  
c(0,t) = n Of) 
f(Lt) = 0. (Id ~. . . -. - 

The fundamental difference between a rigid-fink robot and 
a continuum robot is that a continuum backbone exhibits where (0)’ = (6)  = 2, and s and p are given by 

0 1  infinitedimensional kinematics and dynamics, described 

tively. The added difficulty posed by such models of- 
ten taxes the theoretical limits of ow ability to analyze The first two lines above represent the field d y n e a ,  
them. Making matters woI’% any Practically useful Con- as a set of coupled nonlinear equations. The third line is 
tinuum robot with a sufficiently large workspace exhibits the system kinematics, relating the tangent angle to  the 
a range of deflection and bending far beyond what typi- position. Boundary conditions (Id) and (if) show that 
cal Euler-Bernoulli or other linear models can accurately the is “damped*, and at the o,+ 
reproduce, leaving O d Y  “ar largedeflection models gin. Condition (le) introduces the actuator torque, and 
for which there is precious little literature. (See [IS] for an condition (ig) suggests that the robot has no in, 
overview.) For t h e  reasons, the work here is restricted nor any actuators capable of exerting forces on, its end- 
for now to a planar model with a nonextensible backbone effector. Note that the kinematics are often written in 
and negligible shear effects, such as the one pictured in integral form, 
figure 1. 

While the previous control result illustrated in [12] fc- 
cused on eeneratine an ewoonential convereence result for 

by differential and partial-differential equations, respec- s = [  -1 0 1 ;  p=[::gB]. (2) 

(3) - - - 
backbones subject to multiple points of actuation (which 
are, of course, a necessary ingredient for any manipulator), 
the notational overhead somewhat obscured the most in- 
teresting points. Here, we will focus on the dynamics of 
one manipulator section, i.e. a span of flexible backbone 
actuated only at the unclamped end. The coordinate s y s  
tem is straightforward: the backbone centerline has length 
L; any given point along the backbone is referenced from 
the oridn throueh the arcleneth variable s E 1O.Ll. At 

Canceling the timederivative terms in (la) leaves b e  
hind the backbone mechanics, the equations describing the 
static position of the backbone at rest. Quite simply, the 
backbone is predicted to take on a semi-circular shape, 
given by EIB“ = 0 (this can be seen in each section of the 
manipulator in figure 1.) Consequently, in attempting to  
drive the backbone into a desired shape S,(s), that shape 
must must obey the static constraint that - - I . .  , 

e:(s) = o (4) every point s and time t, the backbone has a Cartesian 
position p(s,t) = [q(s, t ) ,z*(s,  t)lT (underscores repre- 
sent vector variables), as well as a tangent angle to the otherwise it will be an unattainable control objective. 
horizontal, O(s, t). The backbone also experiences an in- Note the absence of the time variable above, since we are 
ternal shear/axial force field, f(s, t) .  The bending stiffness concerned with a regulation problem rather than a track- 
of a long, thin, elastic backbone is approximated by the ing problem. The backbone’s elastic stiffness will necessi- 
constant EI (the product of Young’s modulus and the tate a static “holding” torque, required to simply hold the 
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manipulator in a given pose. (This can be compared with (b - a)2 J:g’2ds if g ( a )  = 0. Thus, 
the commonly used anti-gravity terms in many rigid-link 
robot controllers). In accordance with (le), the holding 
torque must be equal to EIB&(L). Thus, a reasonable and 
straightforward control law reads 

/ E  lL Ipbtanh(8)dsl 

5 E lL I,$’ + Ip tanh2(s)ds 
7 = EIB&(L) - k&s,t) - kP8(s, t ) ,  (5) 

L 
5 €1 Ips2  + I,e2ds 

5 ~1~ Ips2 + IPL2ends 

using another inequality, ab 5 yaz + $b“ (with positive 
y = 1 in this case). These inequalities arise frequently in 
work of this nature, [21]. The second term yields 

where 5 = B(s,t) - e d ( S )  is the shape error and kd,kp 
are positive control gains. This control law does, in fact, 
exponentially regulate the system dynamics to the desired 
static equilibrium [12]. However, it strictly depends on 
the positive constant EI, which may not be known. An 
alternate control law, the one of interest here, gives 

7 = FIB&(L) - kd#(L,t) - kpB(L,t), (6) 

where EI is now a (timevarying) estimate of the true 
6 

(12) 
bending stiffness. It is updated according to the update 
law 

E I  = -kB&(L) p(L,  t) + E  tanh8(L, t)] (7) 

where k and E are positive constants, defined next. In 
essence, the update law above makes control law (6) simi- 
lar to a PJD controller. This can be seen bxintegrating (7) 
and observing that, near the origin, tanhO(1, t c: B(L,t). 
It is this “integral” behavior that drives the steady-state 
error to zero. 

4 Asymptotic Regulation 

The stability procedure begins by proposing a Lyapnnov 
candidate 

5 

5 E lL p i T A  + pLZi2ds  

pkTi + ps2 tanh2(8)qTqds _ _  

5 ~ L ~ o i ~ & + p L %  ,2 ds. 

Combining (11) and (12) gives 

L 
l%l 5 €1 Ipb2 + p i T k +  L2(Ip  + LZp)Bnds, (13) 

v = VI +v2, guaranteeing that V > 0 if 

v, = 
(14) 

- /dL E d 2  + I$ + piT&& 

(9) 
h- 1 - 2  

+yO(L,t)’+ S E I  
Choosing such an E furthermore ensures that V is radially 1 The t i e  derivative of VI follows directly as 

L 
Vz = E Jd Ip8tanh(8) + p [l tanh(8)qTdo Sids ,  (10) unbounded. 

where E = E? - EI. Clearly, & is positive definite. 

less than VI for a sufficiently small choice of E. 

L 
VZ (the ‘‘crossing function”) may be negative, but the fol- V, = 1 -bb2ds - k&L, t )2  + 
lowing arguments show that its absolute value is always 

For the 
first term in V,, note the standard inequality, J: g2ds 5 The time derivative of VZ, after substitution of the dynam- 

(15) 
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ics, integration by parts and some cancellation, gives 5 of (16) is bounded by the following argument: 

L 
I% = gI,,b' + tanh(8) [-bb + EIQ"] (16) LL p [I' - t d (g )byTdu]  - ids (21) 

+p [l 'g8tTS - tanh(8)bqTdu i d s ,  = - LL p [la tanh(8)bgTdu] [I' 0 &ST@] ds 1 
where g(s, t)  d 1 - tanh'(8). The expression above con- 5 p (lL 111' tanh(8)bq'dul12dslL liLsbSTqdolr - ds)' 
tains five terms, and the following analysis deals with the 
last four of those. For the second term, note that g 5 1, 
implying that g2 5 g. Thus, 

I lL -bO tanh(8)ds 2 lL : , 2  
-0 + &y tanh2(8)ds 

L2 tanh2(8)b2d.sLL L'b2ds) t 5 iLpL26'ds,  

5 lL :02 + lryL' tanh"(8)ds 
where the Cauchy-Schwarz inequality was W. Compil- 
ing (17), (18), (19), (20) and (21) along with Vi then gives 

- - I" + &yL2g28"ds 
J O  I 

(22) b . 2  v = 5 / -8 +&yL2g8?ds. (17) 
Y 

J O  I 
-Eg [El - ybL2 - k&] finds 

-Ekp8(L, t) tanhe(L, t) - kp - e- Q(L, t)' [ ? I .  Examining the third term yields (18) [next page]. In line 
4 of (18), recall that Qz = 0. In the last line of (18), we 
may employ another inequality, g' 2 Ib - a1 J: gI2ds, to 
see that 1 E7 +E BL(L)b(L, t )  + - + E Q ~ ( L )  tanhe(L) . i k 

-k,&(L,t)tanhB(L,t) 
kd Substituting in the bending stiffness update law eliminates 

the last line above, leaving V a negative quantity in all 
states except EI, assuming sufficiently s m d  choices of 
positive constants p, 7 and E .  

Using an invariance argument, we now assume that V = 
(19) 0 for d future times. It directly follows that J"," Bnds = 

0, and thus (using an inequality described earlier) that 
fi(s, t) = 0 as well as a'(s,t) = 0. Picking s = L, we have 
8(L, t) = 8(L, t) = b'(L, t) = 0, which forces (le) and (6) 
to yield 

illustrating that update law (7) guarantees convergence of 
ExI to its true d u e .  

5 g 8 ( L ,  t)' + kd@tanh28(L, t )  

5 p Q ( L ,  t)' + kd@L 

5 -Q(L, kd . 1)' + kdpL 1 g8"ds. L 
LL kd. 

tanh"8ds 

P 

Moving on, we may bound term 4 of (16) by 

- lL P [I' dgTSdU] i d s  (20) E l  = 0, (23) 

5 s w b )  s,t ILL P [l' agTSd0] ids1 

= lL p [[ bq'TSdu] [l &S'Tqdu] ds 5 Simulation and Conclusions 
The main drawback of (7) is its dependence on E ,  which is 
limited to an upper bound of one under the best of condi- 
tions, much less than one in general. This results in a very 

noticing that tis given by differentiating (3). Lastly, term slow convergence for EI because, even if k is raised, the 

5 1' pL2 [BqTS] [BS'q] ds = JdL pL2bZds 
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lL tanh(8)EIO“ds = lL - tanh’(8)EIB‘ds + EIB’(L, t) tanhB(L,t) 

L 
= 1 - tanh’(8)EIB’ds + [Elred(L) - k&L, t) - k&, t)] tanh8(L, t) 

- tanh’(8)EI(8’ + e&)& + [(g + EI)B&(L) - kdb(L, t) - kp8(L, t)] tanh8(L, t) 
= LL 

L 
= 1 - tanh’(8)EI8’ + tanh(8)EIB:ds + [EI IBd(L)  - kda(L,t) - k,B(L,t)] tanhB(L,t) 

-gEIBnds + %&(L)tanhg(L,t) - kdb(L,t) tanhB(L,t) - kp8(L,t) tanhB(L,t). 

Figure 2: Step response errors g(L, t) (solid line) and 
(dashed line). The update law uses k = 0.5 and E = 10. 
Smaller E simply results in slower convergence. 

update algorithm must wait for b(L,t)  to become “small 
enough” that the E term can be effective. There does not 
seem to be any algorithmic remon why E cannot be made 
arbitrarily high in (7), and introducing a separate gain for 
the E term of (7) would be a good improvement over the 
current update law. The simulation results in figures 2 
and 3 show that faster convergence is possible. 

To summarize, this paper presents a new asymptotic 
stability and convergence argument for continuum elas- 
tica manipulators under “PD-plwfeedforward” control, 
including an adaptive update rule for the unknown bend- 
ing stiffness. Future work on this topic should include 
introduction of the effects of multiple actuators on the 
backbone, as well a8 experimental verification that the 
proposed update law works. Also, though somewhat of a 

Figure 3 A timelapse image of the onesection manipu- 
lator moving to the desired shape @ d ( S )  = m/2. System 
constants are scaled to realistic ratios: EI = 1, p = 0.7, 
Io = 0.001. Gains kd = 0 and kp = 20. 

technicality, invariance arguments for idnitdimensional 
systems require proof of the existence of solutions to the 
dynamical equations, a step not taken here. Long-term 
improvements might include the incorporation of more ac- 
curate damping models [ZS] and an extension of the work 
to the three-dimensional domain. 
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