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In multidimensional input/output space, the behavior of the firms can be analyzed by using efficient frontier or supporting surfaces
of production technology. To this end, mathematicians are interested to use marginal rates of substitutions. The piecewise linear
frontier of data envelopment analysis (DEA) technology is not differentiable at the extreme points and marginal rates calculation
is valid only for small changes in one or more variables. The existing trade-off analysis methods calculate the maximum changes in
a specific throughput when another throughput is changed. We will show that binding efficient supporting surfaces of an efficient
pointmay be used to define differentmarginal rates of substitutions and in this sense, we get differentmarginal rates to each frontier
point.

1. Introduction

Data envelopment analysis (DEA) is a LP-based nonpara-
metric technique for measuring the relative performances of
firms that use multiple inputs to produce multiple outputs.
The literature on the performance measurement using DEA
has grown substantially since Charnes et al. [1] introduced
the traditional CCR model based on the maximum radial
reduction in inputs. It has been widely used in performance
measurement of many business and industry applications. A
complete literature and surveys can be found in Cooper et al.
[2] and Cook and Seiford [3].

While much DEA-based research has been directed
to the application of DEA for performance measurement,
fewer works have been made on its properties as a pro-
duction function model. Production technology in DEA is
extrapolated with the observed inputs and outputs and the
boundary points of this set construct the efficient frontier
or supporting hyperplanes of the technology. Supporting
hyperplanes of production technology enable us to analyze
the relation between two different throughputs. Mathemati-
cians are very interested to work with efficient frontiers or
supporting surfaces of production possibility set to analyze

the behavior of firms in the multidimensional input/output
space.

The knowledge of trade-offs in a production process is an
important subject to the managers. For instance, managers
are interested to know the additional amount of a certain
input that is required in order to increase a particular output
by a small fixed amount.

Huang et al. [4] proposed a general method for calcu-
lating the rates of change of outputs to the inputs along
efficient surface of DEA production set. Rosen et al. [5]
directly studied the problem of marginal rate of substation
on efficient frontier and presented a general framework for
the calculation of trade-offs between two variables in DEA.
Cooper et al. [6]modified the classic additiveDEAmodel and
from the optimal slack values of this model they derived the
marginal rates and elasticities of substitution.

Krivonozhko et al. [7] have used the supporting hyper-
planes and efficient surfaces to calculate marginal rates of
substitution in DEA. In the meantime, using supporting
hyperplanes of production technology, Førsund and Hjal-
marsson [8] have calculated scale elasticity in DEA mod-
els. Førsund et al. [9] have also proposed two ways of
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obtaining numerical values of scale elasticity by direct-
indirect approaches and then they compared the two ap-
proaches by real data. Balk et al. [10] generalized the concept
of scale elasticity to accommodate changes in any given
direction in input-output space. Khoshandam et al. [11] pro-
posed a production in which a group of variables are changed
in a given direction and the effect of this change on some
throughput is calculated. In their second paper, Khoshandam
et al. [11] studied the problem ofmarginal rates of substitution
in the presence of nondiscretionary factors.

The abovementioned approaches calculate a single mea-
sure of marginal rates of substitution and these trade-off
analysis methods are given in optimistic case in the sense that
they calculate the maximum changes in a specific throughput
when another throughput is changed by a small quantity. In
this sense, the new frontier point may be very far from the
original frontier point. However we can equivalently look
for a piece of the frontier in which the new frontier point is
closing as much as possible to the original point.

We show that binding supporting surfaces of production
set in an efficient point can be used to definemarginal rates of
substitutions and hence we may calculate different marginal
rates in efficient points. We show this geometrically by a
simple example.

The rest of the paper is organized as follows: marginal
rates substitutions are introduced in the next section. Section
3 introduces two marginal rates in optimistic and pessimistic
cases. Marginal rates in the presence of undesirable outputs
and in the absence of explicit inputs are given in Section 4. A
real application is used to illustrate the proposed approach.
The paper ends with concluding remarks.

2. Marginal Rates of Substitution

In mathematical economics, marginal rate of substitution is
employed to calculate the relative marginal utility. Mathe-
maticians are often interested to work with efficient surfaces,
supporting hyperplanes and Pareto-efficient surfaces. Inmul-
tidimensional input-output space, the behavior of a produc-
tion unit can easily be read using the supporting hyperplanes
of the DEA production possibility set without any loss of
mathematical rigor. In this section, we briefly introduce the
marginal rate of substitution. Consider a general process in
which an output vector 𝑦 = (𝑦

1
, . . . , 𝑦

𝑠
) ∈ R𝑠

+
is produced by

consuming the input vector 𝑥 = (𝑥
1
, . . . , 𝑥

𝑚
) ∈ R𝑚

+
. There

are a set of 𝑛DMU
𝑗
: 𝑗 = 1, . . . , 𝑛, each of which is charact-

erized by a throughput vector 𝑧
𝑗
= (𝑥
𝑗
, 𝑦
𝑗
)
𝑡 in which 𝑥

𝑗
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, . . . , 𝑥
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𝑗
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, . . . , 𝑦
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nonnegative vectors. To simplify, the throughput matrix is
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.
(1)

Let𝐹(𝑥, 𝑦) = 0 be the boundary of the production technology
and without loss of generality, we assume that

𝜕𝐹 (𝑥, 𝑦)

𝜕𝑥
𝑖

< 0 𝑖 = 1, . . . , 𝑚,

𝜕𝐹 (𝑥, 𝑦)

𝜕𝑦
𝑟

> 0 𝑟 = 1, . . . , 𝑠.

(2)

Moreover, we assume that the production technology shows
free disposability or in other words 𝐹(𝑥, 𝑦) is assumed to be
continuously differentiable. Let 𝑧

𝑜
= (𝑥
𝑜
, 𝑦
𝑜
) be a frontier

point; that is, 𝐹(𝑧
𝑜
) = 𝐹(𝑥

𝑜
, 𝑦
𝑜
) = 0.

Definition 1. The marginal rate of substitution of the 𝑗th
throughput to the 𝑘th throughput at the frontier point 𝑧

𝑜
is

defined as follows:

MR+
𝑗𝑘
(𝑧
𝑜
) = (

𝜕𝑧
𝑗𝑜

𝜕𝑧
𝑘𝑜

)

𝑍
+

𝑜
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ℎ→0

+

𝑓
𝑗
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ℎ
,
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𝑜
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𝜕𝑧
𝑗𝑜

𝜕𝑧
𝑘𝑜

)

𝑍
−
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𝑚+𝑠𝑜
)

ℎ
.

(3)

As we know, in real applications, 𝐹(𝑥, 𝑦) is not known
exactly and hence we instead use the empirical production
technologies such as DEA production possibility set. This
set is structured axiomatically and the boundary points of
this set construct the empirical production function that is a
piecewise linear function. Due to the nature of the DEA effi-
cient frontier, marginal rates are not uniquely defined in the
extreme efficient units on the frontier and hence, we should
calculate the marginal rate of substitution to right and left.

A DEA-based procedure to calculate the marginal rates
of substitution of throughput 𝑗 to throughput 𝑘 from right at
the frontier point 𝑧

𝑜
= (𝑥
𝑜
, 𝑦
𝑜
) is given by Asmild et al. [12]

as follows:

MR+
𝑗𝑘
(𝑧
𝑜
) =

𝑧
∗

𝑗𝑜
− 𝑧
𝑗𝑜

ℎ
, (4)

in which ℎ is a small positive number and 𝑧
∗

𝑗𝑜
is the optimal

solution to the following LP problem:

Max 𝑍
∗
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s.t.
𝑛
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𝜆
𝑡
𝑧
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𝑛

∑
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𝜆
𝑡
𝑧
𝑗𝑡
≥ 𝑧
∗

𝑗𝑜

𝑛

∑
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𝜆
𝑡
𝑧
𝑘𝑡
≥ 𝑧
𝑘𝑜
+ ℎ
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Table 1: The data set for simple example.

A B C D E F G
𝑥
1

0.9 0.5 1.1 0.2 2.2 2.8 3
𝑥
2

1.63 1.36 1.55 2.15 2.04 1.40 2.04
𝑦
1

0.65 0.35 0.65 0.55 1.2 0.8 1.3

𝑛

∑

𝑡=1

𝜆
𝑡
= 1

𝜆
𝑡
≥ 0.

(5)

Substituting −ℎ instead of ℎ in the foregoing procedure gives
the left marginal rates of substitution.

In this procedure, the new frontier point 𝑧
𝑜
= (𝑧
1𝑜
, . . . ,

𝑧
𝑘𝑜

+ ℎ, . . . , 𝑧
∗

𝑗𝑜
, . . . , 𝑧

𝑚+𝑠𝑜
) is calculated in optimistic case in

the sense that 𝑧∗
𝑗𝑜
is maximized. There may be another point

on the frontier and we can use this point instead of 𝑧∗
𝑗𝑜
.

In the next section, two different marginal rates of substi-
tutions are calculated, one in optimistic case and another one
in pessimistic case.

3. Different Marginal Rates

As we stated in the previous section, the classic trade-off
analysis is given in the optimistic case and hence they deter-
mine the maximum changes in a specific component of the
throughput vectorwhen a specific component is increased (or
decreased) by a small quantity.

Generally, we solve the following LP problem to calculate
the marginal rates of substitution:

Max 𝑧


𝑘𝑜

s.t. 𝑧


𝑜
∈ 𝑇,

(6)

in which 𝑧


𝑜
= (𝑧
1𝑜
, . . . , 𝑧

𝑘𝑜
+ ℎ, . . . , 𝑧

𝑚+𝑠𝑜
) is the new input/

output vector after changes. The maximization objective
function in the LP problem (6) is given in optimistic case and
hence, it finds the maximum value to a specific throughput
when another throughput is changed by a small quantity.
In model (6), we look for a piece of the frontier in which
the specified component is maximized. We can equivalently
look for a piece of the frontier in which the component is
minimized. Needless to say in both cases the new point is a
frontier point and this is what we want.

We show this by the following simple example. We use a
simple example with seven DMUs with two inputs 𝑥

1
and 𝑥

2

and one output 𝑦
1
. The data are summarized in Table 1.

The BCCmodel of Banker et al. [13] has been used andwe
saw that all DMUs are efficient.The production technology in
variable returns to scale case is depicted in Figure 1.

Consider DMUA with 𝑧
1
: (−𝑥
11
, −𝑥
21
, 𝑦
1
) = (−0.9, −1.63,

0.65). Suppose that we change 𝑦
1
to 𝑦
1
+ ℎ and the response

of this change on 𝑥
1
and 𝑥

2
is needed. As the figure shows,

in DMUA, four efficient facets, ABC, ABD, ADE, and ACE,
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Figure 1: The production technology.

are binding and the optimistic approach finds a new point on
facet ACE with (−𝑥

11
, −𝑥
21
, 𝑦
∗

1
) = (−1.1364, −1.7045, 0.75)

and MR(+)
13

= 2.364 and MR(+)
23

= 0.745. MR(+)
13

is the value
of change in first input that results when the single output is
increased by 0.1 units. Note that (−𝑥

11
, −𝑥
21
, 𝑦
∗

1
) = (−1.1364,

−1.7045, 0.75) is the result of the following model:

Min 𝑧
∗

1
+ 𝑧
∗

2

s.t. − 0.9𝜆
1
− 0.5𝜆

2
− 1.1𝜆

3
− 0.2𝜆

4
− 2.2𝜆

5

− 2.8𝜆
6
− 3𝜆
7
≥ −𝑧
∗

1

− 1.63𝜆
1
− 1.36𝜆

2
− 1.55𝜆

3
− 2.15𝜆

4
− 2.04𝜆

5

− 1.4𝜆
6
− 2.04𝜆

7
≥ −𝑧
∗

2

0.65𝜆
1
− 0.35𝜆

2
− 0.65𝜆

3
− 0.55𝜆

4
− 1.2𝜆

5

− 0.8𝜆
6
− 1.3𝜆

7
≥ 0.65 + 0.1

𝜆
1
+ 𝜆
2
+ 𝜆
3
+ 𝜆
4
+ 𝜆
5
+ 𝜆
6
+ 𝜆
7
= 1

𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝜆
7
≥ 0.

(7)

However, all points on the facets ABC, ABD, and ADE can
provide us a frontier point to calculate a newmarginal rate. If
we change the direction ofmovement, a newpoint on another
frontier is obtained. For example, point (−𝑥

11
, −𝑥
21
, 𝑦
∗

1
) =

(−0.8154, −2.1162, 0.75) is a frontier point on the facet ADE
with MR(−)

13
= −0.8462 andMR(−)

23
= −4.8615. Let us compare

these two rates: In DMUA, MR(+)
13

and MR(+)
23

mean that if
we increase 𝑦

1
from 0.65 to 0.75, we will remain on the effi-

cient frontier if the two inputs are, respectively, changed to
1.1364 and 1.7045, while MR(−)

13
and MR(−)

23
mean that, with

ℎ = +0.1, we will remain on the efficient frontier if the two
inputs are, respectively, changed to 0.8154 and 2.1162. It is
interesting; there is a substantial gap between the two
new points on two different efficient facets. Note that
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(−𝑥
11
, −𝑥
21
, 𝑦
∗

1
) = (−0.8154, −2.1162, 0.75) is the optimal

solution of the following LP problem:

Min − 𝑧
∗

1
+ 𝑧
∗

2

s.t. − 0.9𝜆
1
− 0.5𝜆

2
− 1.1𝜆

3
− 0.2𝜆

4
− 2.2𝜆

5

− 2.8𝜆
6
− 3𝜆
7
≥ −𝑧
∗

1

− 1.63𝜆
1
− 1.36𝜆

2
− 1.55𝜆

3
− 2.15𝜆

4
− 2.04𝜆

5

− 1.4𝜆
6
− 2.04𝜆

7
≥ −𝑧
∗

2

0.65𝜆
1
− 0.35𝜆

2
− 0.65𝜆

3
− 0.55𝜆

4
− 1.2𝜆

5

− 0.8𝜆
6
− 1.3𝜆

7
≥ 0.65 + 0.1

𝜆
1
+ 𝜆
2
+ 𝜆
3
+ 𝜆
4
+ 𝜆
5
+ 𝜆
6
+ 𝜆
7
= 1

𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝜆
7
≥ 0.

(8)

As a result, we have calculated two marginal rates: (MR(+)
13
,

MR(+)
23
) and (MR(−)

13
,MR(−)
23
).

We can summarize the foregoing procedure as follows.
To calculate the two marginal rates of substitutions of

throughputs in group𝑀 to throughputs in𝑁, at the frontier
point 𝑧

𝑜
= (−𝑥

𝑜
, 𝑦
𝑜
), we can use the following three-step pro-

cedure:

(i) Choose a small number ℎ for throughput 𝑘.

(ii) Solve the following two LP problems (𝑑(1)
𝑙

and 𝑑(2)
𝑙

are
user-defined coefficients):

𝑧
(+)

𝑜
= Max ∑

𝑙∈𝑀

𝑑
(1)

𝑙
𝑧
∗

𝑙𝑜

s.t.
𝑛

∑

𝑡=1

𝜆
𝑡
𝑧
𝑡𝑙
≥ 𝑧
∗

𝑙𝑜
, 𝑙 = 1, 2, . . . , 𝑚 + 𝑠,

𝑛

∑

𝑡=1

𝜆
𝑡
= 1,

𝑧
∗

𝑙𝑜
= 𝑧
𝑙𝑜
, 𝑙 ∉ 𝑀, 𝑙 ∉ 𝑁,

𝑧
∗

𝑘𝑜
= 𝑧
𝑘𝑜
+ ℎ, 𝑙 ∈ 𝑁,

𝜆
𝑡
, 𝑧
∗

𝑙𝑜
≥ 0, ∀𝑡, 𝑙,

(9)

𝑧
(−)

𝑜
= Max ∑

𝑙∈𝑀

𝑑
(2)

𝑙
𝑧
∗

𝑙𝑜

s.t.
𝑛

∑

𝑡=1

𝜆
𝑡
𝑧
𝑡𝑙
≥ 𝑧
∗

𝑙𝑜
, 𝑙 = 1, 2, . . . , 𝑚 + 𝑠,

𝑛

∑

𝑡=1

𝜆
𝑡
= 1,

𝑧
∗

𝑙𝑜
= 𝑧
𝑙𝑜
, 𝑙 ∉ 𝑀, 𝑙 ∉ 𝑁,

𝑧
∗

𝑘𝑜
= 𝑧
𝑘𝑜
+ ℎ, 𝑙 ∈ 𝑁,

𝜆
𝑡
, 𝑧
∗

𝑙𝑜
≥ 0, ∀𝑡, 𝑙.

(10)

(iii) Calculate the optimistic and pessimistic marginal
rates of substitutions from right as follows:

MR(+)
𝑗𝑘

(𝑧
𝑜
) =

𝑧
(+)

𝑗𝑜
− 𝑧
𝑗𝑜

ℎ
,

MR(−)
𝑗𝑘

(𝑧
𝑜
) =

𝑧
(−)

𝑗𝑜
− 𝑧
𝑗𝑜

ℎ

∀𝑗 ∈ 𝑀, 𝑘 ∈ 𝑁.

(11)

Note that both marginal rates of substitutions from left can
be calculated by replacing −ℎ instead of ℎ. It is easy to show
that both projection points obtained frommodels (9) and (10)
are frontier points. Moreover, different weight vectors 𝑑 lead
to different marginal rates on different efficient facets. The
weight vector 𝑑 is a user-defined vector that determines the
direction of moving to efficient facet.

4. Marginal Rates in the Presence of
Bad Outputs

Now suppose we face a production system without explicit
inputs and the system has just desirable and undesirable
outputs (indeed, in such a system, inputs consumption is not
important to the decision makers). Such a system may have
considerable applications in real life when the process has
focused on outputs production. In what follows, we reformu-
late the procedure to production systems without explicit
inputs in the presence of both, desirable and undesirable
outputs.

Suppose we have 𝑛DMU
𝑗
: 𝑗 = 1, . . . , 𝑛, with the good

output vector 𝑦
𝑗
= (𝑦
1𝑗
, . . . , 𝑦

𝑠𝑗
) ≥ 0 and bad output vector

𝑧
𝑗
= (𝑧
1𝑗
, . . . , 𝑧

𝑝𝑗
) ≥ 0. Masoumzadeh et al. [14] have used the

weak disposability assumption of Shephard [15] to propose
the following linear production technology to handle unde-
sirable outputs in production system without explicit inputs:

𝑇WI =
{

{

{

(𝑦, 𝑧) :

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑗
≥ 𝑦,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑧
𝑗
= 𝑧,

𝑛

∑

𝑗=1

𝜆
𝑗
= 𝜃, 0

≤ 𝜃 ≤ 1, 𝜆
𝑗
≥ 0, ∀𝑗

}

}

}

.

(12)

If we want to evaluate firm “𝑜” in terms of the abatement
potential in bad outputs, we can use the following linear
programming problem:

Min 𝜌

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦
𝑟𝑜
, 𝑟 = 1, 2, . . . , 𝑠,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑧
𝑝𝑗
≥ 𝜌𝑧
𝑝𝑜
, 𝑝 = 1, 2, . . . , 𝑃,

𝑛

∑

𝑗=1

𝜆
𝑗
= 𝜃,

0 ≤ 𝜃 ≤ 1, 𝜆
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(13)
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Now, we reformulate the foregoing three-step procedure to
calculate the marginal rates of substitution of the undesirable
outputs in𝑁 to the desirable outputs in𝑀 from right:

(i) Choose a small number ℎ.
(ii) Solve the following two LP problems:

Max ∑

𝑝∈𝑀

𝑑
(1)

𝑝
𝑧
(+)

𝑝

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦
𝑟𝑜
, 𝑟 = 1, 2, . . . , 𝑠, 𝑟 ∉ 𝑁,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦
𝑟𝑜
+ ℎ, 𝑟 ∈ 𝑁,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑧
𝑝𝑗
≥ 𝑧
𝑝𝑜
, 𝑝 = 1, 2, . . . , 𝑃, 𝑝 ∉ 𝑀,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑧
𝑝𝑗
≥ 𝑧
(+)

𝑝
, 𝑝 ∈ 𝑀,

𝑛

∑

𝑗=1

𝜆
𝑗
= 𝜃,

0 ≤ 𝜃 ≤ 1, 𝜆
𝑗
, 𝑧
(+)

𝑝
≥ 0, ∀𝑗, 𝑝,

(14)

Max ∑

𝑝∈𝑀

𝑑
(2)

𝑝
𝑧
(−)

𝑝

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦
𝑟𝑜
, 𝑟 = 1, 2, . . . , 𝑠, 𝑟 ∉ 𝑁,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦
𝑟𝑜
+ ℎ, 𝑟 ∈ 𝑁,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑧
𝑝𝑗
≥ 𝑧
𝑝𝑜
, 𝑝 = 1, 2, . . . , 𝑃, 𝑝 ∉ 𝑀,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑧
𝑝𝑗
≥ 𝑧
(−)

𝑝
, 𝑝 ∈ 𝑀,

𝑛

∑

𝑗=1

𝜆
𝑗
= 𝜃,

0 ≤ 𝜃 ≤ 1, 𝜆
𝑗
, 𝑧
(−)

𝑝
≥ 0, ∀𝑗, 𝑝.

(15)

(iii) Calculate the optimistic and pessimistic marginal
rates of substitutions from right as follows:

MR(+)
𝑝𝑘

(𝑦
𝑜
, 𝑧
𝑜
) =

𝑧
(+)

𝑝
− 𝑧
𝑝𝑜

ℎ
,

MR(−)
𝑝𝑘

(𝑦
𝑜
, 𝑧
𝑜
) =

𝑧
(−)

𝑝
− 𝑧
𝑝𝑜

ℎ
,

∀𝑝 ∈ 𝑀, 𝑘 ∈ 𝑁.

(16)

Again, both marginal rates of substitutions from left can be
calculated by replacing −ℎ instead of ℎ.

5. Real World Application

To illustrate the marginal rates of substitution in the real
cases, consider the following example that uses data describ-
ing the quality of the services provided by the largest hydro-
power plants operating in Brazil. The data has been taken
from Zanella et al. [16]. These plants are under the perform-
ancemonitoring of the Brazilian Independent SystemOpera-
tor (ISO)with capacity above 100-megawatt (MW) electricity.
The data consist of 81 hydropower plants in Brazil. As Zanella
et al. [16] stated, around 90 percent of the electrical energy of
Brazil is supplied by hydropower plants and these 81 plants
cover 82% of the Brazilian total installed capacity. In this
sense, this selected sample is a good representation of the
power supply in Brazil.

The data set consist of three different indicators as outputs
that have been provided by Brazilian Independent System
Operator.Of these three indicators, two indicators are consid-
ered as undesirable outputs and one is the single desirable
output.

Now, we introduce these three indicators:The proportion
of time that the plant is available or in operation is considered
as the single desirable output (availability factor (𝑦

1
)). The

first undesirable output is the average time to repair (𝑧
1
)

which accounts for the number of hours unavailable to oper-
ate and under forcedmaintenance per forced outages. Finally,
the failure rate (𝑧

2
) is considered as the second undesir-

able output. This indicator shows the number of failures
occurring per hour of operation. Model (13) has been used in
this data set and we saw that ten plants are efficient (plants #4,
#6, #7, #13, #17, #20, #38, #39, #62, and #74). The data set and
results are listed in Table 2. Columns five and ten show the
relative efficiencies obtained from our proposed model (13).

Suppose that𝑀 = {1, 2} and𝑁 = {1} and we want to cal-
culate the response of changes in the undesirable outputs 𝑧

1

and 𝑧
2
to the change in the desirable output 𝑦. It is important

to note that both ℎ = 0.5 and ℎ = −0.5 yield feasible points for
all efficient plants. This means that increasing or decreasing
0.5 units in the desirable output leads to a point inside of the
production technology.The results for two different values of
ℎ are given in Tables 3 and 4. The first two columns of Tables
3 and 4 show the new values of 𝑧

1
and 𝑧
2
. The marginal rates

of substitutions are given in the last two columns.
Now, we analyze the results for three sample plants, plants

7, 13, and 17. As the last two columns of Table 3 show, of ten
plants, nine plants confront reduction in the bad outputs if
we increase the single desirable output by 0.5 units.

First consider plant 13: If we increase the availability factor
from its current value 95.64 to 96.14 (ℎ = 0.5), with 𝑑 = (1, 1),
the average time to repair (𝑧

1
) and the failure rate (𝑧

2
) are,

respectively, decreased to 0.1293 and 0.2568 with MR(+)
11

=

−1.9414 and MR(+)
12

= −0.0028. In plant 17, if we increase
0.5 units in the availability factor, both undesirable factors
𝑧
1
and 𝑧

2
are increased to 0.1307 and 0.2613, respectively.

The marginal rates in this case are MR(+)
11

= 0.0013 and
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Table 2: The data set and results.

Plant
𝐽

𝑦
1

𝑧
1

𝑧
2

Efficiency Plant
𝐽

𝑦
1

𝑧
1

𝑧
2

Efficiency

U1 93.62 165.56 4.25 0.0699 U41 92.8 6.38 7.55 0.0331

U2 56.97 24.71 3.09 0.0509 U42 92.22 4.88 5.01 0.0496

U3 90.28 15.11 1.3 0.1947 U43 97.9 6.39 10.82 0.347

U4 98.46 9.94 2.35 1 U44 92.95 31.83 4.74 0.0539

U5 93.45 15.26 2.83 0.0902 U45 73.52 12.77 3.32 0.0601

U6 98.6 14.92 1.58 1 U46 96.19 24.23 2.86 0.0933

U7 86.98 314.69 1.51 1 U47 95.21 5.76 5.78 0.0444

U8 89.23 273.47 1.86 0.318 U48 92.34 8.15 0.89 0.2879

U9 94.39 3.72 2.44 0.1044 U49 65.99 79.01 3.07 0.0641

U10 93.66 38.9 1.5 0.1865 U50 85.54 1.15 12.19 0.122

U11 96.74 0.72 1.24 0.3203 U51 96.48 5.13 6.55 0.0397

U12 95.16 136.68 2.66 0.1208 U52 73.89 6.17 3.7 0.0539

U13 95.64 1.1 0.26 1 U53 95.72 0.58 2.07 0.2295

U14 97.18 20.31 0.57 0.9174 U54 97.61 24.21 3.61 0.2453

U15 90.85 5.09 15.16 0.0245 U55 94.79 3.03 14.11 0.0446

U16 94.29 5.36 2.44 0.1044 U56 93.1 21.82 9.86 0.0255

U17 96.66 0.13 0.26 1 U57 78.82 74.25 5.86 0.0379

U18 79.25 574.77 4.51 0.0973 U58 97.83 11.87 6.31 0.293

U19 92.44 19.31 3.15 0.0804 U59 92.49 92.49 8 0.0324

U20 97.69 2.79 1.19 1 U60 91.65 3.87 1.93 0.1283

U21 95.04 13.59 2.78 0.0932 U61 91.87 14.14 3.44 0.0726

U22 84.07 26.03 14.72 0.0154 U62 98.17 0.33 10.11 1

U23 92.95 7.15 10.82 0.0231 U63 96.96 5.47 4.08 0.146

U24 75.23 43.27 9.83 0.0208 U64 93.38 6.99 1.53 0.1662

U25 97.56 6.94 5.44 0.2658 U65 93.87 2.85 0.39 0.6628

U26 93.08 0.97 15.58 0.183 U66 88.28 4.83 10.46 0.0247

U27 94.58 5.56 1.81 0.1416 U67 78.45 24.45 4.12 0.0521

U28 96.79 5.57 6.86 0.0645 U68 95.57 50.45 4.94 0.0539

U29 95.77 4.7 1.07 0.2436 U69 93.98 38.87 21.63 0.0117

U30 94.42 17.88 0.9 0.3049 U70 98.2 6.57 4.12 0.8721

U31 90.96 30.29 6.45 0.0384 U71 96.98 34.69 8.86 0.0546

U32 96.87 2.33 3.38 0.1792 U72 96.74 2.22 13.19 0.0639

U33 90.88 1.83 7.89 0.0702 U73 93.97 6.61 21.4 0.0196

U34 91.04 143.22 2.9 0.1049 U74 97.64 0.32 2.58 1

U35 97.01 3.86 8.1 0.1156 U75 84.68 8.28 3.68 0.0622

U36 85.86 14.29 19.88 0.0116 U76 72.69 116.59 10.11 0.0202

U37 96.21 0.93 1.37 0.189 U77 95.86 11.94 2.6 0.1005

U38 98.4 20.24 0.75 1 U78 94.62 11.25 2.36 0.1092

U39 98.45 7.05 5.15 1 U79 94.81 23.17 2.06 0.1289

U40 73.91 4.21 1.49 0.1343 U80 97.61 1.01 10.01 0.3034

U81 80.03 3.23 7.07 0.0335
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Table 3: Results with ℎ = 0.5 and 𝑑 = (1, 1).

𝑧
(+)

1
𝑧
(+)

2
MR(+)
11

MR(+)
12

U4 0.13313 0.2662 −19.6138 −4.1676
U6 0.1333 0.2666 −29.5734 −2.6269
U7 0.1177 0.2353 −629.145 −2.5494
U13 0.1293 0.2586 −1.9414 −0.0028
U17 0.1307 0.2613 0.0013 0.0027
U20 0.1321 0.26411 −5.3159 −1.8518
U38 0.1330 0.2660 −40.2140 −0.9680
U39 0.1330 0.2662 −13.8338 −9.7677
U62 0.1327 0.2654 −0.3946 −19.6892
U74 0.1320 0.2634 −0.3760 −4.6320

Table 4: Results with ℎ = −0.5 and 𝑑 = (1, 1).

𝑧
(+)

1
𝑧
(+)

2
MR(+)
11

MR(+)
12

U4 0.1318 0.2635 19.6165 4.1730
U6 0.1319 0.2639 29.576 2.6323
U7 0.1163 0.2326 629.15 2.5548
U13 0.1270 0.2559 1.9441 0.0082
U17 0.1293 0.2587 0.0013 0.0027
U20 0.1307 0.2614 5.3186 1.8572
U38 0.1317 0.2633 40.2167 0.9733
U39 0.1317 0.2635 13.8365 9.7731
U62 0.1314 0.2627 0.3973 19.6946
U74 0.1306 0.2613 0.3787 4.6374

MR(+)
12

= 0.0027. In plant 7, we confront a different case; 0.5-
unit increment in the availability factor leads to a decrement
of 1.2747 in 𝑧

1
and a huge decrement of 314.5723 in the failure

rate. Now, consider ℎ = −0.5 that the results are given in
Table 4.

Again, for plant 13, if we decrease the availability factor
from its current value 95.64 to 95.14 (ℎ = −0.5), with 𝑑 =

(1, 1), the average time to repair and the failure rate are,
respectively, decreased to 0.1270 and 0.2559 with MR(+)

11
=

−1.9441 and MR(+)
12

= 0.0082.
An interesting point in this example is that we have run

the procedure for different nonnegative 𝑑 and all directions
lead to same results.

6. Conclusions

Marginal rates of substitution are one of the most frequently
studied subjects in the content of nonparametric efficiency
analysis. The problem of calculating marginal rates of sub-
stitution has been studied from different point of views. The
existing trade-off analysis methods calculate the maximum
changes in a specific throughput when another throughput
is changed. In this case, a single measure of marginal rate is
calculated.The current paper has shown how supporting sur-
faces of production technology in nonparametric techniques
can be used to analyze the behavior of the firms. In this paper,

we have shown that binding efficient supporting surfaces can
be used to define different marginal rates of substitutions and
in this sense, instead of getting a single measure of marginal
rate of substitution as was done earlier in the literature,
we can get different marginal rates of substitution to each
frontier point. Numerical examples are used to illustrate the
applicability of the proposed approach.
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