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This work, under the optimal experimental design framework, investigates the sensor placement problem that aims to guide
electromagnetic induction (EMI) sensing of multiple objects. We use the linearized model covariance matrix as a measure of
estimation error to present a sequential experimental design (SED) technique. The technique recursively minimizes data misfit
to update model parameters and maximizes an information gain function for a future survey relative to previous surveys. The
fundamental process of the SED seeks to increase weighted sensitivities to targets when placing sensors. The synthetic and field
experiments demonstrate that SED can be used to guide the sensing process for an effective interrogation. It also can serve as a
theoretic basis to improve empirical survey operation. We further study the sensitivity of the SED to the number of objects within
the sensing range. The tests suggest that an appropriately overrepresented model about expected anomalies might be a feasible
choice.

1. Introduction

Unexploded ordnance (UXO) refers to malfunctioned,
undetonated military munitions that are present at former
war sites and military practice ranges. UXOs pose a serious
problem worldwide on public and environmental safety
due to their high-risk explosion threats to human life and
potential leaching of toxic explosive chemicals into soil and
groundwater system [1, 2]. In light of these concerns, the
cleanup of UXO contaminated sites has drawn significant
attention over the past two decades.The fundamental cleanup
work requires to detect buried UXO at depth and to separate
UXO from the vast amount of innocuous metallic debris.
Geophysical sensing techniques based on electromagnetic
induction (EMI) have been found to be the most effective for
detecting and characterizing shallow UXOs [3].

An EMI sensing system consists of transmitter and
receiver coils. The transmitter coil emits a primary magnetic
field to illuminate the subsurface. A time varying primary
field induces eddy currents in a nearby metallic object.
By Faraday’s law [4], these induced currents produce a
transient secondary magnetic field that can be measured

by a receiver. Provided that the target dimension is small
relative to the target-sensor distance and the primary fields
around the target are approximately uniform, the transient
scattering phenomena of a metal target can generally be well
described by an equivalent induced dipole [4, 5]. Under this
scatteringmodel, the induced principal dipole polarizabilities
are designated as the target signature for classification since
they are intrinsic function of the geometry and material
properties of an object. The principal polarizability charac-
teristic of UXOs exhibits one strong axial polarizability and
two equal weaker transverse polarizabilities [6–10]. That is
the fundamental physical attribute used for differentiating
potential UXOs from metallic debris in the EMI sensing
classification approach. To reliably classify UXO requires
accurate estimates of dipole polarizabilities from the geophys-
ical inversion of EMI data [6–10].

EMI data are collected in either a dynamic mode or
cued mode [3]. In a dynamic mode, the sensor is moved
across the area of interest to map data anomalies that indicate
metallic contamination. In a cued survey mode, the sensor is
placed stationarily at locations of data anomalies identified in
the dynamic survey. The cued survey helps to acquire high
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signal-to-noise ratio (SNR) data by increased stacking. In
addition, instrument position errors are minimized. There-
fore, a followup cued survey is often used to acquire data for
improving polarizability estimates.

In this paper, we focus on the sensor placement problem
in cued survey. For sites where anomalies are well separated,
the current practice of cued sounding likely positions a
sensor directly over a nearby target. For some circumstances
the instrument might be repositioned above the target by
inspecting the offset between the sensor location and the
estimated location of an assumed single target. In this way,
the SNR of cued data is maximized as possible. For sites
with high anomaly density, we likely encounter instances
where more targets are present in the field of view of the
instrument.The objects near the sensor-edgemight be poorly
characterized due to the signal being dominated by objects
closest to the center of the sensor. Additional soundings may
be desired to better characterize the anomalies. Ideally, the
addition of new data would reduce model uncertainty. The
extent to which model uncertainty is reduced depends on the
sensing locations. Therefore, we can treat adding soundings
as an optimal experimental design (OED) problem [11, 12]
in which optimal sensor positions are predicted in order to
collect the most informative data for accurately estimating
model parameters.

The theory of optimal experimental design has been well
documented in statistics and extensively applied to various
scientific and engineering fields [11, 12]. The OED theory
contains design and model parameters. In the context of
EMI sensing of UXO, the design parameter refers to the
number and locations of sensors that control the survey
quality. The model parameters refer to locations and polar-
izabilities of targets (see a brief review of the signal model
in Section 2). An optimal survey design is implemented
using statistical criterion [11, 12]. A common choice is the𝐷-criterion that minimizes the determinant of the model
covariance matrix. The determinant in the 𝐷-criterion is a
function of both design and model parameters. When the
true model parameters are known or specified, it can be
relatively straightforward to find design parameters. For the
EMI classification problem, we face a nonlinear optimization
problemwhere optimizing design parameters depends on the
model parameters that are unknown before the survey. To
make the problem tractable, we consider a sequential design
procedure [13, 14] that forecasts a new sensor placement using
estimated model parameters given an initial/current survey.
We then update model parameters using additional new
data. This procedure is repeated until a stopping criterion is
satisfied. A stopping criterion could be a predefined threshold
of information gain or a maximum number of sensing.

The remaining parts of this paper are organized as follows.
In Section 2, we describe the data model which briefly
reviews the physics of the EMI sensing. In Section 3, the
linearizedmodel and the associated optimality design criteria
are discussed. Then the sensor placement problem is formu-
lated as a sequential experimental design (SED) process. In
Section 4, the results from the synthetic and experimental
data are presented to evaluate the SED technique. Section 5
summarizes the paper.

2. Data Model

Consider a time domain electromagnetic system that is
deployed near the surface to interrogate a buried metallic
object. When the dimension of a target is small relative to
the target-sensor distance, the low frequency EMI scattering
of a metal target can be well represented by an equivalent
induced dipole model [6, 7, 15, 16]. Mathematically, a target is
characterized by the 3 × 3 magnetic polarizability tensor 𝑃(𝑡)
at time 𝑡:

𝑃 (𝑡) = [[[
𝑝11 (𝑡) 𝑝12 (𝑡) 𝑝13 (𝑡)𝑝21 (𝑡) 𝑝22 (𝑡) 𝑝23 (𝑡)𝑝31 (𝑡) 𝑝32 (𝑡) 𝑝33 (𝑡)

]]] . (1)

The elements of the tensor 𝑝𝑖𝑗(𝑡) represent a dipole compo-
nent in the 𝑖th Cartesian direction due to a primary field
in the 𝑗th Cartesian direction. The polarizability tensor is
symmetric and positive definite.The principal polarizabilities𝐿 𝑖(𝑡) are obtained through an eigen decomposition

𝑃 (𝑡) = 3∑
𝑖=1

𝐿 𝑖 (𝑡) e𝑖e𝑇𝑖 , (2)

where e𝑖 is the orthonormal eigenvector representing the𝑖th principal direction of dipolar polarization with respect
to a reference system. The principal polarization 𝐿 𝑖(𝑡) are a
function of the target’s size, shape, and material properties
(e.g., magnetic susceptibility and electric conductivity).

Assuming a time domain EMI system consisting of 𝑀
transmitter-receiver coil pairs, we can express the corre-
sponding measurements as [10]

d (𝑡) = 𝜂∑
𝑘=1

𝐴 (r𝑘, r𝑠) q𝑘 (𝑡) + n (𝑡) , (3)

where d(𝑡) = [𝑑1(𝑡), . . . , 𝑑𝑀(𝑡)]𝑇 is an 𝑀 × 1 measured data
vector at time 𝑡, 𝜂 is the number of targets in the field of
view of the sensors, 𝐴(r𝑘, r𝑠) is an 𝑀 × 6 matrix denoting the
sensitivities of the sensor system at r𝑠 to the 𝑘th object located
at r𝑘, q𝑘(𝑡) is a 6×1 column vector whose components are the
elements of the polarizability tensor 𝑃𝑘(𝑡) of the 𝑘th object,
and n(𝑡) is the additive noise vector. They are given by

𝐴 (r𝑘, r𝑠) = [[[[[
a𝑇1 (r𝑘, r𝑠)...
a𝑇𝑀 (r𝑘, r𝑠)

]]]]]
,

a𝑖 (r𝑘, r𝑠) =
[[[[[[[[[[[[

𝐻𝑥𝑅𝐻𝑥𝑇𝐻𝑥𝑅𝐻𝑦𝑇 + 𝐻𝑦𝑅𝐻𝑥𝑇𝐻𝑥𝑅𝐻𝑧𝑇 + 𝐻𝑧𝑅𝐻𝑥𝑇𝐻𝑦𝑅𝐻𝑦𝑇𝐻𝑦𝑅𝐻𝑧𝑇 + 𝐻𝑧𝑅𝐻𝑦𝑇𝐻𝑧𝑅𝐻𝑧𝑇

]]]]]]]]]]]]
,
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q𝑘 (𝑡) =
[[[[[[[[[[[[

𝑝11 (𝑡)𝑝12 (𝑡)𝑝13 (𝑡)𝑝22 (𝑡)𝑝23 (𝑡)𝑝33 (𝑡)

]]]]]]]]]]]]
,

(4)

where a𝑖(r𝑘, r𝑠) is 6 × 1 column vector representing spatial
sensitivities of the 𝑖th pair of transmitter-receiver to the object
located at r𝑘. H𝑇 = [𝐻𝑥𝑇, 𝐻𝑦𝑇, 𝐻𝑧𝑇] and H𝑅 = [𝐻𝑥𝑅, 𝐻𝑦𝑅, 𝐻𝑧𝑅] in
(4) are the magnetic fields at the object location r𝑘 generated
by that transmitter-receiver pair. Equation (3) describes the
measurements of an EMI sensor system that are the function
of target positions and their polarizabilities as well as a
sensing location. The task of EMI sensing of UXO is to
recover the principal polarizabilities from measurements for
classification.

3. Method

Our objective is to estimatemodel parametersm that describe
targets within view of the sensor and design parameters 𝜓, in
particular the location of the sensor.Themodel parametersm
are the target polarizations and locations. For 𝜂 objects within
the sensor field of view, they might be collectively expressed
as

m = [r
q

] , (5)

where r contains the location vectors for the 𝜂 objects and
q contains their respective polarizabilities. For a single time
channel, the dimension of r is 3𝜂 × 1 and the dimension of q
is 6𝜂×1.The dimension ofm is𝑁×1, where𝑁 = 3𝜂+6𝜂.The
design parameters 𝜓 related to sensor location are contained
in the modeling matrix 𝐴 of (4). We write (3) as

d = F (m, 𝜓) + n (𝜓) , (6)

whereF(m, 𝜓) denotes the nonlinear forward function that
maps the m and 𝜓 on the data. n(𝜓) is the data noise
associated with a particular survey design 𝜓. For simplicity,
we have suppressed the variable 𝑡 in (5) and (6).

In standard data processing, the set of experiment design
parameters are fixed, and a nonlinear inverse problem is
solved for finding model parameters m [17]. On the other
hand, the optimal experiment design problemaims to find the
design parameters that are expected to achieve the minimum
model uncertainty [11, 12]. Experiment designs are compared
using statistical criteria based on the information matrix.
Calculation of the information matrix requires estimating
the model covariance matrix. For the nonlinear optimal
experiment design problem, we will linearize the forward
model function (6) about a reference model. A design
criterion based on the linear problem will then be utilized.

3.1. Linearized Model Uncertainty and Optimal Design Crite-
ria. Toobtain the analytical expression of amodel covariance
matrix in the nonlinear inverse problem, we linearize the data
functional about a prior estimated modelm0 [17]

d ≈ F (m0, 𝜓) + 𝐽Δm, (7)

where Δm = m − m0 and 𝐽 is the 𝑀 × 𝑁 Jacobian matrix
comprising the partial derivatives of the data functional
evaluated atm0 for the design 𝜓,

𝐽 = 𝜕F𝜕m 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨m0 . (8)

A solution to the linearized equation of (7) can be achieved
by minimizing an objective function [17]

𝜙 = 󵄩󵄩󵄩󵄩󵄩𝑊−1/2𝑑 (Δd − 𝐽Δm)󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝐶−1/20 Δm󵄩󵄩󵄩󵄩󵄩2 , (9)

where Δd = d − F(m0, 𝜓) are the data residuals between the
measured data and the data predicted at the model m0. 𝑊𝑑
is generally treated as a data covariance matrix and 𝐶0 is a
priormodel covariancematrix.Thefirst term in (9) is the data
misfit, measuring the discrepancies between the observed
and theoretical quantities. The second term is a damping or
regularization term that plays a role in controlling the size of
a solution model relative to modelm0. The formal linearized
least square solution for (9) is given by [17]

m ≈ m0

+ (𝐽𝑇𝑊−1𝑑 𝐽 + 𝐶−10 )−1 𝐽𝑇𝑊−1𝑑 (d − F (m0, 𝜓)) . (10)

The corresponding posterior covariance matrix 𝐶𝑚 can be
approximated as [17]

𝐶𝑚 ≈ (𝐽𝑇𝑊−1𝑑 𝐽 + 𝐶−10 )−1 . (11)

As indicated in [13, 17], a modelm0 used for the linearization
is often obtained as a local optimum point through an
iterative optimization algorithm. The posterior 𝐶𝑚 of (11)
estimated at convergence is viewed as a linearized measure of
uncertainty in the estimatedmodel parameters.This estimate
forms the basis for various experimental design approaches
[11, 12].

In the standard experimental design approaches, the
model covariance matrix is converted into some scalar
functions such as its determinant or trace, that is, Φ𝐷 =|𝐶𝑚| or Φ𝐴 = tr𝐶𝑚. Then an optimal design 𝜓 might be
sought in terms of the 𝐷- and 𝐴-criteria [11, 12], given by
min𝜓Φ𝐷 and min𝜓Φ𝐴, respectively. Under assumption that
the estimates are multivariate Gaussian, 𝐶𝑚 in the model
space might be pictured as an ellipsoidal confidence region
about the parameter estimates. Geometrically, Φ𝐷 or Φ𝐴
measures the size of this ellipsoid either in terms of its volume
or its average semiaxes lengths. The smaller the ellipsoidal
region, the smaller the uncertainty in parameter estimates.
Posing Φ𝐷 or Φ𝐴 as a function of experimental parameters𝜓 makes it possible to seek an optimal experiment over the
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experiment space and render the minimal postexperimental
uncertainty in model estimates.

The optimization of experimental designs 𝜓 in our case
is conditional on the assumed model m0. In principle, the
optimal design can be achieved only when the prior estimate
m0 is close to the true parameters. In reality, such an assump-
tion might not always hold. Thus for a nonlinear model, it
is necessary to have a procedure in which the design can
be sequentially updated upon the improved estimate of the
model parameters after each experiment. In the following we
present a D-criterion-based sequential experimental design.

3.2. Sequential Experimental Design Optimization. In this
section, we follow the approaches of augmenting experimen-
tal data [11, 13, 14] to obtain a sequential experimental design
criterion and procedure in terms of the posterior covariance
matrix.

Starting a current survey stage denoted as 𝑠, we wish to
find or predict the next sounding, denoted as future stage 𝑠+1.
The sensitivity matrix at stage 𝑠 + 1 can be expressed as

𝐵𝑠+1 = [ 𝐵𝑠𝐽𝑠+1] , (12)

where 𝐵𝑇𝑠 = [𝐽𝑇1 , . . . , 𝐽𝑇𝑠 ] is a composite of the sensitivity
matrices for 𝑠 experiments at stage 𝑠 and 𝐽𝑠+1 represents a
sensitivity matrix that is to be determined via optimizing the
criterion below. 𝐵𝑠+1 is formed by appending a future 𝐽𝑠+1 to
the existing 𝐵𝑠 [11, 13, 14]. This is equivalent to adding data
from a new sounding. Denote the model covariance matrix
at stage 𝑠 as 𝐶𝑠. With (11), its inverse can be expressed as

𝐶−1𝑠 = (𝐵𝑇𝑠𝑊−1𝑠 𝐵𝑠 + 𝐶−10 ) , (13)

where 𝑊𝑠 is the data covariance matrix at the 𝑠th stage, given
by

𝑊𝑠 = (Σ1 0 00 d 00 0 Σ𝑠) , (14)

whereΣ𝑠 is a block data covariancematrix of size𝑀×𝑀 at the𝑠th sounding. For stage 𝑠 + 1, the posterior covariance matrix
is given by

𝐶−1𝑠+1 = (𝐵𝑇𝑠+1𝑊−1𝑠+1𝐵𝑠+1 + 𝐶−10 ) . (15)

Inserting (12) and using (13), the inverse posterior covariance
matrix of (15) at step 𝑠 + 1 may be rewritten as

𝐶−1𝑠+1 = (𝐵𝑇𝑠𝑊−1𝑠 𝐵𝑠 + 𝐶−10 + 𝐽𝑇𝑠+1Σ−1𝑠+1𝐽𝑠+1)
= (𝐶−1𝑠 + 𝐽𝑇𝑠+1Σ−1𝑠+1𝐽𝑠+1) . (16)

Using the matrix determinant lemma [18], we can have󵄨󵄨󵄨󵄨󵄨𝐶−1𝑠+1󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐶−1𝑠 + 𝐽𝑇𝑠+1Σ−1𝑠+1𝐽𝑠+1󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝐶−1𝑠 󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝐼𝑀 + 𝐽̃𝑠+1𝐶𝑠𝐽̃𝑇𝑠+1󵄨󵄨󵄨󵄨󵄨󵄨 , (17)

where 𝐼𝑀 is an identity matrix with the size of 𝑀 × 𝑀 and𝐽̃𝑠+1 = Σ−1/2𝑠+1 𝐽𝑠+1. Therefore, we can introduce a new function
as

I𝐷 = ln
󵄨󵄨󵄨󵄨󵄨𝐶−1𝑠+1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐶−1𝑠 󵄨󵄨󵄨󵄨 = ln

󵄨󵄨󵄨󵄨𝐶𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐶𝑠+1󵄨󵄨󵄨󵄨 = ln
󵄨󵄨󵄨󵄨󵄨󵄨𝐼𝑀 + 𝐽̃𝑠+1𝐶𝑠𝐽̃𝑇𝑠+1󵄨󵄨󵄨󵄨󵄨󵄨 . (18)

Equation (18) is a scalar measure of the model covariance
reduction that can be obtained by adding a new sounding
to the previous 𝑠 soundings. Conversely, I𝐷 may be called
an expected information gain. The core part in the objective
function I𝐷 is 𝐽̃𝑠+1𝐶𝑠𝐽̃𝑇𝑠+1 that is a model covariance matrix𝐶𝑠-weighted product of the scaled sensitivity matrix 𝐽̃𝑠+1 at
the candidate sensing location. The way (18) works may be
understood qualitatively. If the elements of model covariance
matrix are larger at previous 𝑠 stages,I𝐷 will tend to be large
by seeking a new experiment that can increase sensitivities
in 𝐽̃𝑠+1 and thus reduce the model uncertainty expressed in
(15). On the other hand, if the elements of model covariance
matrix are already smaller at the previous 𝑠 stages at which
large sensitivities were built upon, the value ofI𝐷 would be
small when adding a new experiment that likely resembles
one of the previous ones.

The above presentation is general and can be reduced to
some specific case. The form of (18) is similar to those in
[13, 14], but its inclusion of the covariance matrices makes it
convenient to incorporate available a priori knowledge about
the model and accommodate various types of measurement
noise into an optimal experimental design process. Specifying
the prior covariancematrices requires statistical noisemodels
that are representative of the experiment. However such sta-
tistical noise models are not always known or easily defined
in reality. To simplify, one common practice is to ignore 𝐶0
and assume a uniform uncorrelated data noise [13, 14]. In
our current implementation, we also simply choose 𝐶−10 = 0
which represent no prior information about model in the
beginning. However in the sequel, this choice is automatically
updated as shown in (16) where 𝐶𝑠 from the previous survey
locations can be viewed as priormodel information for a next
intended survey location and is embedded in (18). For a data
covariance matrix, we consider an uncorrelated nonuniform
error distribution in this study. That is, a standard error
is assigned as a summation of the baseline error 𝛿𝑗 and a
percentage 𝜗 of an observed datum [19]. Then the diagonal
entry of 𝑊𝑖𝑖 is written as 𝑊𝑖𝑖 = (𝛿𝑖 + 𝜗|𝑑|obs,𝑖)2 for 𝑖th datum.

Having obtained the 𝐷-optimality function (18), we can
implement a sequential experimental design (SED) for sensor
placement in the following manner.

Step 1. Given the survey parameters as 𝜓𝑠 at the 𝑠th stage,
finding the best model parameters m is stated as the min-
imization of a nonlinear least squares function with some
constraints (for algorithm details see [10, 20, 21])

m̂𝑠 = argmin
m

{󵄩󵄩󵄩󵄩󵄩𝑊−1/2𝑠 (d − F (m, 𝜓𝑠))󵄩󵄩󵄩󵄩󵄩2 : m
= (r, q) , ‖Δr‖ ≤ Δ 𝑟, q ∈ 𝑆+} , (19)
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Figure 1: (a) TEMTADS2x2: a multistatic system consisting of 4 coplanar transmitters and 4 triaxial receiver cubes. Each transmitter is 40 cm× 40 cm and each receiver 8 cm × 8 cm. (b) Two sets of polarizations used for the numerical experiments. The blue and black solid curves
represent polarizations decays of 37mm and 75mm projectiles.

where Δ 𝑟 is a positive scalar used to provide a local trust
region within which Δr is allowed to change and q ∈ 𝑆+
represents that q is constrained to be the elements of the set𝑆+ of symmetric positive semidefinite matrices.

Step 2. Given the current model m̂𝑠 and starting from the
most recent sensor position in 𝜓𝑠, we predict next sensing
location represented as 𝜓𝑠+1 by maximizing

𝜓𝑠+1 = argmax
𝜓

I𝐷 (m̂𝑠, 𝜓𝑠, 𝜓)
= argmax

𝜓
ln

󵄨󵄨󵄨󵄨󵄨󵄨𝐼𝑀 + 𝐽̃ (𝜓) 𝐶𝑠𝐽̃𝑇 (𝜓)󵄨󵄨󵄨󵄨󵄨󵄨 . (20)

The optimization can be carried out via the Matlab [22]
function fmincon.

Repeat this survey augmenting process until a stopping
criterion is attained. This stopping criterion may be a prede-
fined threshold of information gain or a maximum number
of sensing stages.

4. Results

In this section, we evaluate the SED with two portable EMI
sensor systems: one is the TEMTADS2x2 (Transient Electro-
magnetic Multisensor Towed Array Detection System) [23];
the other is the MPV (Man Portable Vector sensor) [24, 25].
Each sensor is described in the related subsections.

4.1. Synthetic Experiments with TEMTADS2x2. First, we
present results with synthetic TEMTADS2x2 time-domain
data with a noise level of 7% to illustrate the capability of the
optimal experimental design for the sensor placement.

TEMTADS2x2 is a sensor system that consists of 4
coplanar small transmitters and 4 sets of tri-axial receiver

cubes [23] (Figure 1(a)). The sizes of each transmitter and
receiver are 40 cm × 40 cm and 8 cm × 8 cm. Two objects,
37mm and 75mm projectiles, are used in the numerical
experiments. Their polarizabilities are shown in Figure 1(b).

In the first experiment, we consider a scenario where
the two objects are initially sensed near the edge of the
instrument. The locations of the two objects are r1 =(0.20, 0.30, −0.15)m, r2 = (0.10, 0.15, −0.35)m. Figure 2(a)
shows the relative position in the first place between the
sensor footprint (the black dashed square) and the object
locations (the two red circles). We inverted the initial sound-
ing data and obtained the estimated locations of the two
objects: r̃1 = (0.17, 0.36, −0.15)m, r̃2 = (0.11, 0.10, −0.24)m.
Figure 2(b) shows that the recovered polarizabilities (the solid
curves) are fluctuated and far from the true ones (dashed
curves).

Given current model information extracted from the
initial sounding data, we ran the SED to predict the next
sounding location. The expected information gain is 98.10 if
moving sensor from previous sounding 1 to predicted sound-
ing 2. At the suggested place (green cross) in Figure 2(a),
the sensor (the green square) would center on top of the
two objects. Following the SED forecast, we took the second
sounding and inverted the combined data from the two
soundings. As a result (Figure 2(c)), we obtained significant
improvements over the estimated locations of the two objects
and the recovered polarizabilities. As an experiment, we
continued to run the SED for a next sounding given the
previous measurements. Relative to first two soundings, the
SED predicted that the expected information gain would be
14.42 at another new sounding, shown as a blue square in
Figure 2(a). Again taking the measurements in this newly
intended sensor location from the SED and inverting all
three sounding data simultaneously, we further achieved
some improvements in the recovery of polarizabilities of
37mm projectile. Subsequently, we would have a small
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Figure 2: Experiment 1: two objects near the sensor edge. (a) Two red circles represent the true locations of the objects. The black square
delineates the footprint for the initial sensor location and the other color squares indicate the predicted positions. (b) The recovered
polarizabilities from the initial sounding (s1) data. (c) The recovered polarizabilities from the sounding data [s1 s2]. (d) The recovered
polarizabilities from the sounding data [s1 s2 s3]. In the polarization subplots, the solid curves represent the recovered polarizabilities and
the dashed ones the true ones.

information gain of 7.43 for a 4th future sounding relative to
the previous three soundings. Given decreasing information
gain gradually from the SED, we stopped taking any more
measurements.

In the second experiment, we mimic another real case
where both objects are close to the sensor edges but one is
inside the sensor footprint and the other one is outside of it.
The locations of the objects are at r1 = (0.45, −0.21, −0.15)m
and r2 = (0.10, 0.15, −0.35)m. Figure 3(a) shows the relative
position initially between the sensor footprint (the black
dashed square) and the object locations (the two red circles).
Inverting the first sounding data derives the locations of the
two objects: r̃1 = (0.44, −0.21, −0.14)m, r̃2 = (0.17, 0.12,−0.36)m. For the 37mm projectile, its recovered polariz-
abilities (in the blue solid curves) are acceptable although

the secondary polarizabilities show some fluctuation in late
times (Figure 3(b)). But for 75mm projectile that is outside
of sensor footprint, the recovered polarizabilities are noisy.
However the situation improves after applying the SED
method. For example, the suggested new sounding (the green
square) in Figure 3(a) would cover both objects within sensor
footprint. The corresponding expected information gain is
31.23 assuming measurements would be taken in this place.
By taking the measurements as suggested by the SED and
then inverting composite data from both soundings, we
not only obtain the cleaner polarizabilities of the 37mm
projectile but also well recover the polarizabilities of the
75mm projectile (Figure 3(c)). After that, we might want to
know what the SED can continuously forecast. Relative to the
current measurements, the expected information gain would
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Figure 3: Experiment 2: two objects close to sensor edges. Caption is the same as that in Figure 2.

be 10.30 for the next sounding. Taking the measurements at
the suggested 3rd sounding location, we further pin down
the fluctuation of the recovered polarizabilities in the late
times. Similar to the first experiment, we ran the SED to
examine a possible fourth sounding and observe that only
the small information gain of 6.2 can be achieved. We
decided not to acquire additional data with the suggested
sounding.

From the above experiments, we see that the SEDpredicts
to place a sensor toward the locations of objects. Recall that
EMI sensing is quasistatic and signals fall off rapidly about1/𝑟6, where 𝑟 is the distance from a sensor to an object. By
reducing that distance in an optimal way, the SED attempts
to increase sensing sensitivities and the SNR as well. This
is consistent with the physical nature of the problem. As
shown in Figure 4, the information gain in (18) as a function
of sensing location can achieve maximum values around
the objects’ locations. This concave property justifies the use

of the 𝐷 optimality-based optimal experimental design to
forecast an optimal sensor placement.

The previous studies on inversions of multiple objects
[8–10] have shown that a single-object model may lead to
the adverse consequence of missing targets of interest and is
often not sufficient to guarantee an accurate recovery of target
polarizabilities. Similarly in the SED test when assuming a
single-object model for the above two-object examples, we
obtained incorrect results: missing recovery of one anomaly
or both (not shown here). Next, we are interested to establish
whether the SED is effective for an overrepresented model,
that is, assuming the number of objects larger than the actual
one.

In the third experiment, we inspect the SED result
given a overestimated number of objects. Consider a single
object (37mm projectile) at r = (0.10, 0.15, −0.35)m. The
object is outside of the sensor footprint. Figure 5(a) shows
the initial sensing position relative to the object. In the
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Figure 4: Map of Information gain as a function of sensor locations: (a) Experiment 1; (b) Experiment 2. The two circles denote the locations
of the two objects.

following, we simply suppose a two-object model. Given
the initial sounding data that were collected over a single-
object anomaly, we inverted them as if there were two
objects. Figure 5(b) shows the recovered polarizabilities in
the first location. The black jittery curves correspond to a
false source at r̃1 = (−0.33, 0.10, −0.36)m. For the actual
object (blue solid curves), its primary polarizability decay
curve is somehow recovered but its amplitude is smaller than
the true one (dashed curves). The secondary polarizabilities
are noisy. The estimated location of the true object is given
by r̃2 = (0.13, 0.17, −0.30)m. Given the current inaccurate
information extracted from the initial sounding data, the
SED predicts a new sensing place (the position of the green
square in Figure 5(a)) with the expected information gain
of 128.12. Conducting the measurements as the SED fore-
casted and performing the inversion with the two-sounding
data, we immediately get the recovered polarizabilities that
match well with the true ones (Figure 5(c)). Meanwhile,
the false source is inverted now as being outside of the
current sounding range and the associated polarizabilities
are with very small amplitudes. The third SED predicted
sounding (the blue square in Figure 5(a)) suggests a place
covering the spurious source inverted in the current model
parameters. The expected information gain is achieved as
12.77with respect to the two previous real soundings. Assume
that we continued to take the measurements according
to the SED prediction. The results of inverting all three
sounding data are quite similar to those of inverting the
two sets of data (Figures 5(c) and 5(d)). After the three
soundings, the fourth theoretic sensing location is directly
over 37mm projectile. However, with the relative small
information gain of 6.73, it is unnecessary to acquire more
data.

This experiment shows that an overrepresentation model
in the SED might be a simple, feasible way to deal with the
unknown number of objects.

4.2. Experiments with the MPV. To further evaluate the SED,
we conducted experiments with the MPV [24, 25]. In this
development stage, we considered an indoor environment for
an operational matter of efficiency since it needs a number
of efforts of tuning and modifying the SED program when
transiting from a numerical setup to the real-time processing.

Figure 6(a) schematically shows the MPV [24, 25]: a
multistatic sensor system that consists of three orthogonal
transmitters: a 𝑧-directed circular one with the diameter of
50 cm and 𝑥- and 𝑦- directed rectangular ones with the sizes
of 54 cm × 54 cm and 54 cm × 50 cm, respectively. Five sets of
triaxial receiver cubes (each 10 cm × 10 cm) are distributed
on the circular transmitter plane. Referring to Figure 6(b),
the sensor in the setup would be moved manually on the
wood plate to a specified mark and targets were positioned
below the plate for a desired configuration. Experimental
objects include small, medium, and large ISOs (Industrial
Standard Object) (Figure 6(c)). Note that the experiments
were taken in the Black Tusk Geophysics office in the
day time where noise was strong probably due to various
nearby inside and outside electronic interferences. These
environment factors might introduce correlated noise. That
noisewas compensated by taking a backgroundmeasurement
in the absence of the test items before each experiment and by
subsequently subtracting background contribution from the
data. Considering that the method would be deployed on a
real-time system, we assumed an uncorrelated nonuniform
noise model. As shown below the SED performance, the
assumption appears reasonable.

As mentioned previously, we attempted to simulate mul-
tiple-target cases that might be encountered in real scenarios:
for example, theremight be one or two targets that are near or
outside the footprint of the instrument.The goal of the exper-
iments is to evaluate how the SEDwould guide to characterize
targets near the instrument edges by taking an additional
data sounding.We presented two SED experiments with two-
object and three-object cases, respectively.
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Figure 5: Experiment 3: single-object close to sensor edges. Caption is the same as that in Figure 2.

(a) (b) (c)

Figure 6: (a) MPV: a multistatic system consisting of a 𝑧-directed circular transmitter with the diameter of 50 cm and 𝑥- and 𝑦-directed
rectangular transmitters with size of 54 cm × 54 cm. 5 triaxial receiver cubes (each 8 cm × 8 cm) are distributed on the circular transmitter
plane. (b) A snapshot of the indoor experiment setup. (c) Photos of small, medium, and large ISOs used in the experiments.
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Figure 7: Target locations and initial sensor footprint in the SED experiment setup with the MPV. (a) Two-object example. (b) Three-object
example. In the initial sounding (S1), a black circle denotes the sensor footprint and gray squares the true locations of the objects.

In the two-object case shown in Figure 7(a), there are
small and large ISOs (denoted by gray squares) that were
positioned at the opposite sides of the sensor footprint (black
circle). Inverting the initial sounding data (S1) provided a
rough estimation of target locations, denoted by the small
circles in Figure 8(a). The recovered polarizabilities are pre-
sented in Figures 8(b) and 8(c), with the dashed gray curves
showing the reference polarizabilities of the ISOs.Overall, the
primary polarizabilities of both targets were fairly recovered
with some level of jitter at late times. However the recovered
secondary and tertiary polarizabilities for both small and
large ISOs appear noisy (Figures 8(b) and 8(c)). Given the
model parameters derived from the initial sounding (S1), the
SED predicted the second sounding at (0.28, 0.32)m with
a large expected information gain of 83.75. It suggested to
position the instrument over the inverted small target. Shown
as a green circle in Figure 8(d), we moved the sensor to the
second sounding location as the SED guided and acquired the
additional data. The inversion with the additional sounding
seems to mainly affect recovery of the small object. Its
location has some adjustments relative to that derived from
the initial sounding inversion. Its polarizabilities become
smooth in Figure 8(e). Under the updatedmodel parameters,
the SED suggested a third sounding at (−0.14, −0.28)m with
information gain of 23.39. We followed the SED to move the
sensor in the new position (the big blue circle in Figure 8(g))
that covers the deep and large target. By inverting all three
sets of data, we obtained improvements on the recovered
polarizabilities of the small and large targets, which became
smoother and cleaner. One possible advantage of the SED is
that it is able to provide some knowledge about the future
state but without a need of real action. For instance after we
took three shots of measurements, the running of the SED
points out a fourth sounding at (−0.22, −0.16)m, which is
a small offset relative to the third sounding location. And
the expected information gain is 8.12 for the new sounding,
which is small as compared to previously taking second and
third soundings. Thus in this example, we can stop collecting

data for either reaching a predefined number of sounding or
having a small expected information gain.

In the three-object case shown in Figure 7(b), a medium
ISO was inside of the sensor footprint and a small and a large
ISO were both outside of the sensor footprint. Data acquired
at the initial stage (S1) were initially inverted by assuming
a two-object model. The polarizabilities of the medium and
large ISOs were well inverted and their recoveries appear
not affected by the presence of outside small ISO. The signal
contribution of the small ISO to the data S1 is negligible
relative to the two other objects.This was verified by inverting
the data S1 for a three-object model. Results in Figures 9(d)–
9(f) show inversion of the initial sounding data does not
render a small ISO-like object, rather an additional, false
medium ISO-like object (Figure 9(d)). In other words, the
use of the single sounding data is not sufficient to accurately
resolve the three targets in this configuration. In practice,
we conducted the SED using the results of the two-object
inversion.The SED suggestedmoving the sensor to a position
of (0.11, 0.19)m to cover the upper-right target in the current
inversion result.The expected information gain was 28.46 for
the next possible sounding.We took the secondmeasurement
and inverted the two sets of data simultaneously with a two-
object model. In Figure 9(g), the big green circle denotes the
new sensor location and the two small circles the inverted
locations of the two objects. In the updated inversion, the
polarizabilities of the medium ISOwere recovered with some
overshoot relative to the reference ones. However unlike
the inversion in S1 stage, we did not see the polarizabilities
matching the large ISO. Instead, we obtained one different,
new set of recovered polarizabilities that agree with those
of the small ISO. This suggested that an additional target
was present, distinct from the two targets found at S1. This
motivated the use of a three-target inversion. Using a 3-
object model and inverting the two sets of sounding data,
we were able to resolve all three targets (their locations and
polarizabilities) in a noisy setting (Figures 9(j)–9(l)). We
stopped collecting data after reaching the sounding number
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Figure 8: SED experiment with theMPV, two-object example. Initial sounding (S1): (a) the sensor footprint (black circle) and inverted object
locations (small circles); (b)-(c) recovered polarizabilities in blue and red and the reference ones in gray dashed. Soundings S1 + S2: (d) the
sensor footprint and inverted object locations; (e)-(f) recovered polarizabilities. Soundings S1 + S2 + S3: (g) the sensor footprint and inverted
object locations; (h)-(i) recovered polarizabilities.

of 2, although the SED suggested the third sounding at (0.26,
0.35)m, a position that would cover the small ISO.

5. Conclusions

In this work, we have investigated the application of the
experiment design approach to guiding a sensor placement
that aims to achieve optimal measurements in practice. The
experimental design theory includes the two sets of param-
eters of interest: the model parameters (locations of targets
and their polarizabilities) and design parameter (sensing

location). Since determining the optimal design parameter
depends on the model parameters that are unknown before
an experiment, we adopted the sequential experimental
design (SED) technique. By the linearized model covariance
matrix that quantifiesmodel uncertainty, an information gain
function (a variant of the 𝐷-criterion) can be defined as a
measure of model uncertainty reduction between previous
and future surveys. The SED approach recursively solves
the target parameters by minimizing the data misfit and
forecast the next desired sensor location by maximizing
the information gain function. The sequential experimental
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Figure 9: SED experiment with the MPV, three-object example. Initial sounding (S1): (a) the sensor footprint (black circle) and inverted
two-object locations (small circles); (b)-(c) recovered polarizabilities with a two-object model; (d)–(f) recovered polarizabilities with a three-
objectmodel. Soundings S1 + S2: (g) the sensor footprint and inverted two-object locations; (h)-(i) recovered polarizabilities with a two-object
model; (j)–(l) recovered polarizabilities with a three-object model. Recovered polarizabilities are in blue, red, and black and the reference ones
in gray dashed.
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design algorithm is presented in a generic form which allows
to incorporate available prior information about model and
data into the process through the covariance matrices. In
this preliminary study, we consider the simple case assuming𝐶−10 = 0 and a non-uniform diagonal data covariance matrix.

The synthetic and real tests show that the SED can be a
promising tool that can help guide a sensor placement. We
further studied the impact of the unknown number of targets
on the SED performance. In the TEMTADS2x2 experiments
with a single near sensor-edge object, we observed that the
SED is able to suggest a new sounding location that covers
the true anomaly under an overestimated 2-object model.
After adding one-step guided sensing, the polarizabilities of
the actual anomaly were much better recovered than those
with the initial sounding. Meanwhile the polarizabilities
of the false anomaly become small, remain noisy, and are
negligible. However for the case of two objects that are close
to sensor edges, an underestimated single-objectmodel could
mislead the SED to focus on only one of the targets. As a
result, the addition of soundings through the SED brought
no improvement to polarizability recovery. In the real MPV
experiment with a 3-object case, assuming only two objects
for the initial inversion worked for the SED to predict an
informative sensing location. The reason was that both the
initial sounding and the SED-suggested sounding mainly
sensed two objects while the third object remained fairly
far from the field view for each survey location. However,
inverting the two sets of data simultaneously required a three-
object model to account for the signal contribution of each
of the three buried items. As a general rule, an appropriate
overrepresentation model in the SED appears to be workable
to deal with an unknown number of objects.

In the future, it could be interesting to investigate a noise
statistical model that properly specifies correlated noise in
EMI measurements. Then for measurement errors known to
be correlated, a nondiagonal data covariance matrix can be
used to take these correlations into account in the optimal
experimental design for the sensor placement problem.
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