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Undergraduate physical chemistry courses require students to be proficient in calculus in order to

develop an understanding of thermodynamics concepts. Here we present the findings of a study that

examines student understanding of mathematical expressions, including partial derivative expressions,

in two undergraduate physical chemistry courses. Students participated in think-aloud interviews and

responded to a set of questions involving mixed second partial derivatives with either abstract

symbols or thermodynamic variables. The findings describe students’ ability to transfer mathematics

knowledge to chemistry problems and how students use symbolic forms described by Sherin (2001) to

make sense of mathematical expressions in physical chemistry contexts.

Introduction

Mathematical inscriptions related to derivatives and integrals
are a fundamental part of the language of physical chemistry.
Consider, for instance, a type of mathematical relationship
commonly encountered in a junior-level chemical thermo-
dynamics course, the Maxwell Relations. Also referred to as
the equality of mixed second partial derivatives of exact
differentials, the Maxwell Relations provide a way to relate
macroscopic observable quantities such as temperature and
pressure to more abstract chemical properties such as entropy
or Gibb’s Energy (Fig. 1).

The use of mathematical equations allows physical chemists
to have a common language for inquiry (Kozma and Russell,
1997). Becoming fluent with mathematical representations is
thus essential for the acquisition of expertise in chemistry
(Kozma et al., 2000; Kozma and Russell, 1997). In the context
of a physical chemistry course, students are commonly asked
to use mathematical relationships, such as that shown in Fig. 1
to relate physical variables such as temperature and pressure

to more abstract chemical constructs such as Gibbs Energy.
Understanding of fundamental concepts in thermodynamics
thus becomes tied to the student’s ability to translate between
mathematical equations and the macroscopic phenomena they
represent. Students must become able to not only interpret
symbolic expressions and perform mathematical manipulations
but they must also develop an understanding of the physical
significance of the symbolic representations. As instructors of
chemistry, we hope that students become able to interpret and
work with mathematical expressions such as this with under-
standing, not just to routinely apply algorithms and formulae.
How do we as instructors help students make physical sense of
mathematical expressions and to use them to predict and
explain chemical behavior?
Research on the students’ ability to translate mathematical

equations and symbols into descriptions of the macroscopic
system under study have not been extensively investigated in
chemistry education research. The vast majority of studies
related to thermodynamics have been done to document
student difficulties and misconceptions in thermodynamics
contexts and have taken place either in K-12 classrooms or
introductory courses with few exceptions. Greenbowe and
Meltzer’s (2003) work focused on thermochemical concepts
related to solution calorimetry. Jasien and Oberem (2002)
focused on thermal equilibrium and energy transfer. Thomas
and Schwenz’s (1998) work focused on physical chemistry
students’ concepts of the first and second law of thermodynamics.
These studies largely focused on conceptual understandings related
to thermodynamics contents rather than difficulties tied to
how students make physical sense from mathematics inscriptions
in physical chemistry contexts.
If instructors of chemistry are to effectively facilitate

students’ reasoning with mathematical expressions in chemistry,
more research that looks specifically at how students interpret

Fig. 1 Gibbs Energy and corresponding Maxwell’s Relation.
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and use mathematical inscriptions to reason about chemistry
concepts is needed. The qualitative study described here aims to
explore the role of students’ interpretation of mathematical
expressions and how their understanding of mathematical ideas
informs their reasoning about physical chemistry constructs.

Literature background

Work in sociological studies on how natural phenomena are
represented uses the term inscriptions to refer to representations
including but not limited to narrative text, graphs, symbolic
representations, and photographs (Latour and Woolgar, 1979;
Roth and McGinn, 1998). Lunsford et al. (2007) contend that
the more information an inscription summarizes, the more
powerful it becomes, simultaneously becoming more abstract
and less detailed. More abstract forms of inscription such as
equations have less in common with the particular detailed
natural phenomenon they represent and therefore are farther
away from student experience.

Many of the abstract equations students encounter in
physical chemistry are quite distant from the natural pheno-
menon they represent. Perhaps because of this abstract nature,
interpreting mathematical inscriptions and connecting them to
information about macroscopic or microscopic systems has
been shown to be quite challenging for students (Greenbowe
and Meltzer, 2003; Hadfield and Wieman, 2010; Jasien and
Oberem, 2002).

Some studies have focused on difficulties related to the ways
in which students interpret and use mathematical expressions
in thermodynamics contexts. Hadfield and Wieman (2010)
examined student difficulties interpreting mathematical expressions
related to the first law of thermodynamics. Participants were
drawn from two classes of undergraduate chemistry student
enrolled in the first semester physical chemistry, the content of
which included thermodynamics and kinetics topics. Fifty-five
students completed a two-parts survey; students selected true
or false for a given statement, for instance ‘‘U = w + q’’ a
change in the internal energy for a system can be the result of
changes in heat and work; Second, participants were asked to
write a response explaining their reasons for answering true or
false. Eight additional students participated in interviews in
which they were asked to think aloud as they reasoned about
the survey questions.

Hadfield and Wieman found that students struggled to
provide physically meaningful descriptions of how equations
related to conservation and conversion of energy. For
instance, one participant who selected true for the statement

‘‘the equation for work, w ¼ "
R
PdV indicates how to calculate

the quantity of work associated with specific changes in pressure
in volume’’ (p. 752) responded that the statement represented
conversion and conservation of energy and that pressure and
volume in this equation represented different forms of energy.
Even students who had performed well in the course based on
end-of-semester grades selected answers based on recognition
of the expressions or mathematical validity of the expressions
rather than physical interpretations.

In another study related to how advanced undergraduate
students reason about mathematical expressions in a physics
context, Thompson et al. (2005) surveyed eight physics majors

enrolled in an upper division thermal physics course to explore
their understanding of mixed partial derivatives and the
Maxwell relations. Students were asked to explain the difference
between partial derivatives and total derivatives, and were
asked to express their understanding of the math and physics
related to the Maxwell relations as part of a survey prior to an
examination; they also completed a question on the course
final that dealt with the expansion of an elastic thin film. The
responses of seven students to a written mathematical task
involving partial derivatives and Clairaut’s theorem and a
roughly analogous task were compared. The authors found
that many of the physics students struggled to interpret
the expressions and relate mathematical representations into
realistic scenarios. Two students expressed a belief that the
Maxwell relationships were valid because both sides of
the expression were equal to zero and relied on algebraic
approaches to working with differential equations. Though
five of the seven student interviewed could describe the
physical meaning a partial derivative expression, all students
had difficulties when asked to write a mathematical expression
to represent physical scenario.
These findings suggest that even students who are successful

according to course metrics, such final exam scores and course
grades, may fail to correctly interpret and use mathematical
inscriptions in new contexts, such as that of thermodynamics
(Hadfield and Wieman 2010; Thompson et al., 2005). An
understanding of science content does not always enable
students to successfully relate prior mathematics knowledge
to problem solving tasks.

Procedural and conceptual understanding of mathematical
inscriptions

Similarly, a rigorous understanding of mathematics ideas does
not always ensure that students will be able to successfully
relate mathematical knowledge to science content. For example,
Orton (1983a, 1983b) classified student errors related to the
use of integration and differentiation in a cross age study
(age 16 to 22) of British students and outlined three categories
of common errors: structural errors were conceptual in nature;
executive errors involved mistakes in procedure or operations;
and arbitrary errors seemed to have no underlying cause.
Orton found no strong connection between procedural errors
in conceptual understanding of rate of change in university
level calculus students’ use of integrals or derivatives; some
students were able to solve an integral even if they did
not conceptualize integrals using a formally correct definition
(i.e. integrals as the limit of a Riemann sum). In a similar study,
Grundmeier et al. (2006) found that students who articulated
sound definitions for integration did not necessarily demon-
strate procedural fluency in applying mathematical resources.
It has been suggested that such discrepancies between

conceptual and procedural fluency may be the result of differing
contextual clues in mathematics and science contexts (Cui et al.,
2007; Rebello et al., 2005). In particular, it may be challenging
for students to transfer mathematical understanding success-
fully to physics and chemistry contexts (Rebello et al., 2005).
Though students’ may possess understandings related to
mathematics use they may fail to apply those resources if they
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focus on surface features such as notational differences
(Hammer et al. 2005; Rebello Zollman and Allbaugh, 2005).
Students who rely primarily on rote memory learning may be
particularly vulnerable to this type of difficulty (Yeatts
and Hundhausen, 1992). The question remains, exactly what
resources do students draw upon to make sense of mathematical
expressions in new contexts if they are unable to apply ‘correct’
mathematical understandings?

Symbolic forms and mathematical resources

In a qualitative study of how pairs of engineering majors wrote
equations to represent physical scenarios and how they solved
physics problems, Sherin (2001) observed that students repeatedly
focused on symbol patterns in mathematical expressions, and that
these patterns seemed to cue students’ various aspects of prior
knowledge related to mathematics. He suggested that students
draw from a range of intuitive mathematical ideas deriving from
patterns in symbolic representations, or symbolic forms, as they
make sense of equations in physics. As Sherin described the
relationship of symbolic forms to conceptual knowledge,

Each symbolic form associates a simple conceptual schema with
an arrangement of symbols in an equation. Because they possess
these symbolic forms, students can take a conceptual understand-
ing of some physics situation and express that understanding in an
equation. Furthermore, they can look at an equation and under-
stand it as a particular description of a physical system (p. 482).
For example, upon examining a physics equation, students

may identify the following symbol pattern shown in Fig. 2.
Here, using Sherin’s shorthand notation, the boxes indicate
unspecified quantities or variables. Students may associate this
particular arrangement of terms with the idea of ‘‘a whole
comprised of two or more parts’’ or ‘‘two components’’
(p. 491). Thus, Sherin referred to this pattern as a symbolic
form he called ‘‘parts-of-a-whole’’.

It is important to note that symbolic forms represent intuitive
ways of making sense of representations. Though Sherin postulates
that they may be abstracted from students’ experiences working
with equations in math and science contexts to a certain extent,
symbolic forms are not explicitly taught in most classroom
contexts. Instead they represent a primitive way of how
individuals make sense of mathematical expressions.

Some researchers have used Sherin’s symbolic forms to
account for students’ mathematical thinking in physics contexts.
Tuminaro (2004) examined how students solved problems in an
algebra-based college-level introductory physics course using
mathematical resources, that is cognitive knowledge elements
related to students use of mathematics. He considered symbolic
forms to be one type of resource used by students as they
understand and use equations in physics. By analyzing video
data of students’ group problem solving activities for evidence of
mathematical resource use, Tuminaro found that although
students may possess mathematical resources they may not
always use them in the context of physics problem solving.

He suggested that how and when students’ use mathematical
resources depends on other factors such as how students frame
problem contexts.
Though Sherin’s original work focused on describing how

students reason about algebraic expressions in the context of
physics problem solving, the construct has more recently been
used to describe how students use calculus resources in physics
contexts. Meredith and Marrongelle (2008) explored how
students use mathematics skills learned from introductory
calculus courses in the context of electrostatics problems. They
interviewed twelve students enrolled in either an integrated
calculus/physics class or a traditional physics class (with
co-enrollment in a calculus course) and they found that
though some students possessed an understanding of when
and where integration would be relevant and how to apply it,
they did not always use mathematical resources appropriately
in physics contexts. While Sherin’s original work dealt only with
algebraic forms, Meredith and Marrongelle (2008) described
several symbolic forms including a ‘‘parts-of-a-whole’’ symbolic
form, which students used to reason about calculus concepts
such as integration and suggest that such symbolic forms
may be a useful component of student reasoning about
physics ideas. However, instructors must be aware of how
these symbolic forms contribute to student reasoning in
various contexts if they are to meaningfully facilitate student
reasoning with such inscriptions.

Summary of literature

While there have been studies that describe students’ approaches
to interpreting and using mathematical inscriptions for problem
solving in the mathematics and physics education research
literature, few such studies in chemistry education have explored
how advanced chemistry students reason about mathematical
expressions in thermodynamics contexts. In order to improve
student learning of thermodynamics, more work is needed
that examine the ways in which students make sense of
mathematical expressions in chemistry contexts. Our work
contributes in this direction providing a description of how
students make sense of partial derivative expressions in a
chemistry context related to thermodynamics in terms of
Sherin’s symbolic forms. The following section outlines the
theoretical perspective that guides this work.

Methods

Theoretical perspective

For this study, we adopt Sherin’s (2001) symbolic forms as a
theoretical perspective that guides our interpretation of the data
presented here. This theoretical perspective derives from a
constructivist view of learning in that it looks specifically at what
knowledge resources students possess, when that knowledge is
activated, and under what circumstances (Redish, 2004).
Sherin’s perspective originates in diSessa’s (1993) idea of

intuitive knowledge elements related to mechanics of action in
physics problems, known as phenomenological primitives.
Sherin extended these intuitive ideas to include aspects of
mathematical reasoning. The symbolic forms framework assumes
a complex interaction between knowledge elements exists forFig. 2 Sherin’s (2001) parts of a whole symbolic form.
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any particular task, meaning that the ways in which students’
activate knowledge resources in response to a particular task
may be highly context-dependent.

Research questions

The goal of the qualitative study described here is to provide a
rich description of how students reason about mathematical
expressions in math and physical chemistry contexts. The
following questions framed our design and analysis of this study:
# What are physical chemistry students’ understandings of

partial derivatives in mathematical contexts?
# How do students apply their understanding of partial

derivatives in mathematical and physical chemistry contexts?
From our preliminary data analysis, we noted that students

focused on aspects of mathematical expressions other than
what an expert might consider ‘correct’. To further explore
this phenomenon, we added a third research question:
# What symbolic forms outlined by Sherin (2001) are used

by students to make sense of mathematical expressions in
mathematics and physical chemistry contexts?

The ways in which Sherin’s (2001) symbolic forms framework
are used in this study will be further described in the data analysis
section of this paper.

Development of interview protocol

In order to explore students’ understanding of partial derivatives
in mathematics and physical chemistry contexts, we adapted a
pen and paper survey developed by Thompson and colleagues
(2005) for use as a semi-structured think aloud interview
protocol. The interview question asked students to interpret
mathematical expressions in analogous math and physical
chemistry contexts. We added two additional open-ended
interview questions that asked students to generate their own
mathematical expressions in order to further explore the ways
in which students represent physical situations using mathematical
inscriptions. For these two questions, we selected problems in
which students would likely be expected to represent change in
variables using a derivative in a classroom context. Follow-up
questions, which took the form of sample responses from a
fictitious student, were used in cases where students were unable
to come up with their own expressions.

The protocol was piloted with five chemistry graduate
students and four undergraduate students in order to refine
interview questions. Two chemistry faculty members were also
interviewed in order to gain feedback about the structure and
wording of the protocol. In this paper, however, we discuss
only those interview questions that informed the research
questions outlined in the previous section. The interview
protocol is shown in Fig. 3.

Participants and setting

Classroom contexts. Participants were recruited from two
different classrooms in order to ensure that emerging themes
in student reasoning were not the result of one particular
instructional approach or instructor. No comparison is intended
between the two instructional approaches described here.

The first classroom was a lecture section at a large research
university in the Midwestern United States. The second was a

small course using the Process Oriented Guided Inquiry
(POGIL) approach at a comprehensive university in the
Midwestern United States. Since 2003, the POGIL project
has developed and disseminated curricular materials based on
a student-centered model of learning. In the POGIL classroom
observed in this study, students worked the majority of each
class period on exercises from the POGIL workbooks. The
instructor served as a facilitator of student learning
rather than a lecturer; whole class discussions in this context
generally involved students reporting out answers to work-
book questions. A thorough description of POGIL settings is
detailed by Moog and Spencer (2008).

Participants. All students participated on a volunteer basis.
A total of ten students participated in the semi-structured
interviews during the Spring 2009 and Fall 2009 (five from
each classroom). Background information for each participant,
including student majors and semesters of college mathematics
courses taken (calculus and above) is represented in Table 1.

Data collection

Interviews took place mid-semester after students had covered
content related to total and partial derivatives as well as the
Maxwell relations. Both classes covered units dealing with
Maxwell relationships at least a week prior to the interviews.
In the lecture section, students spent over a week working on
manipulations based on the Maxwell relations in order to
obtain expressions for coefficient of thermal expansion (aP),
and similar relationships that could be expressed in terms of
partial derivatives. In the POGIL class, students worked
through one unit on the Maxwell relations prior to the inter-
views and had also previously discussed the equality of mixed
second partial derivatives in a math review unit at the beginning
of the semester.
During the interviews, which lasted approximately 45 min

on average, students were then asked to think aloud as they
worked through a series of interview questions. Interview
questions asked students to write or interpret a mathematical
expression involving total or partial derivatives in math or thermo-
dynamics contexts. Additional questions asked students to define
terms such as partial derivative or total derivative.
Interviews were audio recorded and students’ written work

was collected at the end of the interview. The first author
observed both classes for the duration of the semester and also
served as a graduate teaching assistant for the large lecture
course. Classroom observations focused on describing the
examples related to partial derivatives in class and identifying
contexts in which mathematical inscriptions were discussed.

Data analysis

As data collection was ongoing, all interviews were transcribed
verbatim. In our initial analysis, transcripts of student responses
were compared for each question and codes were assigned to
indicate the students’ approach to interpreting expressions and
whether they understood the mathematical expression. As
evidence of understanding, we looked for instances in which
students could provide a physical interpretation or alternate
descriptions of a symbolic expression. We examined data
related to emerging themes as a whole to identify the common
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theme of ideas and compared student responses both within
and across cases. Our approach to condensing theses initial
codes into broader themes derives from Glasser and Strauss’s
(1967) constant comparison approach, which advocates an
ongoing comparison of data in order to refine of theoretical
constructs derived from data analysis.

Since our initial analysis did little to explain what students
focused on when they did not apply correct mathematical
understandings or physical interpretations of the systems, we
adapted Sherin’s (2001) symbolic forms as an analytical tool in
order to better describe students’ reasoning processes. In our
second phase of analysis, we looked for evidence that students

Fig. 3 Interview protocol.
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identified patterns in the mathematical expressions for which
they associated some intuitive understandings and coded these
instances using the type of symbolic form that was used. The
code definitions and criteria for identification outlined by
Sherin (2001) were used as a guide and we reinterpreted
identification criteria as needed to fit our data set. For the
symbolic forms analysis, we coded only those questions
that asked students to interpret or produce a mathematical
expression rather than the interview questions that asked
students to define terms.

Inter-rater reliability for the symbolic forms analysis was
established using two additional reviewers who coded one
complete transcript representing a sample of 34 codes. The percent
agreement between the two raters (who coded collaboratively) and
the first author was 76.5%.

An overview of student responses to the interview protocol
will be discussed in the following section.

Findings

Overview of student responses to interview questions

To set the context for our discussion of students’ use of symbolic
forms in interpreting and reasoning with mathematical expressions
in thermodynamics contexts, we first provide an overview of
student responses to the interview questions that were relevant
to our research questions. Table 2 summarizes student responses
to the interview questions.

Overall, participants’ responses to interview questions 1 through
4 suggested that the majority of participants could provide reason-
able interpretations of the terms total and partial derivatives and
offer an interpretation in terms of change for partial derivative

expression such as @R
@C

! "
F
. The majority of students could also

successfully write an expression for change in interview question 1.
In the remaining interview questions, nearly all students

could give an physical interpretation of change when asked to
interpret mathematical expressions with thermodynamic variables

such as @V
@T

! "
P
. However, interview questions that asked students

to apply mathematical ideas rather than interpret or define
mathematical constructs were met with more difficulty.

Interview questions 8 and 9, for instance, proved challenging
for a number of students. These questions asked students
to apply information they may have previously learned in
mathematics or physical chemistry courses to write an expression
for the described scenario. Students’ approaches to these problems
will be further discussed in the next section.

Students’ ways of interpreting mathematical expressions

Rather than a straightforward application of prior knowledge,
we observed that students used a variety of approaches to
dealing with the mathematical expressions in the interview
protocol. We found the notion of symbolic forms to be useful
in explaining students’ reasoning, especially when they
appeared to struggle to interpret mathematical expressions.
Sherin’s (2001) original set of codes included a number of
instances in which symbolic forms related to forces or similar
influences were used in student reasoning. In our data set, we
identified few such instances likely due to the nature of the
content discussed by students in the interviews. Most symbolic
forms used by participants related to dependence of terms,
recognition of constant terms or coefficients, or proportionality
of quantities. Five examples of symbolic forms that were
identified in our data set are summarized in Table 3 (see Sherin,
2001 for complete list of codes used in original study).
We also coded instances in which students recalled particular

pieces of information or associated symbols such as dy
dx with

change or the process of taking a derivative. Because of the
nature of the content discussed here, symbolic forms other than
those described by Sherin may be possible. However, our goal
was not to identify new symbolic forms unique to this data set,
but rather use the construct of symbolic forms to explain
aspects of student reasoning as they discussed these expressions.
In total, we identified the use of ten symbolic forms similar

to those described by Sherin (2001) in our data. A summary of
the symbolic forms and the frequency with which they were
used in participants’ responses is shown in Table 4.
The frequencies in Table 4 illustrate that a number of

students used symbolic forms to reason about the mathematical
expressions in the interview questions. These uses included both
instances in which students arrived at correct and incorrect
responses. In some instances, symbolic forms were used by
students in conjunction with recalled prior knowledge to make
sense of mathematical expressions. In other instances, the use of
symbolic forms predominated.
In the next section we compare the responses of several

students to interview questions 9 and 8 in order to illustrate
the range of ways in which symbolic forms influenced students’
reasoning. Two responses to question 9 given by Craig and
Jacob were selected as they were information-rich cases in
which both students used intuitive reasoning to arrive at a
response for question 9; however, Craig used a combination of
symbolic forms as well as recall to arrive at the correct answer
while Jacob relied on intuitive reasoning to arrive at response

Table 1 Participant backgrounds

Participants Year Major Semesters of mathematics

POGIL class participants Andrea Junior (3rd) Chemistry 2
Adam Junior (3rd) Chemistry 1
Craig Junior (3rd) Chemistry and Math 2
Marie Junior (3rd) Chemistry 2
Melissa Junior (3rd) Chemistry 2

Lecture class participants David Senior (5th yr) Biochemistry 3
Jacob Senior (4th year) Aeronautical Engineering 6
Nevah Junior (3rd year) Chemistry 3
Taylor Junior (3rd year) Pharmacy 3
Yang 2nd year graduate Nuclear Pharmacy 2
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that differed significantly from our experts’ responses to the
question. We then summarize the remaining participants’
responses to question 9 in order to compare Craig and Jacob’s

approaches with the remainder of the participants, and we
discuss possible reasons for students’ varied use of symbolic
forms in reasoning about mathematical expressions.

Table 3 Example of five symbolic forms, definitions reproduced or adapted from Sherin (2001)

Symbolic form Symbol pattern Definition

Dependence [. . .x. . .] A whole depends on a quantity associated with an individual symbol; identification may
include references such as ‘‘if x varies, then the whole must vary’’

Prop + x
& Directly proportional to a quantity, x, which appears as an individual symbol in the

denominator; identification may include references such as ‘‘as X increases, then Y increases’’

Same amount [&=&] Two amounts, each associated with a side, are the same

Coefficient [x&] A product of factors is broken into two parts and one part is identified with an individual
symbol, the coefficient

Ratio &
&

Comparison of a quantity in the numerator and denominator

Symbol template key
[. . .] Expression in brackets corresponds to an entity in the schema
x, y Individual symbols
& A term, or a group of terms
. . . Omitted parts of an expression that continue the pattern or are inconsequential

Table 2 Summary of student responses to interview questions

Interview
question Summary of student responses (N = 10)

1 (6) Correct response f0(x) = "32x + c1
(4) Incomplete or no written response

2 (4) Definition in terms of change; E.g.David: ‘‘how does R change when C changes, and when F changes, holding constant the other
variable’’
(4) Definition in terms of the process of finding the derivative. E.g. Marie: ‘‘Like take the derivative holding something constant
then adding the other thing holding the other variable constant’’
(3) Definition as a sum of the partial derivatives; E.g. Adam: ‘‘Um, I think the total differential is the sum of the partial differentials’’
(1) No response

3 (6) A partial derivative is the result of taking the derivative of an expression while hold variables constant
(3) A partial derivatives represents change in a function in response to one variable only
(1) All other partial derivatives in a total derivate expression become zero

4 (6) Indicated that @R
@C

! "
F
represents the change in R with respect to a change in C as F is held constant

(3) Indicated that @R
@C

! "
F
represents the partial derivative of R with respect to C when F is constant

(1) Noted relationship between total and partial derivatives. E.g. Marie: ‘‘Like a total differential, just part of it, holding
something constant’’

5 (3) Expression would be true only for certain types of functions (e.g. for thermodynamic functions only)
(2) Expression would be true only for particular values of F and C
(3) Expression would always be true because of nature of operation (switching order in which partial derivatives are taken)
(2) Expression would only be true when dC = 0
(1) Recalled from physical chemistry class that the expression should sometimes be true

6 (9) @V
@T

! "
P
¼ 4:6$ 10"6m3=K represents change in volume for a particular change in temperature with pressure held constant

(1) Indicated that the expression represented a ratio of volume to temperature at a specific temperature and volume

7 (9) Believed the sign of @V
@T

! "
P
meant that volume increases as temperature increases

(1) Believed the negative sign in exponent of @V
@T

! "
P
meant the value would decrease

8 (2) Correct response of @S
@P

! "
T
¼ 4:6$ 10"6m3=K using an algebraic approach

(4) Correct response using a mnemonic device to recall Maxwell Relationships
(2) Incorrect response, attempted substitution into expression for dC
(1) No answer, not enough information
(1) Answer will be 0 because pressure doesn’t influence entropy

9 (7) Correct expression @P
@T

! "
V
¼ nR

V , using differentiation

(3) Incorrect response in terms of change between initial and final states
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Craig’s approach to question 9. In response to interview question 9,
Craig wrote an expression for how the pressure would change
in the piston-cylinder set up by using intuitive ideas about
proportional relationships, coefficients, as well as other recalled
information. Craig’s reasoning is shown below in Table 5. Though
recall is not a symbolic form, we also include codes where
participants recalled information they perceived as relevant.

Here, Craig began by discussing general features of the expres-
sion, PV = nRT. After identifying which symbols represented
constants, Craig found the total derivative of PV= nRT and then
eliminated terms that involved change in a variable he identified as
a constant, recalling that dx = 0 for a constant variable. His
written response is shown in Fig. 4.

His approach seemed guided by his recognition of symbolic
forms that would help him construct an expression. Craig also
used recalled information about the process of finding a total
derivative and the idea that dx = 0 when x remains constant,
in order to construct an appropriate response to this question
that was similar to the experts’ responses.

Jacob’s approach to question 9. While Craig was able to
successfully use symbolic forms to construct his response, other
participants were less able to make this leap. Even students who

successfully interpreted expressions in the mathematics portion of
the interview struggled to relate mathematical ideas to physical
chemistry contexts; this was true regardless of participants’ level of
mathematical preparation. For example, when Jacob was asked to
discuss his interpretations of mathematics context problems, he
gave consistently coherent responses. His interpretation of the
term derivative follows.
Interviewer: Ok. So what do you think a partial derivative is,
the next question?
Jacob: A partial derivative is, it’s not a stand-alone derivative.
It’s part of an overall differential equation.
Interviewer: Can you describe that a little bit more for me?
Jacob: Um, it’s instead of being just one uh, uh er, partial
derivative is like it’s kind of like, it’d be like a system of
derivatives. Where uh, the partial derivative’s kind of treated
like a variable in itself, it just happens to be a variable that
changes. Well I guess that’s what a variable is but, the variable
is a differential, the rate of change of other variables. So the,
instead of having a large expression of each rate of change, you
can write it a partial derivative and make them simpler.
Later, when asked to clarify what he meant by taking a

derivative he responded:
Jacob: It’s a rate of change, er that’s generally how I view it,
there’s multiple, uh, sub definitions of it, the tangent line or the
slope of the curve. But usually I, when I use it it’s usually a
rate of change with respect to another variable like time or
something.

Table 4 Frequency of symbolic forms codes

Question Symbolic form code Number of participants

1 Dependence 5
Prop" 2
No dependence 1

4 Parts of a Whole 2
Dependence 1

5 Same Amount 6
Dependence 1
Cancelling 1
Coefficient 1

6 Dependence 9
Prop+ 2
Ratio 2

7 Prop+ 8
Prop" 1

8 Same Amount 3
Ratio 2
Competing Terms 2

9 Coefficient 5
Prop + 4
Same Amount 2
Dependence 2

Table 5 Craig’s reasoning and use of symbolic forms

Participant Transcript Symbolic form

Craig: [reading] Write an expression for how the pressure of the container would change, er
below, would change in the container were heated while the volume remains constant.
Because you’re increasing temperature, you’re gonna get a corresponding increase in the
pressure, because you’re holding the volume constant.

Prop+; coefficient-constant

Um, it and that just goes along with kind of what I was saying, the change in the pressure
volume and you get a change in the nRT value,

Prop+

well, R is constant. Coefficient-constant
Actually, just write it all out, so you ended up with VdP plus PdV is equal to R, T dn I
guess? Plus R ndT

Recall: Process of taking
total derivative

Since you’re changing, uh heat and not the number of moles in the container since there’s
no chemical reaction going on you can just assume that’s zero.

Recall: dX = 0 if X is
constant

And since the pressure’s being held constant, er, not pressure, but since the volume’s
being held constant you can go ahead and destroy that equat, that portion. So VdP is
equal to RndT.

Recall: dX = 0 if X is
constant

Fig. 4 Craig’s written response to interview question 9.
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Jacob offered multiple interpretations, both in terms of
change of the slope of a line on a graph and as a rate of
change with respect to another variable, suggesting an under-
standing of derivatives that is consistent with the various
definitions of derivative described in the mathematics litera-
ture (Zandieh, 2000). Also, Jacob clearly associated derivatives
with change. When asked to write an expression for how f(x)
changes as x changes for the expression f(x)=" 16x2+ c1x+ c2,
he easily obtained the correct result, f0(x) = " 32x + c1,
explaining that ‘‘usually if something changes you’re talking
about the derivative’’.

In response to interview Question 9, however, Jacob did not
immediately use a derivative in order to represent change.
Instead, he wrote an expression comparing the pressure and
temperature before and after a change had occurred in the
container (response shown in Fig. 5).

Like Craig, Jacob’s reasoning seemed to be guided by several
symbolic forms he recognized as relevant to mathematizing this
scenario. The following transcript example (Table 6) illustrates the
symbolic forms Jacob used to generate his solution.

In asking this question, we were interested in how students
would write expression for incremental change during a
process. In particular, we were interested in whether they
would use a derivative to represent change in this context, as
might an expert. While Jacob’s response correctly expressed
the ratio between pressures and temperatures before and after
the change, he did not use a derivative to represent this change.

In order to see if Jacob could relate derivatives to this
context, the interviewer prompted Jacob to consider how to
represent incremental change in pressure as the temperature
was increasing.

Interviewer: What if I wanted to know, what are we looking
for, what if I wanted to know how the pressure was changing
somewhere in the middle. Like as the temperature’s increasing.
Is there an expression you could write to show that?
Jacob: Um, I’m going to say if you want to know something
while it’s changing there then you probably want a, some sort of
a derivative or a differential equation. And I’m not entirely sure
how to apply that to the ideal gas. I mean it would be something
along the lines of dP, it’s like dP equals uh, VdT. Where V is a
constant, actually that’d be one over V dT. I think.

Jacob noted that a derivative would be appropriate and
attempted to obtain a derivative for the expression PV= nRT.
Though he was able to talk through how he would find a
derivative (even outlining an approach by noting that a change

in pressure could be represented as @P ¼ 1
V @T), when he tried to

write an expression for his reasoning, he substituted P2 " P1 in
for qP and T2 " T1 for qT, resorting back to his initial reasoning
about the initial and final states of the cylinder (Fig. 6).
We consider problems based on the ideal gas law in which

students are expected to manipulate PV= nRT to be exceedingly
common in this type of thermodynamics context. As instructors,
it is likely that we view the PV= nRT relationship as a relatively
simple mathematical expression and we may expect that our
students will have little trouble expressing change using a partial
or total derivative. However, as we’ve seen here, Jacob did not
immediately invoke prior knowledge related to derivatives and
instead relied on more intuitive understandings of symbolic
forms to manipulate the expression PV = nRT to represent
change between initial and final variables. Even after identifying
that change could be expressed by a derivative in this context, he
reverted back to his initial P2 " P1 notation in his final answer.
His reasoning seemed to stem, at least in part, from a physically
intuitive sense of the variables for temperature and pressure,
and an association with patterns of symbol use, the symbolic
forms we note in Table 6.
When students are asked to solve problems such as these,

they must not only recall relevant information and apply it to
the problem, but also must use mathematical tools and
inscriptions in discipline-appropriate fashions in order to
demonstrate a correct understanding (Airey and Linder,
2008). This means that students must be able to frame and
approach problems in increasingly expert-like ways and use
mathematical resources accordingly, not just in ways that seem
intuitive and reasonable for the system under study. Though
Jacob was able to produce an answer that seemed rational and
that enabled him to predict variation in pressure with response
to temperature, his response was not characteristic of what our
expert participants would consider ‘‘correct’’.
Overall for Question 9, seven of the ten students used

derivatives correctly to respond to the question. The three
students who answered incorrectly also relied on symbolic
forms, especially those related to identifying constants (coefficient
symbolic form) and proportionality relationships (prop+ symbolic
form). The analysis of interview protocols for all ten students
suggested that recognition of symbolic forms played a significant
role in their reasoning. Especially when students did not arrive at a
correct answer, it became evident that these more intuitive
elements of reasoning guided students’ approaches.

Participant responses to question 8

Interview question 8 also provided several instances in
which students used recall or symbolic forms to reason about
mathematical expression. Next, we discuss two examples of
how students approached this question.

Yang’s approach to question 8. Yang, like Jacob, also
experienced difficulties in connecting mathematical knowledge
to chemistry contexts. However, she had little difficulty using
derivatives to express change in the context of interviewFig. 5 Jacob’s written response to interview question 9.
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question 1 and discussing derivatives as rates of change in later
interview questions. In her response to interview question 8,
Yang derived a correct expression for how entropy changes

with change in pressure @S
@P

! "
P
, but her approach to deriving

this expression did not involve differentiation or prior know-
ledge related to the Maxwell Relations. Though Yang initially
recalled having used the cross derivative relationship from her
physical chemistry class, she could not articulate why the
relationship was valid or whether it could applied in this
context (Yang: ‘‘Seems uh, I used the cross. . .I used this dP
as constant T, dV/dT as constant, oh no. I don’t think so. That,
these are not correct. . .). Instead, Yang set dG equal to 0 and
then manipulated the expression algebraically to obtain her
result. Her work is shown in Fig. 7.

Yang’s reasoning seemed to stem from her recognition that she
could obtain two partial derivatives set equal to one another
when dG=0.We coded this recognition as related to a symbolic
form having to do with ‘‘same amount’’. Also, she seemed to
associate partial derivatives generally with a ratio of thermo-

dynamic quantities, such as " S
dP or " V

dT which suggests a

recognition of a ratio symbolic form. She added partial derivative

notation to the expression @V
@T

! "
P
only at the end of the solution.

In this instance, Yang’s intuitive ways of reasoning were
productive in that they enabled her to begin making sense of
the mathematical expression; her use of algebraic manipulation
allowed her to obtain the desired relationship. However, in more
complicated physical chemistry problems, functions become
more complex. In such cases, a more sophisticated use of
mathematics may be required and derivatives must be used to
express change. Relying exclusively on recognition of symbolic
forms and algebraic manipulation (as in Yang’s case) may thus
become considerably more problematic once students begin
working with more complex mathematical expressions.

David’s approach to question 8. While symbolic forms were
prevalent in the reasoning of many participants, others relied

more heavily on recognition and recall in order to reason
about mathematical expressions. For interview questions
involving partial derivatives, some participants immediately
recognized the form of the partial derivative expressions as
relating to the Maxwell relations (cross derivative relation-
ships) and applied mnemonic devices in order to find a
Maxwell Relation. David, for example, described a mnemonic
device he used for recalling the Maxwell Relations in response
to interview question 8.
David: Yeah, so basically, choo, like that, (writes Fig. 8) I can
switch up those uh, derivatives, and that’s helpful because
sometimes one of these expressions is easier to find experi-
mentally than the other. In this case, well, that might be
simpler to find out, but that would be simpler to go about
finding. Finding out volume changes and temperature changes
at constant pressure, you can more easily think of that and
design an experiment than you can for finding changes in
entropy versus pressure.
Here, David used what he referred to as the ‘‘outer-inner’’

mnemonic device to obtain the cross derivative relationship to

obtain the expression @S
@P

! "
T
. David’s depiction of this device

and his written response is shown in Fig. 8.
As he recalled the Maxwell relation, David discussed the

importance of the Maxwell relations in physical chemistry,
namely that they provide a way of relating macroscopic
observable quantities to more abstract variables such as
entropy. We considered this level of discussion to represent a
more meaningful physical interpretation of the expression than
other students who used this mnemonic device provided. How-
ever, when discussing interview question 4 on the mathematical
basis of the cross derivative relationship, David was unable to
articulate under what conditions the relationship would be
valid. While mnemonic devices such the ‘‘arrow device’’ may

Table 6 Jacob’s reasoning and use of symbolic forms

Participant Transcript Symbolic form

Jacob: Uh, for how, how pressure of the container would change if the container were heated with
constant volume? Ok. So we have constant volume, of a liter? So uh, I’m going to say, you
have n moles of ideal gas, you’ve got PV = nRT.

Recall PV = nRT

um, so you can do P1V1 equals nRT1 as your initial condition, and your second condition is
going to be P2 with the same V1 equals nRT2. And you can combine these equations setting them
equal to the V1.

Same Amount

That’s just, (writing) so you have, nRT1 over P1 equals nRT2 over P2, so P2 over P1 um, is uh,
nRT2 over nRT1 and then nR’s cancel out and you get P2 over P1 is T2 over T1.

Cancelling-ratio

So, if, since it’s heated I’m guessing the T2 is greater than T1. So P2 over P1 would increase,
meaning that P2 is greater than P1.

Ratio

Fig. 6 Jacob’s written response to follow up question.

Fig. 7 Yang’s written response.
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be helpful for promoting recall, it is critical that they be tied to
relevant information regarding under what circumstances they
can be applied.

Discussion and implications

Here we’ve illustrated ways in which students used intuitive
symbolic forms when reasoning about mathematical expressions
in physical chemistry contexts. We noted that many participants
centered their attempts to make sense of unfamiliar mathematical
expressions on these symbolic forms similar to those described by
Sherin (2001). In some instances, the use of these heuristics were
able to provide students with a plausible, though not necessarily
correct, responses to the interview questions, such as Jacob’s
case. We believe that Sherin’s symbolic forms may prove a
useful lens for examining student reasoning about mathematical
expressions in chemistry contexts, particularly in instances where
students seemingly fail to transfer calculus ideas that an expert
might deem relevant.

Regardless of whether students arrived at a correct or
incorrect answer, the degree to which students relied on recall
versus intuitive reasoning and symbolic forms varied widely.
We believe that, in addition to students’ prior knowledge
related to derivatives in physical chemistry contexts, students’
framing of problem solving task may help explain why some
students presented evidence of multiple symbolic forms when
reasoning about the interview tasks, while some used few
symbolic forms. Tuminaro (2004) suggested that the ways in
which students approach problem solving in physics contexts
was influenced not only by the mathematical resources students
possessed, but also by their epistemological framing of the
problem solving tasks. He described several ‘‘epistemic games,’’
which are characterized by particular problem-solving strategies
that are considered legitimate for the particular epistemic game.
For example the ‘‘Pattern Matching’’ epistemic game involved
students recognizing a particular symbolic structure (for instance
the ratio symbol template in Table 3) and trying to fill in the
pattern with relevant quantities. Students who framed a
problem-solving task as related to ‘‘Pattern Matching’’ less
often sought to reconcile their solutions with qualitative
reasoning and physical interpretations of the system at hand.
We believe a similar research direction that examines how
chemistry students construe their use of mathematics could be a
productive direction for research that aims to explain how students
approach mathematical problem solving in chemistry.

Meredith and Marrongelle (2008) note that when students
are asked to use mathematics in science contexts such as
physics, they seldom are able to recall and apply mathematics
ideas in a straighforward fashion. They comment that.
Physics instructors often count on students to learn the
requisite mathematics in their mathematics classes and expect
them to effortlessly apply it in the physics context. But it is
likely that such a transfer of skills does not happen as readily
as we would hope because students must reinterpret mathematics
in a physics context (p. 576).
Our account of student reasoning using partial derivatives

in physical chemistry contexts suggests that much the same
may be true in chemistry. To successfully reinterpret mathe-
matics in new contexts, such as physical chemistry, students
may need significant guidance from instructors.
One way to help instructors to better scaffold students’ use

of mathematics in chemistry contexts may be to engage
students in collaborative problem solving. For instructors of
chemistry, observing students working together may offer
instructors an opportunity to observe facets of students’
reasoning that may not be made explicit from an examination
of student homework and exams. Observing students’ difficulties
as they occur may provide unique opportunities for instructors to
give formative feedback that may help students develop a deeper
understanding of content. Furthermore, such collaborative
activity may provide students a space to negotiate under-
standings of concepts with their peers permitting them to
make connections between symbolic representations and physical
understandings (Towns and Grant, 1997).
Since there is a large overlap in content between related

domains such as chemistry, physics, and mathematics, there is
a critical need for effective communication between faculty if we
are to better facilitate student meaning making with mathematical
representations across domains. More work is needed that
explores what resources students bring from mathematics courses,
and how chemistry and physics instructors can aid students as they
reinterpret mathematics in chemistry contexts.
Interdisciplinary approaches to thermodynamics and other

highly mathematical science content may be one way to
facilitate productive use of mathematical inscriptions in
science contexts. One current curriculum development relevant
to upper-division chemistry instructors is entitled ‘‘Creating a
Common Thermodynamics.’’ This project aims to develop an
interdisciplinary core curriculum for thermodynamics courses
in biology, chemistry, and physics (Klymkowsky, 2011). Such
approaches may be a potentially powerful way to transform the
teaching and learning of thermodynamics.
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Fig. 8 David’s ‘‘outer-inner’’ mnemonic device.
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