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Undergraduate physical chemistry courses require students to be proficient in calculus in order to
develop an understanding of thermodynamics concepts. Here we present the findings of a study that
examines student understanding of mathematical expressions, including partial derivative expressions,
in two undergraduate physical chemistry courses. Students participated in think-aloud interviews and
responded to a set of questions involving mixed second partial derivatives with either abstract
symbols or thermodynamic variables. The findings describe students’ ability to transfer mathematics
knowledge to chemistry problems and how students use symbolic forms described by Sherin (2001) to
make sense of mathematical expressions in physical chemistry contexts.

Introduction

Mathematical inscriptions related to derivatives and integrals
are a fundamental part of the language of physical chemistry.
Consider, for instance, a type of mathematical relationship
commonly encountered in a junior-level chemical thermo-
dynamics course, the Maxwell Relations. Also referred to as
the equality of mixed second partial derivatives of exact
differentials, the Maxwell Relations provide a way to relate
macroscopic observable quantities such as temperature and
pressure to more abstract chemical properties such as entropy
or Gibb’s Energy (Fig. 1).

The use of mathematical equations allows physical chemists
to have a common language for inquiry (Kozma and Russell,
1997). Becoming fluent with mathematical representations is
thus essential for the acquisition of expertise in chemistry
(Kozma et al., 2000; Kozma and Russell, 1997). In the context
of a physical chemistry course, students are commonly asked
to use mathematical relationships, such as that shown in Fig. 1
to relate physical variables such as temperature and pressure
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Fig. 1 Gibbs Energy and corresponding Maxwell’s Relation.
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to more abstract chemical constructs such as Gibbs Energy.
Understanding of fundamental concepts in thermodynamics
thus becomes tied to the student’s ability to translate between
mathematical equations and the macroscopic phenomena they
represent. Students must become able to not only interpret
symbolic expressions and perform mathematical manipulations
but they must also develop an understanding of the physical
significance of the symbolic representations. As instructors of
chemistry, we hope that students become able to interpret and
work with mathematical expressions such as this with under-
standing, not just to routinely apply algorithms and formulae.
How do we as instructors help students make physical sense of
mathematical expressions and to use them to predict and
explain chemical behavior?

Research on the students’ ability to translate mathematical
equations and symbols into descriptions of the macroscopic
system under study have not been extensively investigated in
chemistry education research. The vast majority of studies
related to thermodynamics have been done to document
student difficulties and misconceptions in thermodynamics
contexts and have taken place either in K-12 classrooms or
introductory courses with few exceptions. Greenbowe and
Meltzer’s (2003) work focused on thermochemical concepts
related to solution calorimetry. Jasien and Oberem (2002)
focused on thermal equilibrium and energy transfer. Thomas
and Schwenz’s (1998) work focused on physical chemistry
students’ concepts of the first and second law of thermodynamics.
These studies largely focused on conceptual understandings related
to thermodynamics contents rather than difficulties tied to
how students make physical sense from mathematics inscriptions
in physical chemistry contexts.

If instructors of chemistry are to effectively facilitate
students’ reasoning with mathematical expressions in chemistry,
more research that looks specifically at how students interpret

This journal is © The Royal Society of Chemistry 2012

Chem. Educ. Res. Pract.



https://core.ac.uk/display/357383696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1039/c2rp00003b
http://dx.doi.org/10.1039/c2rp00003b
http://dx.doi.org/10.1039/c2rp00003b
http://pubs.rsc.org/en/journals/journal/RP

Downloaded on 16 April 2012
Published on 08 March 2012 on http://pubs.rsc.org | doi:10.1039/C2RP00003B

View Online

and use mathematical inscriptions to reason about chemistry
concepts is needed. The qualitative study described here aims to
explore the role of students’ interpretation of mathematical
expressions and how their understanding of mathematical ideas
informs their reasoning about physical chemistry constructs.

Literature background

Work in sociological studies on how natural phenomena are
represented uses the term inscriptions to refer to representations
including but not limited to narrative text, graphs, symbolic
representations, and photographs (Latour and Woolgar, 1979;
Roth and McGinn, 1998). Lunsford et al. (2007) contend that
the more information an inscription summarizes, the more
powerful it becomes, simultaneously becoming more abstract
and less detailed. More abstract forms of inscription such as
equations have less in common with the particular detailed
natural phenomenon they represent and therefore are farther
away from student experience.

Many of the abstract equations students encounter in
physical chemistry are quite distant from the natural pheno-
menon they represent. Perhaps because of this abstract nature,
interpreting mathematical inscriptions and connecting them to
information about macroscopic or microscopic systems has
been shown to be quite challenging for students (Greenbowe
and Meltzer, 2003; Hadfield and Wieman, 2010; Jasien and
Oberem, 2002).

Some studies have focused on difficulties related to the ways
in which students interpret and use mathematical expressions
in thermodynamics contexts. Hadfield and Wieman (2010)
examined student difficulties interpreting mathematical expressions
related to the first law of thermodynamics. Participants were
drawn from two classes of undergraduate chemistry student
enrolled in the first semester physical chemistry, the content of
which included thermodynamics and kinetics topics. Fifty-five
students completed a two-parts survey; students selected true
or false for a given statement, for instance “U = w + ¢ a
change in the internal energy for a system can be the result of
changes in heat and work; Second, participants were asked to
write a response explaining their reasons for answering true or
false. Eight additional students participated in interviews in
which they were asked to think aloud as they reasoned about
the survey questions.

Hadfield and Wieman found that students struggled to
provide physically meaningful descriptions of how equations
related to conservation and conversion of energy. For
instance, one participant who selected true for the statement
“the equation for work, w = — [ PAV indicates how to calculate
the quantity of work associated with specific changes in pressure
in volume” (p. 752) responded that the statement represented
conversion and conservation of energy and that pressure and
volume in this equation represented different forms of energy.
Even students who had performed well in the course based on
end-of-semester grades selected answers based on recognition
of the expressions or mathematical validity of the expressions
rather than physical interpretations.

In another study related to how advanced undergraduate
students reason about mathematical expressions in a physics
context, Thompson et al. (2005) surveyed eight physics majors

enrolled in an upper division thermal physics course to explore
their understanding of mixed partial derivatives and the
Maxwell relations. Students were asked to explain the difference
between partial derivatives and total derivatives, and were
asked to express their understanding of the math and physics
related to the Maxwell relations as part of a survey prior to an
examination; they also completed a question on the course
final that dealt with the expansion of an elastic thin film. The
responses of seven students to a written mathematical task
involving partial derivatives and Clairaut’s theorem and a
roughly analogous task were compared. The authors found
that many of the physics students struggled to interpret
the expressions and relate mathematical representations into
realistic scenarios. Two students expressed a belief that the
Maxwell relationships were valid because both sides of
the expression were equal to zero and relied on algebraic
approaches to working with differential equations. Though
five of the seven student interviewed could describe the
physical meaning a partial derivative expression, all students
had difficulties when asked to write a mathematical expression
to represent physical scenario.

These findings suggest that even students who are successful
according to course metrics, such final exam scores and course
grades, may fail to correctly interpret and use mathematical
inscriptions in new contexts, such as that of thermodynamics
(Hadfield and Wieman 2010; Thompson et al., 2005). An
understanding of science content does not always enable
students to successfully relate prior mathematics knowledge
to problem solving tasks.

Procedural and conceptual understanding of mathematical
inscriptions

Similarly, a rigorous understanding of mathematics ideas does
not always ensure that students will be able to successfully
relate mathematical knowledge to science content. For example,
Orton (1983a, 1983b) classified student errors related to the
use of integration and differentiation in a cross age study
(age 16 to 22) of British students and outlined three categories
of common errors: structural errors were conceptual in nature;
executive errors involved mistakes in procedure or operations;
and arbitrary errors seemed to have no underlying cause.
Orton found no strong connection between procedural errors
in conceptual understanding of rate of change in university
level calculus students’ use of integrals or derivatives; some
students were able to solve an integral even if they did
not conceptualize integrals using a formally correct definition
(i.e. integrals as the limit of a Riemann sum). In a similar study,
Grundmeier et al. (2006) found that students who articulated
sound definitions for integration did not necessarily demon-
strate procedural fluency in applying mathematical resources.
It has been suggested that such discrepancies between
conceptual and procedural fluency may be the result of differing
contextual clues in mathematics and science contexts (Cui et al.,
2007; Rebello ef al., 2005). In particular, it may be challenging
for students to transfer mathematical understanding success-
fully to physics and chemistry contexts (Rebello ez al., 2005).
Though students’ may possess understandings related to
mathematics use they may fail to apply those resources if they
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focus on surface features such as notational differences
(Hammer et al. 2005; Rebello Zollman and Allbaugh, 2005).
Students who rely primarily on rote memory learning may be
particularly vulnerable to this type of difficulty (Yeatts
and Hundhausen, 1992). The question remains, exactly what
resources do students draw upon to make sense of mathematical
expressions in new contexts if they are unable to apply ‘correct’
mathematical understandings?

Symbolic forms and mathematical resources

In a qualitative study of how pairs of engineering majors wrote
equations to represent physical scenarios and how they solved
physics problems, Sherin (2001) observed that students repeatedly
focused on symbol patterns in mathematical expressions, and that
these patterns seemed to cue students’ various aspects of prior
knowledge related to mathematics. He suggested that students
draw from a range of intuitive mathematical ideas deriving from
patterns in symbolic representations, or symbolic forms, as they
make sense of equations in physics. As Sherin described the
relationship of symbolic forms to conceptual knowledge,

Each symbolic form associates a simple conceptual schema with

an arrangement of symbols in an equation. Because they possess

these symbolic forms, students can take a conceptual understand-
ing of some physics situation and express that understanding in an
equation. Furthermore, they can look at an equation and under-

stand it as a particular description of a physical system (p. 482).

For example, upon examining a physics equation, students
may identify the following symbol pattern shown in Fig. 2.
Here, using Sherin’s shorthand notation, the boxes indicate
unspecified quantities or variables. Students may associate this
particular arrangement of terms with the idea of “a whole
comprised of two or more parts” or “two components”
(p. 491). Thus, Sherin referred to this pattern as a symbolic
form he called “‘parts-of-a-whole”.

It is important to note that symbolic forms represent intuitive
ways of making sense of representations. Though Sherin postulates
that they may be abstracted from students’ experiences working
with equations in math and science contexts to a certain extent,
symbolic forms are not explicitly taught in most classroom
contexts. Instead they represent a primitive way of how
individuals make sense of mathematical expressions.

Some researchers have used Sherin’s symbolic forms to
account for students’ mathematical thinking in physics contexts.
Tuminaro (2004) examined how students solved problems in an
algebra-based college-level introductory physics course using
mathematical resources, that is cognitive knowledge elements
related to students use of mathematics. He considered symbolic
forms to be one type of resource used by students as they
understand and use equations in physics. By analyzing video
data of students’ group problem solving activities for evidence of
mathematical resource use, Tuminaro found that although
students may possess mathematical resources they may not
always use them in the context of physics problem solving.

o+o+..]

Fig. 2 Sherin’s (2001) parts of a whole symbolic form.

He suggested that how and when students’ use mathematical
resources depends on other factors such as how students frame
problem contexts.

Though Sherin’s original work focused on describing how
students reason about algebraic expressions in the context of
physics problem solving, the construct has more recently been
used to describe how students use calculus resources in physics
contexts. Meredith and Marrongelle (2008) explored how
students use mathematics skills learned from introductory
calculus courses in the context of electrostatics problems. They
interviewed twelve students enrolled in either an integrated
calculus/physics class or a traditional physics class (with
co-enrollment in a calculus course) and they found that
though some students possessed an understanding of when
and where integration would be relevant and how to apply it,
they did not always use mathematical resources appropriately
in physics contexts. While Sherin’s original work dealt only with
algebraic forms, Meredith and Marrongelle (2008) described
several symbolic forms including a “‘parts-of-a-whole” symbolic
form, which students used to reason about calculus concepts
such as integration and suggest that such symbolic forms
may be a useful component of student reasoning about
physics ideas. However, instructors must be aware of how
these symbolic forms contribute to student reasoning in
various contexts if they are to meaningfully facilitate student
reasoning with such inscriptions.

Summary of literature

While there have been studies that describe students’ approaches
to interpreting and using mathematical inscriptions for problem
solving in the mathematics and physics education research
literature, few such studies in chemistry education have explored
how advanced chemistry students reason about mathematical
expressions in thermodynamics contexts. In order to improve
student learning of thermodynamics, more work is needed
that examine the ways in which students make sense of
mathematical expressions in chemistry contexts. Our work
contributes in this direction providing a description of how
students make sense of partial derivative expressions in a
chemistry context related to thermodynamics in terms of
Sherin’s symbolic forms. The following section outlines the
theoretical perspective that guides this work.

Methods

Theoretical perspective

For this study, we adopt Sherin’s (2001) symbolic forms as a
theoretical perspective that guides our interpretation of the data
presented here. This theoretical perspective derives from a
constructivist view of learning in that it looks specifically at what
knowledge resources students possess, when that knowledge is
activated, and under what circumstances (Redish, 2004).
Sherin’s perspective originates in diSessa’s (1993) idea of
intuitive knowledge elements related to mechanics of action in
physics problems, known as phenomenological primitives.
Sherin extended these intuitive ideas to include aspects of
mathematical reasoning. The symbolic forms framework assumes
a complex interaction between knowledge elements exists for
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any particular task, meaning that the ways in which students’
activate knowledge resources in response to a particular task
may be highly context-dependent.

Research questions

The goal of the qualitative study described here is to provide a
rich description of how students reason about mathematical
expressions in math and physical chemistry contexts. The
following questions framed our design and analysis of this study:

e What are physical chemistry students’ understandings of
partial derivatives in mathematical contexts?

e How do students apply their understanding of partial
derivatives in mathematical and physical chemistry contexts?

From our preliminary data analysis, we noted that students
focused on aspects of mathematical expressions other than
what an expert might consider ‘correct’. To further explore
this phenomenon, we added a third research question:

e What symbolic forms outlined by Sherin (2001) are used
by students to make sense of mathematical expressions in
mathematics and physical chemistry contexts?

The ways in which Sherin’s (2001) symbolic forms framework
are used in this study will be further described in the data analysis
section of this paper.

Development of interview protocol

In order to explore students’ understanding of partial derivatives
in mathematics and physical chemistry contexts, we adapted a
pen and paper survey developed by Thompson and colleagues
(2005) for use as a semi-structured think aloud interview
protocol. The interview question asked students to interpret
mathematical expressions in analogous math and physical
chemistry contexts. We added two additional open-ended
interview questions that asked students to generate their own
mathematical expressions in order to further explore the ways
in which students represent physical situations using mathematical
inscriptions. For these two questions, we selected problems in
which students would likely be expected to represent change in
variables using a derivative in a classroom context. Follow-up
questions, which took the form of sample responses from a
fictitious student, were used in cases where students were unable
to come up with their own expressions.

The protocol was piloted with five chemistry graduate
students and four undergraduate students in order to refine
interview questions. Two chemistry faculty members were also
interviewed in order to gain feedback about the structure and
wording of the protocol. In this paper, however, we discuss
only those interview questions that informed the research
questions outlined in the previous section. The interview
protocol is shown in Fig. 3.

Participants and setting

Classroom contexts. Participants were recruited from two
different classrooms in order to ensure that emerging themes
in student reasoning were not the result of one particular
instructional approach or instructor. No comparison is intended
between the two instructional approaches described here.

The first classroom was a lecture section at a large research
university in the Midwestern United States. The second was a

small course using the Process Oriented Guided Inquiry
(POGIL) approach at a comprehensive university in the
Midwestern United States. Since 2003, the POGIL project
has developed and disseminated curricular materials based on
a student-centered model of learning. In the POGIL classroom
observed in this study, students worked the majority of each
class period on exercises from the POGIL workbooks. The
instructor served as a facilitator of student learning
rather than a lecturer; whole class discussions in this context
generally involved students reporting out answers to work-
book questions. A thorough description of POGIL settings is
detailed by Moog and Spencer (2008).

Participants. All students participated on a volunteer basis.
A total of ten students participated in the semi-structured
interviews during the Spring 2009 and Fall 2009 (five from
each classroom). Background information for each participant,
including student majors and semesters of college mathematics
courses taken (calculus and above) is represented in Table 1.

Data collection

Interviews took place mid-semester after students had covered
content related to total and partial derivatives as well as the
Maxwell relations. Both classes covered units dealing with
Maxwell relationships at least a week prior to the interviews.
In the lecture section, students spent over a week working on
manipulations based on the Maxwell relations in order to
obtain expressions for coefficient of thermal expansion (op),
and similar relationships that could be expressed in terms of
partial derivatives. In the POGIL class, students worked
through one unit on the Maxwell relations prior to the inter-
views and had also previously discussed the equality of mixed
second partial derivatives in a math review unit at the beginning
of the semester.

During the interviews, which lasted approximately 45 min
on average, students were then asked to think aloud as they
worked through a series of interview questions. Interview
questions asked students to write or interpret a mathematical
expression involving total or partial derivatives in math or thermo-
dynamics contexts. Additional questions asked students to define
terms such as partial derivative or total derivative.

Interviews were audio recorded and students’ written work
was collected at the end of the interview. The first author
observed both classes for the duration of the semester and also
served as a graduate teaching assistant for the large lecture
course. Classroom observations focused on describing the
examples related to partial derivatives in class and identifying
contexts in which mathematical inscriptions were discussed.

Data analysis

As data collection was ongoing, all interviews were transcribed
verbatim. In our initial analysis, transcripts of student responses
were compared for each question and codes were assigned to
indicate the students’ approach to interpreting expressions and
whether they understood the mathematical expression. As
evidence of understanding, we looked for instances in which
students could provide a physical interpretation or alternate
descriptions of a symbolic expression. We examined data
related to emerging themes as a whole to identify the common

Chem. Educ. Res. Pract.

This journal is © The Royal Society of Chemistry 2012


http://dx.doi.org/10.1039/c2rp00003b

Downloaded on 16 April 2012
Published on 08 March 2012 on http://pubs.rsc.org | doi:10.1039/C2RP00003B

View Online

1. In the following expression, f'is a function of x: f(x) = —16x2 + c1x + ¢,. Write an
expression for how f(x) changes as x changes.

Questions 2 — 5 relate to the following information: R is a function of the independent
variables C and F ,thatis R = R(C, F) . The total differential of R can be written

as dR = BdC + EdF.

2. Please explain what your understanding of what a total differential is.

3. Please explain what your understanding of what a partial differential is.

4. Consider the following equation: dR = (%) dc + (a—R) dF. Explain your
F c

understanding of (%)F.

aF

5. Is the following statement sometimes true, always true, or always false?

(57 (ae),), = (

Please explain your reasoning.

a(aR))
ac \aF ). ).

6. G is the is the Gibbs Function. The total differential of G can be written as

dG = —5dT + VdP

where S is the entropy, T is the temperature, V is the volume, and P is the pressure. In an

investigation of the physical properties of a new alloy, it is found that ( r) =4.6x10"°
P

av
a

m’/K. What does the value 4.6 x 10 m*/K mean to you?

av

7. What significance does the sign of (E)Phave for you?

8. Explain how you could determine (Z—i) using only the information given question 6.
T

9. Write an expression for how the pressure of the container below would change the container

were heated while volume remains constant.

Stops
\,\

n moles of

ideal gas \o o

1 Liter

Fig. 3 Interview protocol.

theme of ideas and compared student responses both within
and across cases. Our approach to condensing theses initial
codes into broader themes derives from Glasser and Strauss’s
(1967) constant comparison approach, which advocates an
ongoing comparison of data in order to refine of theoretical
constructs derived from data analysis.

Since our initial analysis did little to explain what students
focused on when they did not apply correct mathematical
understandings or physical interpretations of the systems, we
adapted Sherin’s (2001) symbolic forms as an analytical tool in
order to better describe students’ reasoning processes. In our
second phase of analysis, we looked for evidence that students

This journal is © The Royal Society of Chemistry 2012
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Table 1 Participant backgrounds

Participants Year Major Semesters of mathematics
POGIL class participants Andrea Junior (3rd) Chemistry 2
Adam Junior (3rd) Chemistry 1
Craig Junior (3rd) Chemistry and Math 2
Marie Junior (3rd) Chemistry 2
Melissa Junior (3rd) Chemistry 2
Lecture class participants David Senior (5th yr) Biochemistry 3
Jacob Senior (4th year) Aeronautical Engineering 6
Nevah Junior (3rd year) Chemistry 3
Taylor Junior (3rd year) Pharmacy 3
Yang 2nd year graduate Nuclear Pharmacy 2
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identified patterns in the mathematical expressions for which
they associated some intuitive understandings and coded these
instances using the type of symbolic form that was used. The
code definitions and criteria for identification outlined by
Sherin (2001) were used as a guide and we reinterpreted
identification criteria as needed to fit our data set. For the
symbolic forms analysis, we coded only those questions
that asked students to interpret or produce a mathematical
expression rather than the interview questions that asked
students to define terms.

Inter-rater reliability for the symbolic forms analysis was
established using two additional reviewers who coded one
complete transcript representing a sample of 34 codes. The percent
agreement between the two raters (who coded collaboratively) and
the first author was 76.5%.

An overview of student responses to the interview protocol
will be discussed in the following section.

Findings
Overview of student responses to interview questions

To set the context for our discussion of students’ use of symbolic
forms in interpreting and reasoning with mathematical expressions
in thermodynamics contexts, we first provide an overview of
student responses to the interview questions that were relevant
to our research questions. Table 2 summarizes student responses
to the interview questions.

Overall, participants’ responses to interview questions 1 through
4 suggested that the majority of participants could provide reason-
able interpretations of the terms total and partial derivatives and
offer an interpretation in terms of change for partial derivative
expression such as (g—?) - The majority of students could also
successfully write an expression for change in interview question 1.

In the remaining interview questions, nearly all students
could give an physical interpretation of change when asked to
interpret mathematical expressions with thermodynamic variables
such as (g—';) p- However, interview questions that asked students
to apply mathematical ideas rather than interpret or define
mathematical constructs were met with more difficulty.

Interview questions 8 and 9, for instance, proved challenging
for a number of students. These questions asked students
to apply information they may have previously learned in
mathematics or physical chemistry courses to write an expression
for the described scenario. Students’ approaches to these problems
will be further discussed in the next section.

Students’ ways of interpreting mathematical expressions

Rather than a straightforward application of prior knowledge,
we observed that students used a variety of approaches to
dealing with the mathematical expressions in the interview
protocol. We found the notion of symbolic forms to be useful
in explaining students’ reasoning, especially when they
appeared to struggle to interpret mathematical expressions.
Sherin’s (2001) original set of codes included a number of
instances in which symbolic forms related to forces or similar
influences were used in student reasoning. In our data set, we
identified few such instances likely due to the nature of the
content discussed by students in the interviews. Most symbolic
forms used by participants related to dependence of terms,
recognition of constant terms or coefficients, or proportionality
of quantities. Five examples of symbolic forms that were
identified in our data set are summarized in Table 3 (see Sherin,
2001 for complete list of codes used in original study).

We also coded instances in which students recalled particular

pieces of information or associated symbols such as % with

change or the process of taking a derivative. Because of the
nature of the content discussed here, symbolic forms other than
those described by Sherin may be possible. However, our goal
was not to identify new symbolic forms unique to this data set,
but rather use the construct of symbolic forms to explain
aspects of student reasoning as they discussed these expressions.

In total, we identified the use of ten symbolic forms similar
to those described by Sherin (2001) in our data. A summary of
the symbolic forms and the frequency with which they were
used in participants’ responses is shown in Table 4.

The frequencies in Table 4 illustrate that a number of
students used symbolic forms to reason about the mathematical
expressions in the interview questions. These uses included both
instances in which students arrived at correct and incorrect
responses. In some instances, symbolic forms were used by
students in conjunction with recalled prior knowledge to make
sense of mathematical expressions. In other instances, the use of
symbolic forms predominated