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Potential Flow Theory

The validity of the commonly used transonic potential equation for flows with
Shock waves is examined. It is concluded that in such cases the potential for-
mulation is inconsistent with the basis assumptions of the theory because of the
nonconservation of momentum across a shock. The relationship of this momentum

source to wave drag is also discussed. Another topic examined is the rationalization
of means to make solutions of the transonic potential equation agree beiter with
solutions of the Euler equations.

1 Introduction

At present, the main means of predicting transonic flow
characteristics is by numerically solving either the full
potential equation [1, 2] or its approximate form, the tran-
sonic small disturbance equation [3, 4]. To justify the use of a
potential equation to describe transonic flows with shock
waves it is usual to assume that entropy changes through a
weak shock are negligible and hence, from Crocco’s theorem
[5] the flow can be considered irrotational. However, the
derivation of Crocco’s results requires that mass, momentum,
and energy be conserved, and since in the present transonic
potential, computer-codes axial momentum is not conserved
if there are shock waves in the flow, it is obvious that there is
an inconsistency in the model. This momentum error is often
used to define a wave drag of the airfoil. The present study is
concerned with examining the origin and effect of the in-
consistency of potential flow theory when shock waves are
present in the flow and also the relationship of the momentum
error to wave drag.

In Section 2, a perturbation analysis of the potential theory
through a normal shock is conducted and it is shown that the
momentum error produced by the potential formulation leads
to a ‘““‘wave drag’’ proportional to the shock strength, whereas
the correct result is the cube of the shock strength. Also, a
possible theoretical basis for modifying potential theory to
give more realistic shock jumps is described. In Section 3, the
effect of not conserving momentum on the irrotationality
assumption is examined and it is concluded that the potential
formulation is only valid for a free-stream Mach number
close to unity. An analysis is given which derives a consistent
potential theory but it is concluded that this theory would give
worse results than the conventional theory.

2 Comments on Isentropic Shock Waves

In this section the behavior of the flow through a one-
dimensional isentropic shock wave is examined.
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The pressure, density, and velocity are expanded as a series in
the perturbation velocity u. Let

g=1+u 3)
and expand the relations of equations (1) and (2) in powers of
u. Hence
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where
B2=1-M>% (6)
Through a shock wave, mass, momentum, and energy
should be conserved. If this is not true then there are errors

E,, E,, and E; in the conservation laws of mass, momentum,
and energy, respectively. Hence '

B = 0V Up/ouUu= {810 ~ S 0212] )
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where subscript 1 denotes a value upstream of the shock, the
subscript 2 denotes a value downstream of the shock, and

k=M% [3+(y-2)M%] (10)

The notation [ ] defines the jump across the shock. The
energy equation is satisfied because the isentropic density and
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pressure relations of equations (1) and (2) are derived by
assuming that energy is conserved.
Since [u]* =u, —u, and [4?]* =u} — u3 it can be seen that

E, = &[62— %u} an
E, = ywmo{32—<k“ﬁz)ﬁ}/(1+ywm) (12)
where
o = U —i
) 13)
i = u +u,

Hence if the shock strength o is zero then there are no errors in
the solution. If the transonic small disturbance equation is
formulated as

(B —kuyu, +v,=0 (14)
where £ is a function of the free-stream Mach number, then
for normal shock waves the jump relation is

0=23/k 15)

Hence if &=k then the error in mass conservation is zero and
there is a momentum error

_ o
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This is equivalent to an upstream force on the shock wave. If,
as is usual in transonic flow calculations, free-stream con-
ditions are enforced at the downstream boundary then a
contour integral of momentum around the flow indicates a
total conservation of momentum. Hence the momentum error
across the shock must be balanced by a pressure force on the
airfoil. This is sometimes referred to (erroneously) as the
wave drag. It is directly due to an inconsistency of the isen-
tropic equations through a shock wave. This conclusion was
obtained by Steger and Baldwin [6]. If the transomnic

parameter & in equation (14) is chosen to be (k—[?) then
momentum is conserved but there is a mass error

E, = —B*a/(k— %) amn
Note that since transonic small disturbance theory assumes
8% =0 the conservation equations are satisfied to the order of
approximation of the theory. However, the foregoing results
are also applicable to the full potential equation for which no
formal limit on B2 is required.

It can be inferred from the preceding analysis that since
transonic small disturbance theory has traditionally only one
flexible parameter, k, it is impossible to remove both the mass
and momentum errors across a shock. However, it may be
advantageous to choose the transonic parameter k such that a
linear combination of the errors is minimized. Thus, if an
error E is defined as

E=W1E1+W2E2 (18)

where w, and w, may be functions of u;, then E can be
minimized for a given u,. Thus

E= 0{62 [wl + i%]g;'—}z;wz]

- [kw, + ﬁ%wz(k— 62)] ﬁ}

If w =1, w,=0, this reduces to the conventional mass
conserving result. If :

E, (16)

(19)
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Fig.1 Sketch of a streamline coordinate system

w =32“(k262>ﬂ5; Wy = _<.32— ;ﬁb‘)

then E=0 if & is chosen such that u = ii; where i is the value
of u; +u, given by the Euler equations. To a first ap-
proximation

M (y+1)

ﬁE=u1 2— -
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Such a modified small disturbance equation is used by Nixon
(71

The existence of the momentum deficit through the shock
given by equation (16) is often assumed to be the drag. The
drag coefficient, Cp, is given by the relation

(poo +me2m)E2

1
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whereas the formal limit of entropy producing drag as given
by Murman and Cole [8] is, in the present notation

Cp= =28% @

_+D
Cp= M

and which is third order in o in comparison to the linear
dependence on ¢ of equation (21). Note that to get the
complete drag, these drag relations must be integrated along
the shock wave.

o (22)

3 Comments on Momentum Deficit and Irrotation-
ality

In the following analysis it is assumed that mass is con-
served, since this allows a simple definition of the stream
function coordinate system. It will be assumed that there are
possible sources or sinks in momentum and energy. In Fig. 1,
s is the streamline direction and 7 is a coordinate normal to
the streamlines. The velocity u is in the stream-wise direction
and by definition there is zero flow velocity across the stream
tube. The conservation equations for mass, streamwise, and
normal momentum and energy are as follows.

aplU

— =0 (conservation of mass)

as @3)
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momentum)
RLA A tion of normal 25
0 % n n conservation of norma 25) .
momentum)
A+ U2/2) B . :
—_ = (conservation of energy) (26)

as as

where d¢,/0s, de;/dn, and 0Oe;/ds are the effects due to
sources in streamwise momentum, normal momentum, and
energy, respectively.

The entropy gradients in the streamwise and normal
directions are defined by

;95 _9n 1 3p

= 27
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Integration of the energy equation, equation (26), gives
h+ UP/72=ho(n) +¢; (1) (29)

where hg(n) is the reservoir condition. If the fluid is con-
sidered a calorically and thermally perfect gas, then

Y 14

y=1 p
where C, is the specific heat at constant pressure. Using
equations (25) and (29), equations (28) can be written as

h=CPT=

(30
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The quantity (9U/dn — U3/ ds) is the vorticity, ¢, of the flow
and hence equation (31) can be written as

o0y (Lse o)

on on p an an
The entropy gradient in the streamwise direction can be
written, using equation (24), as

S _663 1 661

as as p 05
Thus there is a streamwise entropy production due to the
errors €;, €3. It is assumed that any shock waves in the flow
are sufficiently weak that the entropy production due to
physical phenomena is negligible.
Consider now the case where both normal momentum and
the energy are conserved with no source terms. In this case

(32)

(33

662
-0
on
(34)
9o _
on
and hence if the reservoir condition 4, is such that
oh
2 =0 35)
on

(this is usually the case for transonic gas flows) and if Vthe
entropy production gradient normal to the streamlines is zero,
i.e.,
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— =0 3
on (36)
Then equation (32) gives the irrotational condition
¢=0 37

If €, €3, are expanded as series in terms of a perturbation
velocity u, [U= U, (1 + u)], such that

€] =€1(1)u+€2(2)u2 e

e3=€3(l)u+e3(2)u2 P

and if
T= Tm(l-f'OlT(l)U‘f‘aT(z)uz . .)
P=pol+o,Vu+a,®u? .. )
then
as 1
Pk o CRALZAE

du
(1 - a; My —(ap® — a;M2)y?) =

R
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du
(1 -y Vu ()@ = o, V1) = (38)
s
where the subscript o denotes free-stream conditions and R is
the gas constant. Equation (38) can be integrated to give

1 1
AS=—— (63(”[14] N VR f) - Tar(')[uz] te

o o0

R R
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where A denotes a difference from some reference condition.
Finally, it should be noted that by using equations (27) and
(30,
» (v=1s
—=Ke R
pY
where K is a constant, If the free-stream conditions are the
reference conditions for equation (40) then

(40)

k=2
Poo 41

In an inviscid irrotational continuous flow it can be shown
[S] that the conservation of mass and energy, together with
the isentropic relations for p, p ensures conservation of
momentum. However, if there is a discontinuity normal to the
streamlines in the flow, then it is shown earlier that this set of
equations does not conserve momentum through the
discontinuity. In many transonic calculations this momentum
deficit is erroneously referred to as wave drag. Since the
isentropic approximation to transonic flow requires the basic
assumption that mass, momentum, and energy be conserved,
there is an obvious inconsistency in the overall theory. This
momentum error only occurs at a shock wave and from
equation (39) this error shows up as an entropy production
term. However, it is possible that a self-consistent potential
theory can be derived and this possibility is examined in the
subsequent analysis.

Consider now the case of a transonic flow that has suf-
ficiently weak shock waves that no entropy production from
purely thermodynamic means is significant. Assume also the
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shock wave is normal to the streamlines, thus ensuring
conservation of normal momentum. Finally, assume that
total enthalpy is conserved throughout the flow; this is
consistent with the isentropic model since the necessary
density/velocity relation is found by assuming conservation
of total enthalpy. .

In the remaining analysis the error e, is set to zero, implying
conservation of total enthalpy and the pressure/density
relation, equations (40) and (41) are written as

O/P)/(0/po)’ =148 (42)

where 6 is of order [#]*, the shock strength, from equations
(39) and (40). If it is assumed the shock waves are weak, then
powers of & greater than unity can be neglected. Substitution
of equation (42) into the energy equation, equation (29) gives

it puﬂ(ﬁ)y_l(l_,_a)

(’Y— 1) P P
Y Po U’
=— +U%°/2<1——> 43
v-1 po ( ) UZ, @3
In terms of the perturbation velocity, this is
! 1
1 — —
L {1 - 1;2——]\/120(2u+u2)} /(1 +8) ! (44)
Poo
An expansion to second order in u gives
0 u? 1)
— =1-Miu— — [1+ML (y-DIME— ——  (45)
Poo 2 Y- 1
The pressure relation is found by taking
p
2 o= ¥
P (1+0)(0/00)
P UMz, 3
—=1l-yMZy- —2F _
P YM5 u 5 P (46)

where 82 =1-M2% .

Across a normal shock wave the errors in the conservation
of mass, momentum, and energy are as follows: The error
terms €;,6 only contribute to the values on the downstream
side of the shock:

E s = Uy —py U, =po U(Bz[u] *

LULb
£ . @7)

- ;[:ﬂ]t) +

Emomemum =D +DPy U% _pz ‘PZU% =

meﬁo(éz[u]’_’ - U‘—:Z—Bz)[uz]t) 4 PeUsd (HTJ:E) (48)

v—1
Eenergy =0 49)

In the preceding equations, k=[3 + (y~2)M% IM%and [ ]*
denotes a jump across the shock wave. Note that the result of
equation (49) confirms the consistency of putting the energy
error equal to zero.

Now assume that the solution algorithm conserves mass.
Thus the error in equation (47) is zero and then the solution
has shock jumps given by

Uy = 1? (Bzi[(ﬁz—kul)z_ ;Zg_ﬁ_l} 1/2)

From equations (39)-(42)

(50)

—(y—1
6= (77) {(e, D[]+ + e, Plu?]t)
—a,,(”el(‘)[uz]t } (51)
and since, by definition,
Emomemum = - (61(1)[11] Y+ €] @ [MZ] t) (52)
equation (48) may be written as
— (6O + e P[]t )
k[u?]* 8 ]
— 20,1+ _
L
2
LA PR
+ e @u?]* —ap(l)el(”[uzlf] (53)

Since from conservation of mass the first term in square
brackets in equation (50) is zero, equation (53) becomes

2
N (uel(l)_pw(ﬂmé. [#%]1f =0 (54)
4 2

Hence for a consistent formulation either the flow is con-
tinuous,

Uy =y (55)
or the flow has a shock wave with the jump relation
up=—1u, (56)
or, in terms of the shock strength o= u; — u,
o=2u, 57)

To the same order of accuracy the conventional “‘isentropic’’
jump relation is
2p3?
g= 21«(1 - T
and hence for 82 #0 the consistent theory gives a stronger
shock than the inconsistent conventional theory. Since the
conventional shock is already too strong it is probable that a
consistent theory is too inaccurate for practical calculations.
From equations (50) and (56) the term & is given by

(58)

6= —28%u(y—1) (59)
for a flow with a discontinuity. The error ¢, is given by a
combination of equations (59) and (51); thus

O+ O]t — o, Ot e,V =2p,, 82,  (60)

The preceding discussion can be summarized as follows.

(a) The conventional potential theory is inconsistent
because axial momentum is not conserved.

(b) A consistent, irrotational, one-dimensional theory can
be derived if the shock wave is normal to the free stream.

(¢) It is probable that the results of using this consistent
theory are more inaccurate than results of the inconsistent
conventional theory.

In view of these conclusions, it is suggested that the con-
ventional theory can enhanced by the addition of variables
such as modifying the potential equation either by analytic
means [9] or nonconservative differencing [10]. Since both
conventional and modified theories are inconsistent, it would
seem that a modified theory is as valid as the conventional
theory.

For the irrotational assumption to hold the quantity
18] < <1 and hence from equation (59)
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Bru, < <1 61

Now to a first approximation

B2 —~ku,=1-M}
where M, is the Mach number just upstream of the shock.
Hence equation (61) can be written as

2
P-My) 62)
k

It can be concluded that apart from its treatment of the
tangency boundary conditions, the full potential equation is
formally no more accurate than the small disturbance
equation since both require f2u; < <1.

In equations (11) and (12) it can be seen that if mass is
conserved then momentum is conserved only if

(W21t =0

which, in the case of conventional potential theory, is not
possible since [u4*]* is solely determined by the mass con-
servation equation. In the consistent theory, although the
same requirement of [#%]F is needed, there is an additional
parameter in the mass conservation equation, the ‘8"’ term
that allows this requirement to be satisfied. It should be noted
that even for very weak shock waves, the consistent theory
does not approach the conventional theory; this only occurs
for continuous flow.

Finally, it should be noted that since 6 <0 for equation (59)
the entropy due to the momentum change through the shock
wave decreases, which contravenes the second law of ther-
modynamics. Thus the consistent potential theory is not
physically plausible.

Concluding Remarks

Several aspects of the transonic potential theory have been
examined and it is concluded that there are several in-
consistencies in the theory. It is also suggested that there are
some commonly held misunderstandings in the interpretation
of the results of potential theory calculations.
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