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Abstract— Microwave imaging is a promising alternative to conventional mammography meth-
ods. At microwave frequencies, normal and malignant tissues show high contrasts in their elec-
trical properties. Microwave Imaging (MWI) systems can be used to construct three-dimensional
profiles of the electrical properties of the body part that is being examined. MWI systems illumi-
nate the body part with electromagnetic radiation of a suitable frequency. Using the measured
scattered field at the surface of the body, inverse scattering algorithms reconstruct profiles of the
electrical properties of the target. It is therefore of the uttermost importance that the forward
scattering set-up is correct so that an inversion algorithm can create accurate profiles of electri-
cal properties. We propose an improvement over the existing integral equation based forward
scattering simulation techniques for microwave breast cancer imaging. Early detection of breast
cancer is crucial. At this stage, the size of malignant tissue can be in the order of millimeters.
For imaging involving such a small malignancy, one must use high-frequency radiation. At such
frequencies, in order to overcome the relaxation effect of complex permittivity, we use the Debye
model. For solving the forward scattering problem, we use the stabilized bi-conjugate gradient
fast Fourier transform method (BI-CGSTAB-FFT). For the scattering domain, we apply the so-
called cyclic boundary condition. This reduces the number of FFTs involved thus saving time
and memory. For the BI-CGSTAB-FFT iteration method, we choose the initial value of the
total field to be the incident electric field. This choice yields better convergence than a random
selection of initial condition.

1. INTRODUCTION

Current imaging techniques for the early detection of breast cancer include X-rays, MRI and ultra-
sound imaging. X-ray mammography is the most common method employed at present. However,
it poses certain health risks owing to the ionizing nature of the radiation. In addition, the method
has relatively high false detection rates [1, 2]. Recently, microwave imaging has been proposed as a
painless alternative to conventional X-ray mammography. Its non-ionizing nature makes it a safe
probing method for the patient. In addition, the relatively lower manufacturing and maintenance
cost makes it a viable economic replacement for conventional mammography machines. Studies
have shown that at microwave frequencies, normal and malignant tissues show reasonable contrast
in their electrical properties [3]. A recent large-scale study [4] reveals more insight into the electri-
cal properties of the breast tissues. According to [4], there is no significant difference among the
dielectric properties of breast tissue samples obtained from a large number of patients. This finding
strengthens the case for using the MWI for identifying malignant regions as for all patients, regions
with high contrast in dielectric properties will indicate abnormalities in normal tissues. Accurate
simulation of the underlying scattering problem is of immense importance. These simulations fa-
cilitate the design and development of suitable imaging chambers, the selection of better antennas
and efficient image reconstruction algorithms.

Simulation of electromagnetic problems at microwave frequencies is challenging as the size of
governing matrix equations grows with frequency. Any improvement in algorithms that reduces the
computation time or memory usage is of immense benefit. In this paper, we include cyclic boundary
conditions [7] in the discretization procedure which reduces overall computation time and memory
requirements while the accuracy is not affected. At high frequencies, in order to overcome the
relaxation effect of complex pemittvity, we use the single-pole Debye dispersion expression [9].

2. SIMULATION SETUP

MWI involves the scattering of microwave radiation by an inhomogeneous body and the reconstruc-
tion of three-dimensional (3-D) maps of the dielectric properties of the target using the measured
scattered field. In this study, we use an inhomogeneous sphere of radius 0.064m as shown in Fig. 1
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as the scatterer to mimic the breast. The forward scattering problem is modelled with the volume
electric field integral equation approach of scattering theory. The source of microwave radiation
is an electric dipole placed at z = −0.08m as shown in Fig. 1. In the spherical polar coordinate
system, the expression for the electric field due to an electric dipole is given by [5]:

Figure 1: Simulation setup.
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In Eq. 1, L is the length of the dipole, r is the distance of any point in the scattering domain from
the dipole centre and f is the frequency of operation. The angular frequency is given by ω = 2πf .
[I] is the retarded current and c is the velocity of light. Throughout our simulations f = 6 GHz,
L = 0.01m and [I] = 10 A. The total field E will be measured on the surface of scattering domain
at z = 0.07m. The scattered field Es is given by Es = E−Ei where Ei is the incident field.

At high frequencies, to overcome the relaxation effect of complex permittivity, the single-pole
Debye dispersion expression [9] is used for representing complex permittivity:
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Here, ε∞ is the relative permittivity at infinite frequency, εs is the static relative permittivity, σs

is the static conductivity and τ is the relaxation time constant. The scattering domain in Fig. 1
has three regions with different dielectric properties as given in Table 1 [9]. Region I is outside the
sphere and acts as a coupling liquid between the breast phantom and radiation source. Region II
acts as the normal breast phantom and region III acts as the malignant region. Throughout the
scattering domain, the permeability µ = µ0 is constant.

Table 1: Debye parameters (in SI units) for the breast phantom in Fig. 1 at 6 GHz.

Dielectric properties of the breast phantom
ε∞ εs σs τ εr σ

Region I 4.0 10.0 0.1 7.0e-12 10 0.1
Region II 6.57 16.29 0.23 7.0e-12 15.66 1.03
Region III 3.99 54.00 0.70 7.0e-12 50.74 4.82
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3. VOLUME ELECTRIC FIELD INTEGRAL EQUATION (VEFIE)

The electric field inside the scattering domain can be represented by a Fredholm integral equation
of the second kind [6], given by:

E(r) = Ei(r) + (k2
b +∇∇.)

∫

V
G(|r− r

′ |)χ(r
′
)E(r′)dr

′
(3)

Here, Ei is the incident electric field and E is the total electric field in the scattering domain
V . kb is the wavenumber in the coupling medium given by kb = ω

√
µbε̃b, χ is the contrast function

given by χ = k2

k2
b
− 1. G(|r − r

′ |) is the scalar Green’s function. Note that the harmonic time
dependence e−jωt is omitted in Eq. (3) and in all equations henceforth.

4. DISCRETIZATION OF VEFIE USING CYCLIC BOUNDARY CONDITIONS

The magnetic vector potential is defined [6] as:

A = −jωµbε̃b

∫
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)E(r

′
)dr

′
(4)

Then the integral Eq. (3) can be written as:

E(r)− jωA−Eirr = Ei(r) (5)
In Eq. (5), Eirr is the irrotational part of scattered electric field and is denoted as in Eq. (6).

Eirr =
jω

k2
b

∇∇ ·A (6)

The scattering domain V is discretized into N ×N ×N cubic cells of volume dv = dx×dy×dz.
In our simulations, N is set to be equal to 21. The cell centres are located at:

rj,k,l = [j × dx, k × dy, l × dz] (7)
To mimic a continuous scattering domain, we include the cyclic boundary condition [7] in the
discretization procedure. According to this condition, if the scattering domain has N cells in each
direction, the Nth cell in the x-direction will be considered as the left neighbour of first cell in that
direction and the first cell will be considered as the right neighbour of the Nth cell. It is likewise
in the y and z directions. Testing Eq. (5) with the delta function δ(r− rj,k,l) gives the field values
at rj,k,l given by Eq. (8), where j ∈ [1, J ], k ∈ [1,K], l ∈ [1, L].

Ei
j,k,l = Ej,k,l − jωAj,k,l −Eirr

j,k,l (8)

The magnetic vector potential in (4) can be expressed as:

Aj,k,l = −jωµbε̃bdv
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where, j ∈ [1, J ], k ∈ [1,K], l ∈ [1, L]. The Green’s function [10] is given by:

Gj,k,l =





(1− 1
2
jk0dr) exp( 1

2
jk0dr)−1

1
6
πk2

0dx3 if |r| = 0

exp(jk0|r|)
»

sinh( 1
2 jk0dr)

1
2 jk0dr)

−cosh( 1
2
jk0dr)

–

1
3
π(k0dr)2|r| if |r| > 0

(10)

The convolution in Eq. (9) may be efficiently evaluated by applying the Fast Fourier Transform,
i.e.,

Aj,k,l = C
[
FFT−1[FFT [Gj′,k′,l′ ] · FFT [χj,k,lEj,k,l]

]
(11)

where C = −jωµbε̃bdv. In our simulation, the inclusion of the cyclic boundary condition reduces
the number of FFTs involved by a factor 3(N +2)3− 3N3. The components of Eirr

j,k,l in Eq. (8) can
be computed as in [6]. Eq. (8) may now be written as a matrix equation of the form

Ei = L[E] (12)

In Eq. (12), L represents the linear operations in Eq. (8) and 11 and in [6] acting on the total field
Ej,k,l.
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5. NUMERICAL RESULTS

In order to find the unknown electric field, Eq. (12) needs to be solved numerically. Direct solution
involves the inversion of a large matrix and this is prohibitive from a computational viewpoint.
Consequently, iterative methods are employed for the solution of Eq. (12). We intend to use a
Krylov subspace method for iteratively solving this equation. In addition, it should be noted that
because of the probable non-symmetric location of tumour tissues in the breast phantom, Eq. (12)
will not be symmetric. To tackle this asymmetry, we use the BI-CGSTAB-FFT method [8] to solve
the matrix equation in (12). The residual error in satisfying Eq. (12) at the nth iteration step is
given by en = Ei − L[En]. The rate of convergence of the BI-CGSTAB-FFT method is measured
as:

δn = log

( ||en||2
||e1||2

)
(13)
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Figure 2: Rate of convergence of the BI-CGSTAB-FFT method measured as in Eq. (13), (a) with a random
initial value for E, (b) with the incident field Ei as the initial value for E, (c) with the incident field Ei as
initial value for E and the cyclic boundary condition.

Figure 2(a) shows the convergence rate δn of the BI-CGSTAB-FFT implementation when a
random initial value is selected for E. When the incident field Ei is used as the initial value for
E, better convergence is achieved as evident from Fig. 2(b). Fig. 2(c) shows the convergence rate
when the cyclic boundary condition is employed. Note also that for Fig. 2(c), Ei is chosen as the
initial value for E. Comparing the figures, it is obvious that the cyclic boundary condition does
not affect the convergence rate. However, in our case, it reduces the number of FFTs involved in
the simulation by 23% and saves a considerable amount of memory.
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Figure 3: Scattered field Es measured on the surface (z = 0.07m) of the scattering domain, (a) without the
tumour and (b) with the tumour.

Figure 3 shows the scattered field measured on the surface (z = 0.07m) of the scattering domain,
(a) without the tumour and (b) with the tumour. From Fig. 3, it is clear that the measured scattered
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field on the surface of the scattering domain is different when an inhomogeneity is present inside
the scatterer. The scattered field can then be used with an inversion algorithm to identify the
location of the tumour.

6. CONCLUSION

Simulation of electromagnetic scattering problems at microwave frequencies is computationally
challenging because of the large size of governing matrix equations. Any improvement in the formu-
lation and algorithm that reduces the memory requirements and computation times is of immense
importance. Microwave imaging is a promising alternative for mammography and other kinds of
medical imaging. Simulation of these systems is computationally expensive. We have examined
the inclusion of a cyclic boundary condition in the discretization procedure which indeed mimics
a continuous scattering domain and reduces the overall computation by a considerable amount
compared to previous works. Furthermore, in the BI-CGSTAB iteration method, we proposed the
selection of the incident electric field itself as the initial condition for solving for the total field.
Results confirm that it gives better convergence when compared to the standard choice of initial
condition.
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