
R. H. Plaut 
Professor, 

Department of Civil Engineering. 
Mem.ASME 

L.W.Johnson 
Professor, 

Department of Mathematics. 

Virginia Polytechnic Institute 
and State University, 

Blacksburg, Va. 24061 

R. Parbery 
Senior Lecturer, 

Department of Mechanical Engineering, 
The University of Newcastle, 

New South Wales 2308, Australia 

Optimal Forms of Shallow Shells 
With Circular Boundary 
Part 1: Maximum Fundamental Frequency 
Thin, shallow, elastic shells with given circular boundary are considered. We seek 
the axisymmetric shell form which maximizes the fundamental frequency of 
vibration. The boundary conditions, material, surface area, and uniform thickness 
of the shell are specified. We employ a bimodal formulation and use an iterative 
procedure based on the optimality condition to obtain optimal forms. Results are 
presented for clamped and simply supported boundary conditions. For the clamped 
case, the optimal forms have zero slope at the boundary. The maximum fun­
damental frequency is significantly higher than that for the corresponding spherical 
shell if the boundary is clamped, but only slightly higher if it is simply supported. 

Introduction 
One basic problem in structural optimization is that of 

maximizing the fundamental frequency of vibration. This 
may be desirable to avoid resonance if the structure is sub­
jected to dynamic forces or excitation of its supports. Many 
frequency optimization results have been obtained for bars, 
beams, and plates, in which the material is distributed in an 
optimal manner (e.g., see [1-3]). 

Recently, shallow arches were optimized with respect to 
vibrations. In [4], the form of the arch was varied for given 
cross section, length, and span, while both the form and 
material distribution were varied in [5]. For the case of 
clamped ends, the optimal arch forms have zero slope at the 
ends and have a significantly higher fundamental vibration 
frequency than the corresponding circular arch. If the ends 
are simply supported, however, the circular form is almost 
optimal. 

In this study, we consider thin, shallow, elastic shells with a 
given circular boundary. The shells are either clamped or 
simply supported at the boundary. The material, surface area, 
and uniform thickness of the shell are specified. Hence, the 
total volume and mass of the shell are given. Our objective in 
Part 1 is the determination of the axisymmetric form of the 
shell that has maximum fundamental vibration frequency. (In 
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Parts 2 and 3, we will optimize buckling load and enclosed 
volume, respectively [6, 7].) 

Marguerre's equations [8], including a transverse inertia 
term, are linearized to yield the governing equations for small 
vibrations. The optimality condition is derived by the calculus 
of variations. We allow for the possibility that the fun­
damental frequency is a double eigenvalue (i.e., the solution is 
bimodal). An iterative procedure is utilized, based on the 
optimality condition, and a shooting method is used to obtain 
numerical results. Optimal forms are determined for several 
cases, and the maximum fundamental frequencies are 
compared to those for the corresponding spherical shells. 

Shell Equations 

Consider a thin, shallow, elastic shell with a circular 
boundary of radius a. The shell has constant thickness h, 
density p, Young's modulus E, and Poisson's ratio v. We 
define polar coordinates r and 6 in the base plane, and denote 
time by T. The middle surface of the shell is assumed to be 
axisymmetric and is denoted Z(r), with Z(a) = 0. The slope 
Z'(a) at the edge is not specified. 

The area S of the middle surface is given by 

s=: ; = 27rf [(Z')2 + l]'/2rdr. 

For shallow shells, we can write (1) approximately as 

*s; (Z'frdr. 

(1) 

(2) 

We define the nondimensional surface area parameter X by 
\4=4(S-ira2)/(irc2) (3) 

where 
c = / ! /Vl2( l -v2 ) . (4) 
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For shallow spherical shells with central height H, we have 
Z(r) = (a2-r2)H/a2 [9], and (3) yields X4 =4(H/c)2, which is 
the usual definition of the geometric parameter X for such 
shells. 

We let W{r,Q, 7) be the downward deflection of the shell and 
F(r,6,T) be a stress function [9]. In the equations of motion, 
we include a downward axisymmetric distributed load q(f) for 
reference in Parts 2 and 3, and we neglect inplane inertia. 
Marguerre's theory leads to the following equations [8, 9]: 

DV2V2W= — (fr+ -F0^)(Wrr-Z")+\FrrWM 
r \ r / r 

+ 1 (W, -Z')Frr - A (p* - - i Fe) (wr6 - 1 W0) 

-ph WTT + q, (5) 

1 v2V2F= -L (Vf + — W„)(Z'-Wrr)+—Z'Wrr 

1 / 1 \ 2 

Bh 

d2 Id 1 d2 

r \ r 
where 

and subscripts r,8, and T denote partial derivatives 
We introduce the nondimensional quantities 

x = r/a, z = Z/c, w=W/c, f=F/D, 

(6) 

Eh' . s / dL 1 d 1 dL \ , 
(7) 

? = T^JD/{phaA), p = <7fl4/(4X4£>c) (8) 

and also define 

g(x) = z'(x). (9) 

In the optimization procedure, g{x) will be the design func­
tion. For a spherical shell, g(x) = - \2x. In nondimensional 
terms, equation (2) becomes 

f g2 xdx=\4/4, 
Jo 

(10) 

while (5) and (6) become 

x V x 

1 . . . 2 

V2V2W = — ( / , + —/ W ) (W^-g ' )+^2AvVV, 

+ — (Wx-gVxx - -^ {fa ~ —fe) \wxo ~ -

-w„ + 4X4p, 

V2 V 2 / = — (wx + — wm) (g' - wxx) 

+ ^(wxs-~we)\ 

+ Tg»* 

w h e r e 
•>, ^ / a 2 1 3 1 a2 V s 

(11) 

(12) 

(13) 

and subscripts x,6, and ? denote partial derivatives. 
To examine small, natural vibrations of the shell, we set 

p = 0 and linearize (11) and (12) in w and/ . We then write 

w(*A0 = D/?„(*) cos nd cos co„/, 
n = 0 

f(x,d,t) = 2^ i/<„(x) cos nd cos co„̂ , 

(14) 

(15) 

1 / /22 \ 1 
LnLn&n = (j/<„' i„jg' gyj/„ " + wlP,, 

L„L„4,n = — U„ ' - — H,)g' + — g /3„ ", 
X \ X / X 

where n = 0,1,2, . . . ,and 

£ ) < > • 
1 rf 

L " ( ) - W +
 x dx 

(16) 

(17) 

(18) 

For a given value of n, equations (16) and (17), along with 
appropriate boundary conditions, lead to an infinite number 
of eigenvalues co„. We will let co„ denote the lowest of these 
eigenvalues for that n. As an example, co0 will denote the 
lowest frequency associated with axisymmetric vibrations, 
and P0(x) and \p0(x) will be the corresponding vibration mode 
and stress function, respectively. 

If the edge of the shell is simply supported (with no radial 
and tangential displacements), the boundary conditions at 
x=l are [10] 

ft,=o, 

^ „ " - ^ „ ' + vn2\P„=0, 

^„ '" - [1 - v + (2 + i-)n2Un '+3n2t„ -t 

If the edge is clamped (with no radial and tangential 
displacements), the boundary conditions are (19), (21), (22), 
and 

/ V = 0 . (23) 

At x = 0, finiteness requirements and symmetry properties 
lead to the following conditions (see Appendix of [7]): 

01 = 0 , " = * , = * , " = < ) , 

0 2 = | 3 2 ' = / V " = ^ 2 = ^ 2 ' = V ' = 0 , 

=ft , < " - •>=* „= * „ ' = . . . 
= V'„(""1)=0 for « > 3 . 

(19) 

(20) 

(21) 

= 0. (22) 

(24) 

(25) 

(26) 

ft, =/*„ ' = 
(27) 

Optimization Equations 

Based on (16)-(27), we can write ai2 as the following 
Rayleigh quotient: 

« ; = !•„/I Blxdx 

where 

2 = r„/Jo02x, 

r„ = jo' [(L„p„)2 - ( L M 2 - A (V„' - ^-^g j3n< 

+ (— t„) g P„jxdx 

H1+,)[uH.t-„>(±iJ)']xmi 

+ ( ' - 1 ) [ ( A ' ) 2 ] , . . 

(28) 

(29) 

(see [9]). It is convenient to normalize the vibration mode 
ft,(*)by 

> I 

\xdx=\. (30) L ' < * 
where the wn are nondimensional vibration frequencies. This 
leads to the equations 

Our objective is to determine the design function g(x) which 
maximizes the fundamental vibration frequency for a given 
value of the surface area parameter X. In some cases the 
optimal design is associated with a double frequency, say 
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Fig. 1 Vibration frequencies for simply supported spherical shells 
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Fig. 2 Vibration frequencies for clamped spherical shells 

oin = oim, and involves two independent modes, I3„(x) and 
fi,„(x). Hence we allow for this possibility and consider a 
bimodal formulation [5]. 

The objective function is given by (28) and the constraints 
by u>„ = co,„, equation (10), and (30) for |6„(x) and /3,„(x). With 
the use of Lagrange multipliers e, y, jxn, and fxm, we construct 
the following augmented functional: 

r„* = r„-£(r„-rm)-7[j^
2^Jx-(xV4)] 

- M „ ( j o ' ft x dx- l ) - M m ( j o fax dx- l ) . (31) 

If the fundamental frequency <x>2„ is unimodal, then e = 0 and 
Hm=0. 

Stationarity of T* with respect to f3„(x) and \pn(x) leads to 
(16) and (17), respectively, with the appropriate boundary 
conditions, and to n„ =0 . A similar result occurs for ft„(x) 
and yj/m(x). Stationarity of T* with respect to the design 
function g(x) leads to the optimality condition 

yg(x) = (1 - e)sn (x) + 6Sm (x) (32) 

where 
„2 , ^ v _ j , 

• .«"»-T(T)^-T(^' -T*0*- (33) 

and sm(x) is defined similarly. If the edge of the shell is 
clamped, we note that (19), (23), and (32) imply that g(l) = 0, 
i.e., the optimal form has zero slope at the clamped edge. 

Solution Procedure 

The solution procedure involves successive iterations. A 
spherical shell is usually taken as the initial form, and 
modifications are based on the optimality condition (32), 
which provides a formula for the design function g(x). The 
procedure is concluded when the increase in fundamental 
frequency for successive designs becomes insignificant. 

We specify Poisson's ratio v, the surface area parameter X, 
and the boundary conditions. For the design function gj(x) at 
the /th iteration, we solve (16) and (17) with various values of 
n to determine the fundamental frequency <o„ and the 
corresponding functions /3„(x) and \l/„(x). The numerical 

technique used here is described in the Appendix of Part 3 [7]. 
The next step depends on whether co„ is distinct or a double 
eigenvalue. 

For the unimodal case (distinct un), e = 0 in (32). If we write 
g(x) = s„(x)/y, then y2 is determined by substituting g(x) into 
(10), the sign of y is chosen so that the shell form 
corresponding to g(x) lies above the base plane, and the design 
function to be used in the next iteration is given by the 
recurrence relation 

gi+i(x) = b[gi(x) + kg(xy]. (34) 

In (34), k is a parameter which we choose to facilitate con­
vergence of the procedure (e.g., k = 0.\), and b is chosen such 
that gi+1 (x) satisfies (10). 

For the bimodal case, with <o„ = wm, we denote g(x) = g(x) in 
(32). Substitution of g(x) into (10) yields one equation in 7 and 
e. A second equation is obtained by substituting g(x) into the 
bimodal condition r „ = r , „ , along with the functions @„(x), 
^n(x), iQ,„(x), and \j/m{x) associated with g,(x); this is based on 
the need to increase the two equal frequencies simultaneously. 
The two equations can be solved for 7 and e, with 0 < e < 1. 
We then use those values in g(x) and apply (34) to determine 
the design function for the next iteration. 

Results 

In all the numerical results, we use v= 1/3. For comparison 
purposes, the frequencies of a spherical shell were determined 
first, i.e., we solved (16) and (17) with g(x)= -X2x. The 
resulting values of w\ for small n are plotted versus X4 in Figs. 
1 and 2 for simply supported and clamped edge conditions, 
respectively. (We recall that «„ denotes the lowest frequency 
for that value of n.) The frequency co0, associated with 
axisymmetric vibration, is the fundamental one for suf­
ficiently small and sufficiently large values of X, while wi, 
associated with a mode having a single nodal diameter, is the 
fundamental frequency in an intermediate range. For n > 1, 
the relation between w2

n and X4 is almost linear, and is ap­
proximately given by 

o2„„ + \. IX4, « > 1 , (35) 

where unp is the frequency for the corresponding plate1. We 

'Using another shell theory, Soedel [11] obtained a formula similar to (35) 
but with the coefficient 1.1 replaced by unity, independent of the value of v. 
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Table 1 Optimal forms z(x) 
x Spherical S;i\=JTIi S;i\=7 C;i\=4 C;i\= 10 

0.0 1.00 1.09 1.02 1.13 1.03 
0.1 0.99 1.08 1.01 1.11 1.02 
0.2 0.96 1.04 0.99 1.07 0.97 
0.3 0.91 0.97 0.94 0.99 0.89 
0.4 0.84 0.88 0.86 0.88 0.77 
0.5 0.75 0.76 0.77 0.74 0.59 
0.6 0.64 0.63 0.65 . 0.58 0.42 
0.7 0.51 0.48 0.50 0.39 0.42 
0.8 0.36 0.32 0.34 0.21 0.34 
0.9 0.19 0.16 0.17 0.Q7 0.14 
1.0 0.00 0.00 0.00 0.00 0.00 

Frequency 
ratio 1.03 1.03 1.21 1.42 

Fig. 3 Optimal form for maximum fundamental frequency: simply 
supported edge, A =,flO 

Fig. 4 Optimal form for maximum fundamental frequency: simply 
supported edge, A = 7 

Fig. 5 Optimal form for maximum fundamental frequency: clamped 
edge, A=4 

Fig. 6 Optimal form for maximum· fundamental frequency: clamped 
edge, A= 10 

note that the dimensional frequency, say nn' is related to the 
nondimensional frequency W lI by nn = W lI vDI(pha4 ). 

Optimal forms were determined for simply supported shells 
with A.=VTO and A.=7, and for clamped shells with A.=4 and 
A. = 7. They are listed in Table 1 (where S denotes simply 
supported and C denotes clamped) and depicted in Figs. 3-6, 
using the nondimensional function 

z(x) = 2z(x)/(A.2 ). (36) 

The spherical form, z(x) = 1 - x 2 , is also listed in Table 1, as 
well as the ratio between the fundamental frequency for the 
optimal form and that for the spherical cap. 

For the simply supported shell with A. = VTO, the spherical 
shell has Wo = 16.2 and WI = 17.9, while the optimal form has 
Wo = 16.7 and WI = 18.0. A bimodal solution did not occur in 
this case. For A.=7, we have Wo =55.9 and WI =56.5 for the 
spherical shell. After a number of iterations, Wo and WI 

coalesced and then were raised further using the bimodal 
formulation, finally reaching the value Wo = WI = 57.8. 
Relative to the spherical cap, the increase in fundamental 
frequency for these two cases is only 3 percent. The optimal 
forms, shown in Figs. 3 and 4, are convex functions near the 
edge. 

For both cases with a clamped edge, the optimal solutions 
are bimodal. When A.=4, the spherical shell has Wo =24.8 and 
WI =27.5, while the optimal form has WO=WI =30.1. When 
A.= 10, the spherical shell has Wo = 106 and WI = 108, while the 
optimal form has Wo = WI = 150. Here the improvement in 
fundamental frequency is significant. Both optimal forms, 
shown in Figs. 5 and 6, have zero slope at the edge, as 
mentioned earlier. Also, the optimal form for the case A.= 10 
has a plateau around x = 0.65. Perspectives of these optimal 
shells are depicted in Figs. 7 and 8. 

Concluding Remarks 

We have formulated the problem of maxlmlzmg the 
fundamental vibration frequency of a shallow shell when its 
form is variable. The shell has a given circular boundary and a 
given value of the surface area parameter A.. Numerical 
solutions have been obtained for two cases with a simply 
supported boundary and two cases with a clamped boundary. 
For a spherical cap, the fundamental vibration mode (i.e., the 
mode associated with the lowest frequency) is either 
axisymmetric (n = 0) or has one nodal diameter (n = 1). In the 
four examples analyzed here, the optimal form either has an 

Flg.7 Geometry of optimal shell for clamped edge, A = 4 

Fig.8 Geometry of optimal shell for clamped edge, A = 10 
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axisymmetric fundamental vibration mode or a bimodal 
solution involving the n = 0 and n = 1 modes (i.e., to0 = co,). 

The slope of the shell at the boundary is not specified, even 
when the boundary is clamped. If it were, the optimal form 
would have a discontinuous slope at the edge. All the optimal 
forms obtained in this part are convex in regions adjacent to 
the edge (see Figs. 3-6). For a clamped edge, the slope at the 
edge is zero, and the fundamental frequency is significantly 
higher than that for the corresponding spherical cap. 

It is interesting to compare the optimal shell forms obtained 
here with the optimal arch forms determined in [4]. For 
maximum fundamental frequency, the optimal form of a 
simply supported arch is sinusoidal, which is almost identical 
to the form in Fig. 3, while the optimal clamped arch is 
somewhat similar in form to Fig. 5. For the arch, the optimal 
fundamental frequency corresponds to a symmetric mode for 
sufficiently small values of the length parameter, and an 
antisymmetric mode for sufficiently large values; a bimodal 
solution only occurs at the transition value. Here, for shallow 
shells, it appears that a bimodal solution will govern for most 
values of the geometric parameter A. 

The iterative solution procedure was effective in modifying 
a design to improve the objective function. The direction of 
the modification was based on the optimality condition (32). 
Typically, 10-15 iterations were sufficient to obtain 
satisfactory convergence of the fundamental frequency. At 
some steps, the parameter k in (34) has to be altered to avoid 
overshooting the maximum point. Since the governing set of 
equations is nonlinear, we cannot guarantee that the solution 
procedure leads to the global optimum. In a few cases, 
however, we chose different initial designs and arrived at the 
same final design. 
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