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Non-Blocking Conditions for EGS Networks
Italo Busi and Achille Pattavina

Abstract—A class of multistage interconnection networks,
known as extended generalized shuffle (EGS) network, is here
considered; it is built with arrays of elementary switching ele-
ments, interconnected by shuffle patterns, and external splitters
and combiners. New results are given here that reduce the splitter
fanout required to make the network strictly non-blocking.

Index Terms—Interconnection networks, Extended General-
ized Shuffle, non-blocking conditions.

I. INTRODUCTION

AN interconnection network is the set of devices needed to
make available input-output connections within a node

of a communication network. A multistage interconnection
network includes a cascade of switching stages, each com-
posed by a stack of switching matrices. The basic property
of a multistage interconnection network is its capability of
making available upon request one of its internal paths in order
to connect an input and an output port by proper operation
of the internal resources. For the case of full interstage
connectivity, in which each matrix has access to any matrices
of the following stage, Clos provided the condition to design a
minimum-cost three-stage network that is always non-blocking
for any input-output new connection request [1].

Banyan networks were later proposed as multistage ar-
rangements of very simple matrices, called switching elements
(SEs), with typical size 2 × 2. Partial interstage connectivity
is accomplished by these networks, which provide a single
internal path for any input-output pair. Non-blocking condi-
tions can be provided by making available more internal paths
through horizontal stage extension, vertical replication of the
multistage network, or a combination of the two solutions [2].

Extended generalized shuffle (EGS) networks represent a
very particular multistage arrangement of SEs in which all
stages are mutually interconnected through a regular interstage
connection pattern called “EGS interstage pattern” [3]. EGS
networks have been considered attracting in free-space optical
implementations due to their regular interstage pattern [4].
Other interesting applications areas of EGS patterns have
been the minimization of interstage link crossovers in case of
guided-wave implementations [5] and the realization of Clos
networks by using MEMS devices [6].

Here we consider EGS networks in which all the SEs have
the same size, i.e. 2×2. An 𝑁×𝑁 EGS network with 𝑁 = 2𝑛

includes a stage of 𝑁 splitters 1×𝐹 , 𝑠 stages of 𝑁 ⋅𝐹/2 SEs
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Fig. 1. 8× 8 EGS network with 𝐹 = 4 and 𝑠 = 4.

2× 2 and a final stage with 𝑁 combiners 𝐹 × 1. The number
𝑠 of internal switching stages ranges from 1 to 2𝑛− 1, where
𝑛 = log2 𝑁 . Interstage pattern 𝑖 connects switching stages 𝑖
and 𝑖+1; pattern 0 connects splitters to switching stage 1. An
EGS network 8× 8 with 𝐹 = 4 and 𝑠 = 4 is shown in Fig. 1.
It includes 8 splitters of size 1 × 4, 4 switching stages with
𝐹 ⋅𝑁/2 = 16 SEs of size 2×2 and 8 combiners of size 4×1.
All interstage patterns are of EGS type; in fact, starting from
first output of upstream SEs/splitters connected to first input
of downstream SEs/combiners, consecutive upstream outputs
are connected to consecutive downstream elements selecting
their first available input.

Strict-sense non-blocking (SNB) conditions on the splitter
fanout 𝐹 are known [3] that guarantee at least one idle internal
path for any arbitrary idle input-output couple, independent of
the current network occupancy by other input-output connec-
tions. In the case of 𝑠 ≤ 𝑛 these conditions are necessary
and sufficient, while for 𝑠 > 𝑛 they are only sufficient. We
show here how these conditions lead to overdimensioning a
non-blocking network for networks larger than a given size.

II. SUFFICIENT NON-BLOCKING CONDITIONS

The sufficient conditions to make the EGS networks strict-
sense non-blocking are found as corollary of a more general
theorem [3]. In order to prove how overdimensioning occurs,
we prove these conditions for our case of EGS network based
on 2× 2 SEs, following the same approach used in Ref. [3].

Theorem 1: An EGS network 𝑁×𝑁 with 𝑠 > 𝑛 switching
stages (𝑛 = log2 𝑁 ) is SNB if the splitter fanout is

𝐹𝑟 ≥

⎧⎨
⎩

3

2
2
2𝑛−𝑠

2 + 𝑠− 𝑛− 1 𝑠 𝑒𝑣𝑒𝑛

2
2𝑛−𝑠+1

2 + 𝑠− 𝑛− 1 𝑠 𝑜𝑑𝑑

(1)

Proof: The proof consists in considering the tagged
connection 0-0 to represent a generic connection from an idle
inlet to an idle outlet. In order to find the the worst traffic load
pattern that blocks the maximum number of paths for this
connection, the corresponding channel graph is used which
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Fig. 2. Channel graph of the EGS network 32×32 with 𝑠 = 7 and 𝐹 = 4.

represents the set of all the paths between a generic inlet and
a generic outlet. Fig. 2 shows the channel graph of the EGS
network 32× 32 with 𝐹 = 4 and 𝑠 = 7 referred to the inlet-
outlet couple 0-0; hence it includes 7 stages of nodes preceded
and followed by a single node which represents the splitter and
the combiner where the selected inlet and outlet terminate,
respectively. The figure also shows within curly brackets the
network inlet(s) or outlet(s) associated to the graph nodes with
the convention that 𝑥∗ denotes the inlet/outlet whose address
is the bit reversal of the address 𝑥; for example 1*=100 if
𝑁 = 8. Therefore the nodes labelled {0, 1∗} represent the
SEs of first switching stage reached by network inputs 0 and
16, if 𝑁 = 32. Apparently the channel graph is the same
for every inlet-outlet couple, but we will refer to this specific
channel graph so as to identify other inlet-outlet connections
interfering with the paths available for the inlet-outlet pair 0-0.

The concept of shell in a channel graph has been defined
in Ref. [7] as a set of interstage links that belongs to two
specific interstage patterns: in this network we define shell 0
to be formed by the interstages 0 and 𝑠, shell 1 to be formed
by interstages 1 and 𝑠 − 1 and in general shell 𝑘 is formed
by interstages 𝑘 and 𝑠−𝑘 (Fig. 2 includes four shells). Shells
from 0 to 𝑠 − 𝑛 are called external shells, while shells from
𝑠−𝑛+1 to ⌊(𝑠− 1)/2⌋ are called internal shells. We note that
a connection that blocks the tagged connection 0-0 in shell 𝑘
blocks 2𝑠−𝑛−𝑘 paths, if the shell is external, only 1 path, if the
shell is internal. Fig. 2 shows that connections 1*-x and y-1
(i.e. 16-x and y-1, if 𝑁=32) block 2 paths each, with 𝑥 ∕= 0, 1
and 𝑦 ∕= 0, 1∗; blocked paths are represented by black circles.

The tagged connection cannot be blocked in shell 0, because
it includes the splitter and combiner stages. The first shell can
be blocked by the inlet 1∗ and the outlet 1. The connection
originating from inlet 1, as well the one terminating onto outlet
1, blocks 2𝑠−𝑛−1 paths. By considering the two sets of blocked
paths as disjoint, the maximum number of paths blocked in

the first shell is 𝑛𝑏1 = 2𝑠−𝑛. The 𝑘-th shell can be blocked
by 2𝑘−1 inlets and 2𝑘−1 outlets, and hence in the worst case
there are 2𝑘 blocking connections. If the shell is external, every
connection blocks 2𝑠−𝑛−𝑘 paths, and considering these 2𝑘 sets
of blocked paths as disjoint, the maximum number of blocked
paths in the 𝑘-th external shell is

𝑛𝑏𝑘 = 2𝑠−𝑛 1 ≤ 𝑘 ≤ 𝑠− 𝑛 (2)

If this shell is internal every connection blocks a single path;
hence the maximum number of blocked paths in the 𝑘-th
internal shell is

𝑛𝑏𝑘 = 2𝑘 𝑠− 𝑛+ 1 ≤ 𝑘 ≤ ⌊(𝑠− 1)/2⌋ (3)

If 𝑠 is odd, there are (𝑠 + 1)/2 shells and considering all
the sets of blocked paths as disjoint, the maximum number of
blocked paths given by Eqs. 2-3 is

𝑛𝑏 =

(𝑠−1)/2∑
𝑘=1

𝑛𝑏𝑘 = 2𝑠−𝑛

(
2
2𝑛−𝑠+1

2 + 𝑠− 𝑛− 2

)
(4)

If 𝑠 is even, there are 𝑠/2 shells and one central interstage.
Unlike all the interstages in the external and internal shells,
every link in the central interstage “sees” the same number
of network inlets and outlets. Therefore its contribution to the
number of blocked paths must not be counted twice as with
the shells. There are 2𝑠/2−1 inlets and outlets that can block
this interstage, so the number of paths blocked in the central
stage is 2𝑠/2−1. The maximum number of blocked paths is
then given by Eqs. 2-3, i.e.

𝑛𝑏 =

𝑠/2−1∑
𝑘=1

𝑛𝑏𝑘+2
𝑠
2−1 = 2𝑠−𝑛

(
3

2
2
2𝑛−𝑠

2 + 𝑠− 𝑛− 2

)
(5)

The EGS network is non-blocking if the number of paths
available for the tagged connection 0-0 is greater than the
maximum number of blocked paths. In an EGS network the
number of paths available for every connection is 2𝑠−𝑛𝐹 and
hence from the condition

2𝑠−𝑛𝐹𝑟 ≥ 𝑛𝑏 + 1

Eq. 1 follows immediately.
The above theorem gives only sufficient conditions for the

internal fanout 𝐹 of an EGS network built with 2× 2 SEs to
be non-blocking. This is due to the assumption of disjointness
of the blocked paths seen from the input side and from the
output side. For example, in an 8 × 8 EGS network with
𝑠 = 4 and 𝐹 = 2 it is easy to show that the connections
4-4, 1-1, 2-2 and 6-3 properly routed determine a blocking
state for the connection 0-0; hence the condition 𝐹𝑟 = 3
derived through Eq. 1 represents in this case a condition both
necessary and sufficient to make this network non-blocking.
Thus a network blocking state can be found by examining a
specific network configuration; nevertheless no algorithm is
known to find all the cases in which the conditions (1) are
both necessary and sufficient. Ref. [3] reports a refinement of
the sufficient conditions given in Eq. 1 making non-blocking a
network built with 2 SEs, that is our case. There it is claimed
that such refinement refers to networks with 𝑛 ≥ 8 that is with
size larger than or equal to 256×256. In the following section
we show and prove that such refinement actually applies to a
larger set of network size, that is starting from size 32× 32.
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TABLE I
SPLITTER FANOUT F MAKING AN EGS NETWORK NON-BLOCKING.

N=8 16 32 64 128 256 512 1024
s=4 3
5 3 4
6 4 6
7 4 5 8
8 5 7 12
9 5 → 4 6 9
10 6 8 13 24
11 6 → 5 7 10 17 32
12 7 → 6 9 14 25
13 7 → 6 8 → 7 11 18
14 8 → 7 10 15
15 8 → 7 9 → 8 12
16 9 → 8 11 → 10
17 9 → 8 10 → 9
18 10 →9
19 10 → 9

III. REDUCTION OF THE SPLITTER FANOUT

Eqs. 4-5 give the maximum number of blocked paths in
an EGS network. According to the expression of 𝐹𝑟 given in
Eq. 1, 𝑛𝑏 can also be expressed as

𝑛𝑏 = 2𝑠−𝑛 (𝐹𝑟 − 1) (6)

that is as the number of paths in the EGS network with
𝐹 = 𝐹𝑟 − 1. The sufficient condition for 𝐹𝑟 has been found
by assuming that all the path sets made unavailable by the
blocking connections are disjoint. So if we find two non-
disjoint sets of blocked paths in the network with 𝐹 = 𝐹𝑟−1,
the maximum number of blocked paths given by Eq. 6
decreases by one. Thus in these cases a more convenient
sufficient condition 𝐹𝑟 − 1 holds, instead of 𝐹𝑟.

The channel graph of an EGS network with 𝐹 = 4
and 𝑠 = 7 is shown in Fig. 2. According to the proof of
theorem 1 the blocking connection originated from the inlet
1* blocks 2𝑠−𝑛−1 consecutive paths in the channel graph. We
can assume these paths to be the first 2𝑠−𝑛−1 ones, without
loss of generality. We can also note that there are 𝐹 nodes in
the first stage between the interstages 0 and 1 and also in the
last stage between the interstages 𝑠 − 1 and 𝑠. Furthermore
there are 2𝐹 nodes in the stage 2 and 𝑠 − 1 of the channel
graph. There are also 2𝐹 edges between stages 𝑠 − 1 and 𝑠,
and hence there is a one-to-one correspondence between these
edges and the nodes in stage 𝑠− 1.

By observing the right side of the channel graph, we
can notice that the first blocked node in the central stage,
which represents the first blocked path, is connected with the
first node in stage 𝑠 − 1. Hence if we route the connection
terminating onto outlet 1 through this link, the two sets of
blocked paths have at least this element in common. In the
same way the second node in the central stage, associated
to the second path, is connected to the second node in stage
𝑠 − 1. Hence in order to have disjoint sets of blocked paths,
the connection terminating onto the outlet 1 does not have to
be connected through this node.

If 2𝑠−𝑛−1 < 2𝐹 , as in the channel graph shown in Fig. 2,
there is at least a node in stage 𝑠 − 1 that is not connected
with blocked nodes in the central stage, and hence by routing
the connection terminating onto the outlet 1 through this link,
we obtain two disjoint sets of blocked paths.

On the other hand if 2𝑠−𝑛−1 ≥ 2𝐹 , the first 2𝐹 blocked
nodes in the central stage are connected to all the 2𝐹 nodes
in stage 𝑠 − 1, and hence the set of paths blocked by the
connection terminating onto the outlet 1 has always at least
one element in common with the set of the paths blocked
by the connection originating from the inlet 1*. In this case
there are at least two non-disjoint sets of blocked paths, and
hence the maximum number of blocked paths becomes 𝑛𝑏 ≤
2𝑠−𝑛 (𝐹𝑟 − 1) − 1. Thus it is not possible to block the EGS
network with 𝐹 = 𝐹𝑟 − 1, since the number of its paths is
2𝑠−𝑛(𝐹𝑟 − 1); so 𝐹𝑟 is only a sufficient condition and 𝐹𝑟 − 1
is a more restrictive sufficient condition.

We have thus proven that if

2𝑠−𝑛−1 ≥ 2𝐹𝑟 − 2 (7)

it is not possible to block an EGS network with 𝐹 = 𝐹𝑟 − 1.
Hence as long as this condition holds, the fanout value 𝐹𝑟

given by Eq. (1) that guarantees a non-blocking network must
be reduced by one.

Table I shows for an EGS network with 𝑛 = 3, . . . , 10
and 𝑛 < 𝑠 ≤ 2𝑛 − 1 the splitter fanouts 𝐹𝑟 that make the
network strictly non-blocking. The fanout values reported with
an arrow represent configurations in which the splitter fanout
reduction occurs, based on Eq. 7. Among the fanout values
that are reduced we reconfirm those claimed in Ref. [3].

We remind that a replicated banyan network (RBN) 𝑁 ×
𝑁 with 𝐾 planes is strict-sense non-blocking (SNB) [8] if
and only if 𝐾 = 𝐹𝑟 banyan planes are equipped, each with
𝑚 additional stages, with 𝐹𝑟 given by Eq. (1) and 𝑠 − 𝑛 =
𝑚. Splitters and combiners have therefore the same size in
EGS and RBN networks and hence non-blocking RBN and
EGS networks require the same number of SEs. It is worth
noting that the necessary SNB condition of RBNs relies on
the series-parallel type of the channel graph and therefore path
overcounting does not occur. We have provided here a new
sufficient SNB condition for EGS networks, so that a non-
blocking EGS network with size 𝑁 ≥ 32 requires less SEs
than a RBN of the same size, as long as Eq. 7 is satisfied.
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