
Business Monitoring Framework for
Process Discovery with Real-Life Logs

Mari Abe and Michiharu Kudo

IBM Research – Tokyo
5-6-52 Toyosu, Koto-ku, Tokyo, Japan

{maria, kudo}@jp.ibm.com

Abstract. Business analysis with processes extracted from real-life sys-
tem logs has recently become important for improving business perfor-
mance. Since business users desire to see the current situations of busi-
ness with visualized process models from various perspective, we need an
analysis platform that supports changes of viewpoint. We have developed
a runtime monitoring framework for log analysis. Our framework can si-
multaneously extract process instances and derive appropriate metrics in
a single pass through the logs. We tested our proposed framework with a
real-life system log. The results for twenty days of data show synthesized
process models along with an analysis axis. They were synthesized from
the metric-annotated process instances generated by our framework.

1 Introduction

Process mining plays an important role in the business analysis of real-life logs
generated from enterprise applications. The actual situation of an enterprise is
visualized and analyzed based on extracted workflows to detect best practices.
When consulting on the actual business situations of enterprises, analysis meth-
ods that include defining metrics for the analysis axes, extracting workflows
based on the metrics, and analyzing them is practically a norm.

Our previous work describes business process analysis and associated client
engagements [1, 2] where we presented a technical approach with practical ap-
plication scenarios. The most iterative and time-consuming work was the de-
termination of metrics to discover processes that customers recognize the real
processes of their business. Then they desire to see the discovered processes
from different view points of the metrics as new analysis axes. For example, af-
ter customers recognize the processes of their business, they desire to compare
the weekday processes with the weekend processes to find the causes of delays.
Another example is customers want to compare purchasing processes for various
product types with a duration within 10 minutes against over 10 minutes for the
marketing strategies.

To change analysis axes according to the changes of the customer’s require-
ments, we need to analyze the logs to extract the workflows again. It is an
issue on the analysis method with process discovery that the analysis cycle is
time-consuming and it causes belated results since a module of reading log and

2 Mari Abe, Michiharu Kudo

extracting workflow must be reimplemented according to the metrics changed.
This implies a need for a process discovery technology that can quickly extract
workflows while reducing the time spent reading the logs so that the extracted
results can be used even as the requirements of the customers are changing.

In this paper, we introduce a monitoring framework for process discovery. It
simultaneously extracts the process instances and metrics of a single pass through
the logs. We define the abstraction level of the monitoring context based on in-
clusion relationships of the correlation key definitions and present the monitoring
algorithm based on the abstraction level. Instances of monitoring contexts are
linked at runtime and that allows us to build process models. We tested our
proposed approach with real-life logs and showed the process models that were
synthesized with different values of an analysis axis.

2 Related Work

There are many proposed approaches for data warehousing that can analyze pro-
cess logs [3, 4]. Aalst [5] proposes “process cubes” that enable analyzing process
logs by storing the results into data cubes that allow domain experts to exe-
cute online analytical processing (OLAP) operations such as drill-down, roll-up,
and other operations for understanding the executed processes. We deal with
real-life event logs from existing applications, so we are not limited to logs that
are generated from particular workflow engines. Therefore, each event that we
analyze is not always directly linked to a particular activity. An example of logs
includes access history of external pages outside of the business flow. These logs
can still be using as important as process logs if the domain experts want to
see the causes of business performance degradation. Our advantage over these
approaches is we expand the universe of inputs of the event base to event logs of
legacy applications by leveraging our reverse engineering approach with business
monitoring technology.

Liu et al. [6] propose complex event processing systems that support OLAP
operations for multi-dimensional pattern analysis over event streams. Their solu-
tion improves computational efficiency for multi-dimensional event patterns by
sharing the results among queries using a unified query plan. The difference in
their approach is pattern-based event filtering versus our model-based filtering
for event streams. However, optimization methods should also be beneficial for
our method for efficient handling of events in real time.

Schiefer et al. [7] propose a solution for managing the performance data of
business processes. Their system is intended for process-driven decision support
and continuously improving business processes. It is important to drive decision
support by analyzing both the process logs and other logs linked to processes.

The concepts and architectures of real-time business monitoring have been
proposed for and applied to real customers [8, 9]. The framework itself is a generic
approach for an enterprise to improve its capabilities of sensing and responding
to business situations. In our previous work [10], a model-driven mechanism
of creating business monitoring applications was proposed. However, there are

Business Monitoring Framework for Process Discovery with Real-Life Logs 3

difficulties with such a purely top-down approach to build applications for en-
terprises that already have legacy applications for process management. We are
now working on a novel approach for enhancing monitoring applications for ag-
ile business analysis with process discovery that can lead to a process model
reflecting the actual behavior of users as recorded in the system logs. This re-
engineering approach helps manage the lifecycle of business processes from the
top-down to bottom-up and bridges the gap between business monitoring and
process discovery.

3 Process Discovery from Real-life Logs

pageid=“logon_page”...sample.server.com2013-08-20T08:30:50user3response

pageid=“logon_page”...sample.server.com2013-08-20T08:30:35user2response

logonsample.server.com2013-08-20T08:30:35user3request

logonsample.server.com2013-08-20T08:30:33user2request

sourcepageid=“insurance_option_page, product=“l ife

insurance”, premium=“$50”, period=“10 years”

submit_productsample.server.com2013-08-20T08:31:50user1request

sourcepageid=“simulation_result_page”savesample.server.com2013_12-20T08:32:00user1request

pageid=“simulation_result_page”, msg=“need

physical check-up”

sample.server.com2013-08-20T08:31:51user1response

sourcepageid=“calc_premium_page”,

birthday=“1965/01/01”, gender=“male”

submit_conditionsample.server.com2013-08-20T08:30:48user1request

pageid=“calc_premium_page”...sample.server.com2013-08-20T08:30:34user1response

pageid=“insurance_option_page”, msg=“input options

next”

sample.server.com2013-08-20T08:30:49user1response

sample.server.com

Host

calc_premium2013-08-20T08:30:33user1request

ParametersRequest URLTimestampUser IDEvent type

pageid=“logon_page”...sample.server.com2013-08-20T08:30:50user3response

pageid=“logon_page”...sample.server.com2013-08-20T08:30:35user2response

logonsample.server.com2013-08-20T08:30:35user3request

logonsample.server.com2013-08-20T08:30:33user2request

sourcepageid=“insurance_option_page, product=“l ife

insurance”, premium=“$50”, period=“10 years”

submit_productsample.server.com2013-08-20T08:31:50user1request

sourcepageid=“simulation_result_page”savesample.server.com2013_12-20T08:32:00user1request

pageid=“simulation_result_page”, msg=“need

physical check-up”

sample.server.com2013-08-20T08:31:51user1response

sourcepageid=“calc_premium_page”,

birthday=“1965/01/01”, gender=“male”

submit_conditionsample.server.com2013-08-20T08:30:48user1request

pageid=“calc_premium_page”...sample.server.com2013-08-20T08:30:34user1response

pageid=“insurance_option_page”, msg=“input options

next”

sample.server.com2013-08-20T08:30:49user1response

sample.server.com

Host

calc_premium2013-08-20T08:30:33user1request

ParametersRequest URLTimestampUser IDEvent type

1

line #

2

3

4

5

6

7

8

9

10

11

Fig. 1. Example of input logs for insurance application

Most real-life system logs are generated for system diagnoses including prob-
lem determination when there are abnormal situations such as server failures.
The logs were not originally designed for reuse to create any secondary value. The
characteristics of such logs make process discovery difficult to apply to real-life
systems and our prior work [1, 2, 11] has attempted to address these problems.
Fig. 1 is an extract from an example log for an insurance application that does
premium calculations. Before discovering a process in the log, we must determine
which parameters are correlated so we can extract tasks (activities) and process
instances. In this example, a pair of parameters “pageid” for transaction type
“response” and “sourcepageid” for “request” can be correlated to associate with
the task. The column “user ID” can be used as a correlation key to extract a
process. The semantics of these logs should be given by domain experts for our
system of process discovery before the analysis.

To determine the metrics, we should select a column of the logs or some
parameters that will eventually become our metrics or sources of metrics. In
this example, the duration of each task can be derived using subtraction with

4 Mari Abe, Michiharu Kudo

the timestamps of the response and request correlated by “pageid” and “sour-
cepageid” e.g. the duration is 14 seconds for “calc premium page” as calculated
from the timestamps of Lines 3 and 6. Lines 1, 2, 4, and 5 are ignored if the
users focus on the process of premium calculations. Similar metrics can be de-
rived from other parameters. For example, “birthday” and “gender” are input
to the insurance application on the “calc premium page” (Line 6) and “msg” is
output to the “insurance option page” (Line 7). Process execution flow of the
example is shown in Fig 2. The duration for each page is the metric for each
task (14, 61, and 9 seconds). The input data and output data are also metrics
for each task.

Monitoring business metrics in real time requires an event monitor runtime
and event subscriber called a monitoring context [8–10, 12]. We propose monitor-
ing contexts and a runtime that allow extracting metrics and process instances
simultaneously in a single pass through the logs described in the following sub-
sections. Our approach offers two improvements over the existing approaches:
(1) Associations of parent-child of the instances of the monitoring contexts are
determined dynamically based on inclusion relationships of correlation key def-
initions and (2) The lifecycle of the instances of the monitoring contexts of the
parents and children can be handled independently

calc_premium_page

(from Line 3, 6)

insurance_option_page

(from Line 7, 9)

simulation_result_page

(from Line 10, 11)

14 sec 61 sec 9 sec

Output data:

msg=“input options next.”

Input data:

product=“life insurance”

premium=“$50”

period=“10 years”

Input data:

birthday=“1965/01/01”

gender=“male”

Output data:

msg=“need physical check-up”

...

Fig. 2. A process instance for the insurance application of “user1”

3.1 Definition of Monitoring Context

We define “monitoring context” here for monitoring the events and calculating
the metrics. Let E be an event sequence {e1, · · · en}. An event e is a tuple
e = 〈typee, A〉 where typee is a type of the event and A is a set of attributes
for the event. An attribute is a tuple a = 〈typea, name, value〉 where typea is a
type of the attribute, name is a name of the attribute and value is its value.

Let X be a set of variables, including array variables. Let F be a set of
functions for computing the values of X. Each value of variable x is derived
from a function f : t1 × t2 · · · × tn → typex, where typex is a type for x. A
metric is a specific variable that domain experts define with f and that will
be used to query a process model in our method. A monitoring context mc is a
tuple mc = 〈Ei,K,Eo, Ce, X, F 〉 and an instance of mc is identified by a unique
identifier. Each element of mc is defined as follows:

Business Monitoring Framework for Process Discovery with Real-Life Logs 5

– Ei is a set of types of events occurred in E that can be monitored (inbound
events). Ei does not necessarily include all of the types of events occurring
in E. The attributes of an event are mapped to X with F .

– K is a set of variables derived from a set of mappings of Ei to uniquely
identify an instance of mc (correlation keys). If there is no mc instance
correlated with an inbound event and the event can be mapped to K, then
an instance of mc is created and starts monitoring.

– Eo is a type for an event that can be generated from mc (outbound events).
A generated event can be an input of other mcs.

– Ce is a set of conditions c that determines whether or not monitoring should
be terminated. Each c is a specific f where the type of the variable derived
from f is boolean. If all of the cs of an mc are set to true, then an instance
of Eo is emitted to other mcs and monitoring is terminated.

We define the abstraction level of the monitoring contexts based on the rela-
tionships of the correlation keys. The mc that has K is denoted by mcK . An
abstraction level of a monitoring context L(mc) is a positive integer and satisfies
L(mcK0

) > L(mcK1
) if K1 ⊃ K0. It is a necessary condition for a monitoring

context to generate hierarchical structures. Consider a process instance for the
insurance application of “user1” (Fig. 2). The correlation key definitions of this
task are “pageID” and “userID” while that of the process-instance is “userID”.
A set of correlation key definitions of task Kt and of process instance Kpi satisfy
Kt ⊃ Kpi where userID, pageID ∈ Kt, and pageID ∈ Kpi. These constraints
also imply L(mcKt

) < L(mcKpi
).

3.2 Algorithm of Monitoring Framework

A monitoring context manager mgr manages the lifecycle of the instances of mc.
It has a list of mcs for each abstraction level and knows how to serialize the mc
instances when the instances terminate. The function “PROCESSEVENT” of
mgr is the main flow of the event processing. We show the algorithm of “PRO-
CESSEVENT” in Algorithm 1, which simply calls the “DOCORRELATION”
and “DOEVENTPROCESSING” functions.

The mgr gets the correlating mc instance list by calling a function “GET-
CORRELATINGMC” in Line 6. In Lines 16 to 25 if this function, mgr gets
the list of instances of mcs that is a higher level of abstraction than the event
source. If the event source is a component for reading logs, then the list includes
the lowest level of the instances of mcs, such as the instances of mc for mining
tasks. If there are no instances of mcs listed, then mgr tries to instantiate mc
from the event. A newly instantiated mc is registered in the mgr based on its
abstraction level (from Lines 7 to 15). The next mgr has to do is to process
the event. In the function DOEVENTPROCESSING from Lines 26 to 30, mgr
simply calls processEvent of mc in the correlated list to update the variables of
an instance of mc. If all of the variables of the instance of mc are set and the
terminal condition Ce is true, then the instance emits an outbound event that
includes the metrics. Then the instance recursively calls PROCESSEVENT of
mgr.

6 Mari Abe, Michiharu Kudo

Algorithm 1 event processing flow of mgr
1: function processEvent(e) . e is an object of BusinessEvent
2: correlating list← doCorrelation(e)
3: doEventProcessing(correlationg list, e)
4: end function
5: function doCorrelation(e)
6: list←getCorrelatingMC(e)
7: if list = empty then
8: instantiate MonitoringContext m from e
9: if m 6= null then
10: register m based on abstraction level
11: list.add(m)
12: end if
13: end if
14: return list
15: end function
16: function getCorrelatingMC(e)
17: m0← e.getEventSource()
18: list0← getList(m0) . get monitoring contexts by abstraction level of m0
19: for m in list0 do
20: if m.correlate(e) then
21: list.add(m)
22: end if
23: end for
24: return list
25: end function
26: function doEventProcessing(correlating list, e)
27: for m in correlating list do
28: m.processEvent(e)
29: end for
30: end function

4 Experiment with Real-life Logs

Table 1. Summary of the test data of the real-life logs and the results of the experiment

Test data Result of experiment
Period of # of lines of # of task # of proc inst # of instances # of instances of

logs logs metrics metrics of mc for task mc for proc inst
20 days 685,318 4 15 260,568 25,781

We tested our proposed framework on real-life system logs and verified the
usefulness of the proposed approach. Table 1 shows some statistics for our ex-
periment. We tested the logs from 20 successive days of an application server.
The number of lines in the logs was 685,318.

The metrics for each task included four metrics, the task durations, the names
of products, the numbers of help pages accessed, and the status of the forms cre-
ated (either new or update). The metrics for a process instance included fifteen
metrics such as a list of pages, counts of help pages accessed, the status of process
started (either new or update) derived from mc for task, the status of process
termination (either save or cancel), and so on. The number of instances of mc for
the task was 260,568 and the total of process instance was 25,781. There were
instances for a task that were not linked with any instances for process instance

Business Monitoring Framework for Process Discovery with Real-Life Logs 7

Fig. 3. The generated process models with different values of analysis axis

because they did not match the conditions for process start. Our framework
serialized the results into an MXML[13] file with metric annotations and an
XSLT [14] file to extract the process instances.

Fig. 3 shows synthesized process models generated from our process discovery
tool [2]. Each box indicates a page access as a task and the process flow starts
from top to bottom. The help page are not included in the models as tasks
because it is not a part of the business flow, but they appeared in the original
logs. The left side is a process model in which the number of help page access
is less than three. The right side is a model in which the number of help page
access equals or is more than three. The difference is that users on the left are
struggling with the process while users on the right are not. This result become
one of data sources for domain experts to verify whether or not the help pages
are effective.

5 Conclusion

In this paper, we proposed a monitoring framework for process discovery that si-
multaneously extracted the process instances and metrics of a single pass through
the logs. We defined the abstraction level of the monitoring context based on
inclusion relationships of the correlation key definitions and presented the moni-
toring algorithm based on the abstraction level. Instances of monitoring contexts
were linked at runtime and that allows us to build process models. With the re-
sults, users could get process models from different metrics without reading huge
log again. We tested our proposed framework with a real-life system log of twenty
days and the results become one of data sources for domain experts to verify
whether or not their system is used effectively.

8 Mari Abe, Michiharu Kudo

References

1. Kudo, M.: Operational Work Pattern Discovery Based On Human Behavior Anal-
ysis. In: Service Research and Innovation Institute Global Conference. (2014)

2. Kudo, M., Ishida, A., Sato, N.: Businesss Process Discovery by using Process
Skeletonization. In: International Symposium on Data-Driven Process Discovery
and Analysis. (2013)

3. Kueng, P., Wettstein, T., List, B.: A Holistic Process Performance Analysis
Through a Performance Data Warehouse. In: Proceedings of the Seventh Americas
Conference on Information Systems (AMCIS’2001). (2001) 349–356

4. Mansmann, S., Neumuth, T., Scholl, M.H.: OLAP Technology for Business Process
Intelligence: Challenges and Solutions. In: Proceedings of DaWaK 2007). (2007)
111–122

5. W.M.P. van der Aalst: Process Cubes: Slicing, Dicing, Rolling Up and Drilling
Down Event Data for Process Mining. In: Asia Pacific Conference on Business
Process Management (AP-BPM 2013). Volume 159 of Lecture Notes in Business
Information Processing., Springer-Verlag (2013) 1–22 Berlin.

6. Liu, M., Rundensteiner, E.A., Greenfield, K.: E-Cube: Multi-Dimensional Event
Sequence Analysis Using Hierarchical Pattern Query Sharing. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data
(SIGMOD’11). (2011) 889–900

7. Schiefer, J., Jeng, J., Kapoor, S., Chowdhary, P.: Process Information Factory:A
Data Management Approach for Enhancing Business Process Intelligence. In: Pro-
ceedings of the IEEE International Conference on E-Commerce Technology (CEC
’04). (2004) 162–169

8. Liu, R., Vaculin, R., Shan, Z., Nigam, A., Wu, F.: Business Artifact-Centric Mod-
eling for Real-Time Performance Monitoring. In: Proceedings of the International
Conference on Business Process Management (BPM2011). (2011) 265–280

9. Chowdhary, P., Bhaskaran, K., Caswell, N., Chang, H., Chao, T., Chen, S., Dikun,
M., Lei, H., Jeng, J., Kapoor, S., Lang, C., Mihaila, G., Stanoi, I., Zeng, L.: Model
Driven Development for Business Performance Management. IBM Systems Journal
45 (2006) 735–749

10. Abe, M., Jeng, J., Koyanagi, T.: Authoring Tool for Business Performance Moni-
toring and Control. In: Proceedings of IEEE International Conference on Service-
Oriented Computing and Applications (SOCA 2007). (2007)

11. Kudo, M., Nogayama, T., Ishida, A., Abe, M.: Business Process Analysis and
Real-world Application Scenarios. In: International Symposium on Data-Driven
Process Discovery and Analysis. (2013)

12. Momm, C., Gebhart, M., Abeck, S.: A Model-Driven Approach for Monitoring
Business Performance in Web Service Compositions. In: Fourth International Con-
ference on Internet and Web Applications and Services. (2009) 343–350

13. Process Mining Group, Math and CS department, Eindhoven University of
Technology.: Mining eXtensible Markup Language (MXML). http://www.

processmining.org/logs/mxml (2003)
14. W3C Recommendation: XSL Transformations (XSLT) Version 2.0. http://www.

w3.org/TR/xslt20/ (2007)

