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The objective of this paper is to formulate the equations of motion
and to analyze the vibrations of an atomic force microscope
(AFM), which contains a piezoelectric rod coupling with a canti-
lever beam, and the tip mass interacting with samples. The gov-
erning equations of the AFM system are formulated completely by
Hamilton’s principle. The piezoelectric rod is treated as an actua-
tor to excite the cantilever beam via an external voltage. The
repulsive forces between the tip and samples are modeled by the
Hertzian, the Derjaguin-Müller-Toporov, and Johnson-Kendall-
Roberts models in the contact region. Finally, numerical results
are provided to illustrate the coupling effects between the piezo-
electric actuator and the cantilever beam and the interaction ef-
fects between the tip and samples on the dynamic responses.
�DOI: 10.1115/1.2101851�

1 Introduction
The atomic force �1� between the tip and sample of the atomic

force microscope �AFM� is employed during the process of mea-
surement. Some important observations of the AFM were made
from the governing equations and boundary conditions �2�,
wherein a complete actuating force called the interatomic
Lennard-Jones force was obtained from the Lennard-Jones or “6-
12” potential. The cantilevers have made it possible to build new
sensors, which are simple, compact, and easy to operate for mea-
suring materials.

The AFM force-distance curves have become a fundamental
tool in several fields of research, such as surface science, material
engineering, and biochemistry. Furthermore, they have great im-
portance for the studies of surface interactions from a theoretical
point of view �3�. The contact and noncontact models of the AFM
�2� corresponding to the tip-sample interaction in the form of the
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repulsive and attraction forces, respectively, were employed to
measure the sample’s topography. In these cases, the tip is close
to, but not really in contact with, the sample surface.

In the applications of the AFM to measure all materials, from
large rigid sphere with high surface energies to small compliant
bodies with low surface energies, many contact-force models must
be employed. The contact stiffness was measured by using the
atomic force acoustic microscopy �4�, wherein the Hertzian �HZ�
contact model based on the sensor tip as a sphere was used to
approximate the tip-sample force law. The Johnson-Kendall-
Roberts �JKR� contact theorem �5� was used for probing trace
amounts of surface contamination. In the Derjaguin-Müller-
Toporon �DMT� model �6�, the elastic sphere is deformed accord-
ing to the HZ model. In these previous researches �4–6�, the dy-
namics of the AFM is not considered.

The previous researches �2–6� do not consider either the cou-
pling effects between the piezoelectric actuator �PEA� and the
cantilever beam or the interaction forces between the tip and
samples. In this paper, the dynamic modeling of the PEA and
cantilever beam is different from the previous papers, which ana-
lyzed the AFM statically �7�, modeled the composite cantilever
beam without a PEA at the base �2�, and modeled the cantilever
beam and its tip mass as an equivalent spring and lumped mass
system �8�. Most of the papers �2,7,8� concerning the dynamic
responses of the AFM assumed only a base excitation without
considering the dynamic coupling between the PEA and cantilever
beam.

2 Dynamic Formulation
Figure 1�a� shows the schematic draw of the AFM system,

which consists of a PEA coupling with a cantilever beam associ-
ated with a pyramid rigid tip mass. The geometric dimensions are
shown in Fig. 1�b�, where the subscripts p and b are used for the
PEA and the cantilever beam, respectively. The detailed material
properties and geometric dimensions are listed in Table 1. The tip
mass has height h, thickness 2�, and width w. The distance be-
tween the point Q and the geometric center H of the tip mass is e.
It is noted that the dynamic modeling of the PEA and cantilever
beam is coupled in this paper.

2.1 Kinetic and Strain Energies. In the dynamic modeling
analysis, a fixed coordinate system �OXZ�, describing the PEA,
and a moving coordinate system �oxz� attached on the top of the
PEA, describing the cantilever beam, are adopted to describe the
AFM system as shown in Fig. 1�b�. The deformed position vector
of an arbitrary point P of the PEA is

Rp�Z,t� = �Z + u�Z,t��k , �1�

where u�Z , t� represents the axial deformation of the PEA along
the Z axis. The deformed position vector of an arbitrary point A
with the position coordinate �x ,�p+z� of the cantilever beam mea-
sured from the fixed coordinate system is

RA�x,z,t� = �x − zvx�x,t��i + ��p + z + u��p,t� + v�x,t��k , �2�

where v�x , t� represents the transverse deflection of the cantilever
beam, u��p , t� describes the deformation of the PEA at the top
point Z=�p, and i and k are the unit vectors of the fixed coordi-
nate system �OXZ�. The deformed position vector of the mass
center H with the position coordinate ��b+� ,�p−e� of the pyra-
mid rigid tip mass is

RH��b + �,�p − e,t� = ��b + ��i + ��p − e + u��p,t� + v��b,t�

+ �vx��b,t��k . �3�

Therefore, the total kinetic energy of the AFM system is
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where �p and �b are the mass densities of the PEA and cantilever

Fig. 1 Schematic diagrams of „a… the cantilever beam with a
PEA and „b… the deformed configuration of the AFM system

Table 1 Material properties and geo
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beam, respectively, Ap and Ab are their uniform cross-sectional
areas, and m is the tip mass.

The Lagrangian strains of the cantilever beam and PEA are
respectively as follows:

Cantilever beam:�b11 = − zvxx, �b13 = �b31 = vx, �5a�

Piezoelectric actuator:�p33 = uZ, �p13 = �p31 = 0, �5b�
where the cantilever beam is described by Euler beam theory.

One-dimensional constitutive equation of the PEA can be writ-
ten as

��p33

E
� = � Ep − h33

− h33 �33
���p33

D33
� , �5c�

where D33 and Ep are the electrical displacement and Young’s
modulus of the PEA, respectively; �p33 and �p33 are the mechani-
cal strain and stress along the Z direction, respectively. E is the
electric field induced by the PEA, �33 is the dielectric constant,
and h33 is the piezoelectric constant.

The total potential energy of the AFM system is

U = 1
2�

Vp

��p33�p33 + D33E�dVp + 1
2�

Vb

�b11�b11 dVb

= 1
2�

0

�p

�EpApuZ
2�Z,t� − 2h33ApD33�Z,t�uZ�Z,t�

+ Ap�33D33
2 �Z,t��dZ + 1

2�
0

�b

�EbIbvxx
2 �x,t��dx , �6�

where Ib=�z2dAb and Eb is Young’s modulus of the cantilever
beam.

Due to the input voltage Vin�t�=�0
�pE dZ is applied along the Z

direction of the PEA, the virtual work due to the input voltage and
the interaction force f between the tip and sample can be ex-
pressed as

�W = f��v��b,t� + �vx��b,t�� +�
0

�p

ApE�D33�Z,t�dZ . �7�

tric dimensions of the AFM system
me
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2.2 Hamilton’s Principle. By substituting Eqs. �4�, �6�, and
�7� into Hamilton’s principle

�
t1

t2

���T − U� + �W�dt = 0, �8�

one obtains the governing equations for the AFM system �2� as
follows:

�pAputt�Z,t� − EpApuZZ�Z,t� = 0, 0 � Z � lp �9�

�bAbvtt�x,t� + EbIbvxxxx�x,t� = − �bAbutt��p,t�, 0 � x � lb,

�10�

− h33ApuZ�Z,t� + Ap�33D33�Z,t� = ApE, 0 � Z � lp, �11�
and the associated boundary conditions are

u�0,t� = 0, �12a�

EpApuZ�lp,t� − h33ApD33�lp,t� + EbIbvxxx�0,t� + m�utt�lp,t�

+ lvxtt�lb,t� + vtt�lb,t�� + �bAblbutt�lp,t� = 0, �12b�

vx�0,t� = 0, �12c�

m�vtt�lb,t� + lvxtt�lb,t�� − EbIbvxxx�lb,t� = − mutt�lp,t� + f ,

�12d�

m�l2vxtt�lb,t� + lvtt�lb,t�� + EbIbvxx�lb,t� = − mlutt�lp,t� + fl .

�12e�

In the geometric model, it is a fact that the top point Z=�p of
the PEA has the same deflection as that of the base point x=0 of
the cantilever beam. Thus, in the manipulation of Hamilton’s prin-
ciple, we have used the following continuous condition:

u��p,t� = v�0,t� , �13�

which enables the coefficients of �u�lp , t� and �v�0, t� to be added
together, and Eq. �12b� is obtained.

3 The Interaction Forces Between the Tip and
Samples

In the limit of high loads or low surface forces, an AFM ex-
periment can follow the HZ model. The JKR model is suitable for
the highly adhesive systems with low stiffness and large tip radii
�5�. The DMT model is applicable for systems with low adhesion
forces and small tip radii.

3.1 The Hertzian Contact-Force Model. In the Hertzian
model �9�, the tip is considered as a smooth elastic sphere, while
the sample is a rigid flat surface. The Hertzian contact-force
model takes into account neither surface forces nor adhesion
forces. Thus, we have the adhesion or pull-off force fad=0. Some
associated equations can be expressed as follows:

aHZ =	3 Rf

K
, �14a�

� =
aHZ

2

R
, �14b�

where aHZ is the contact radius in Fig. 2, R is the radius of a
sphere, f is the loading force pressed onto a flat surface, � is the
deformation of the spherical tip, and K is the reduced Young’s
modulus as follows:

1

K
=

3

4
�
1 − �tip

2

Etip
� + 
1 − �sample

2

Esample
�� , �15�
where Etip and Esample are the Young’s modulus, and �tip and
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�sample are the Poisson ratios of the tip and sample, respectively.
The contact radius aHZ can be calculated from Eq. �14b� if �

and R are known, while the reduced Young’s modulus K can be
obtained from Eq. �15� if the Etip, Esample, �tip, and �sample are
known. Substituting aHZ and K into Eq. �14a�, we obtain the in-
teraction force f between the tip and sample for the Hertzian
contact-force model.

3.2 The JKR Contact-Force Model. The JKR model �8� ne-
glects the long-range forces outside the contact region, but only
considers the short-range forces inside the contact region. With
the JKR assumptions, the contact radius aJKR, the adhesion force
fad, and the deformation � of the spherical tip can be modified as
follows:

aJKR =	3 R

K
�f + 3�Rw + 	6�Rwf + �3�Rw�2� , �16a�

� =
aJKR

2

R
−

2

3
	6�waJKR

K
, �16b�

fad = 3
2�Rw , �16c�

where w is the surface energy, which is given for the sample.

3.3 The DMT Contact-and Non-Contact-Force Models.
Without the external loading, the DMT model �10� takes into ac-
count the interaction forces between the tip and sample outside the
contact region. These forces produce a finite area of contact. The
contact radius a, the adhesion force fad, the deformation � of the

Fig. 3 The relationships between the interaction forces and

Fig. 2 Deformation of a sphere on a flat surface following the
HZ and JKR models, where f is the loading force, R is the ra-
dius of the sphere, � is the deformation of the spherical tip, and
aHZ and aJKR are the contact radii. of the HZ and JKR models,
respectively. The profile of the spherical tip in the DMT model is
the same as that in the HZ model.
the deformations of the spherical tip. „¯ HZ; -·- DMT; — JKR…
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spherical tip, and the distance D between the spherical tip and the
samples are found by minimizing the sum of the elastic and sur-
face energies as follows:

a =	3 R

K
�f + 2�Rw� , �17a�

� =
a2

R
−

2

3
	6�wa

K
, �17b�

fad = 2�Rw , �17c�

2

Fig. 4 The diagram of the cantilever beam sys
placement of the PEA at the end. „b… The displa
distance between the tip and the sample. „d… Th
DMT; — JKR…
f = − 2�Rw/�1 − D/D0� , �18�
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where D0 is the initial distance of D.
In the DMT approximation, the adhesion forces are taken into

account, but the elastic sphere is deformed according to the HZ
model, and the adhesion forces would not deform the sample sur-
faces �10�. Thus, we have a=aHZ in Fig. 2, and the profile of the
spherical tip in the DMT model is the same as that in the HZ
model.

3.4 The Interaction Force and Deformation. The relation-
ships between the interaction forces and the deformations of the
spherical tip for the above three force models are compared in Fig.
3. It can be observed that the values of the interaction forces and

with three atomic force models. „a… The dis-
ent of the cantilever beam at the end. „c… The

lations of the atomic force and time. „¯ HZ; -·-
tem
cem
e re
the deformations of the spherical tip are always positive in the HZ
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model. The attractive forces �negative values� are considered in
the JKR and DMT models rather than in the HZ model. In the
JKR model, the short-range force is considered and the interaction
force is a two-valued function corresponding to a deformation �
of the spherical tip, which is referred to as the hysteretic behavior.
The adhesion hysteresis �11� has been discussed for the relation-
ship between the adhesion and friction forces. In the DMT model,
the adhesion forces are taken into account, but the profile of the
spherical tip is assumed to be Hertzian, as if adhesion forces could
not deform the sample’s surfaces.

4 Numerical Results
In order to transform partial differential equations into ordinary

differential equations, the coupled system is divided into two re-
gions: the PEA 0�Z��p and the cantilever beam 0�x��b. By
using the standard finite element method �2� and assembling equa-
tions of motion, we obtain a set of ordinary differential equations.
The material properties and geometric dimensions �4� of the PEA
and the cantilever beam with a tip mass are listed in Table 1.
Numerical simulations of the AFM system are presented for the
three contact-force models with integration error 10−12 m of
Runge-Kutta method. The zero initial conditions, Q�0�=0 and

Q̇�0�0, are adopted for the forced vibrations, which are caused by
the harmonic excitations of the PEA.

In the numerical simulations of the AFM system with the inter-
action forces, the applied voltage Vin�t�=15 sin 	t V with 	
=30 kHZ is employed. In the HZ model, the Young’s modulus of
the sample Esample is 100 kPa �12�, and the Poisson ratios of the
tip and sample are taken as 0.28 and 0.5, respectively. By using
Eq. �15�, the reduced Young’s modulus K is obtained as 1.8

105 N/m2. The surface energy w is taken as 2 mJ/m2 in the
JKR and DMT models �10�. The tip radius R of the silicon canti-
lever beam is 30 nm, and the initial distance between the tip and
sample is 0.3 nm.

The displacements u�lp , t� at the top point of the PEA and the
v�lb , t� at the tip point of the cantilever beam under the interaction
forces of the three contact-force models are almost the same as
shown in Figs. 4�a� and 4�b�, respectively. However, the deforma-
tion � of the spherical tip is about 75 nm via the JKR model and
is only one-half of those via the DMT and HZ models as shown in
Fig. 4�c�. The interaction forces of the three contact-force models
are shown in Fig. 4�d�, where the repulsive force �positive value�
is the maximum about 1.8 nN for the HZ model, is about 1.5 nN
for the DMT model, and is the minimum about 0.4 nN for the
JKR model.

5 Conclusions
Both the coupling effects between the PEA and the cantilever

beam and the interaction forces between the tip and samples are
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involved in the dynamic formulations, which are the main merits
of this paper. Due to various levels of loads, surface energies,
adhesive forces, stiffnesses, and tip radii, three contact-force mod-
els are considered for the AFM measurements in this paper. From
the dynamic formulation and numerical results, the following con-
clusions can be drawn:

1. The accelerations of the base excitations of the noncoupled
system are almost the same as those at the top point of the
PEA of the coupled system. However, the responses of the
cantilever tip of the coupled system are much larger than
those of the noncoupled system. This enables the coupled
AFM system to have the high quality factor and high sensi-
tivity in measurements of samples.

2. The displacements at the top point of the PEA and those at
the tip point of the cantilever beam under the interaction
forces of the three contact-force models are almost the same.
However, the deformations of the spherical tip are quite dif-
ferent for the three contact-force models.
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