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Abstract— In the first part of this work [1], we present two
different architectures for distributed model predictive control
(DMPC) of nonlinear process systems: sequential distributed
model predictive control and iterative distributed model predic-
tive control. In the present work, we focus on the application of
the theoretical results developed in [1] to a catalytic alkylation
of benzene process example, which consists of four continuous
stirred tank reactors and a flash separator. In order to carry
out the simulations, a first principle model is developed via
mass and energy balances. Based on the process model, three
distributed Lyapunov-based model predictive controllers are de-
signed to control the process in a coordinative fashion. Extensive
simulations are carried out to compare the DMPC architectures
proposed in [1] with an existing centralized Lyapunov-based
model predictive control design from computational time and
closed-loop performance points of view.

I. DESCRIPTION OF THE ALKYLATION OF BENZENE

PROCESS

The process of alkylation of benzene with ethylene to

produce ethylbenzene is widely used in the petrochemical

industry. Dehydration of the product produces styrene, which

is the precursor to polystyrene and many copolymers. Over

the last two decades, several methods and simulation results

of alkylation of benzene with catalysts have been reported in

the literature. The process model developed in this section

is based on these references [2], [3], [4], [5], [6]. More

specifically, the process considered in this work consists of

four continuously stirred tank reactors (CSTRs) and a flash

tank separator, as shown in Fig. 1. The CSTR-1, CSTR-2 and

CSTR-3 are in series and involve the alkylation of benzene

with ethylene. Pure benzene is fed from stream F1 and pure

ethylene is fed from streams F2, F4 and F6. Two catalytic

reactions take place in CSTR-1, CSTR-2 and CSTR-3. Ben-

zene (A) reacts with ethylene (B) and produces the required

product ethylbenzene (C) (reaction 1); ethylbenzene can

further react with ethylene to form 1,3-diethylbenzene (D)

(reaction 2) which is the byproduct. The effluent of CSTR-

3, including the products and leftover reactants, is fed to a
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Fig. 1. Process flow diagram of alkylation of benzene.

flash tank separator, in which most of benzene is separated

overhead by vaporization and condensation techniques and

recycled back to the plant and the bottom product stream

is removed. A portion of the recycle stream Fr2 is fed

back to CSTR-1 and another portion of the recycle stream

Fr1 is fed to CSTR-4 together with an additional feed

stream F10 which contains 1,3-diethylbenzene from further

distillation process that we do not consider in this example.

In CSTR-4, both reaction 2 and catalyzed transalkylation

reaction in which 1,3-diethylbenzene reacts with benzene to

produce ethylbenzene (reaction 3) take place. All chemicals

left from CSTR-4 eventually pass into the separator. All the

materials in the reactions are in liquid phase due to high

pressure. The dynamic equations describing the behavior of

the process, obtained through material and energy balances

under standard modeling assumptions, are shown below:

dCA1

dt
=

F1CA0 + Fr2CAr − F3CA1

V1

− r1(T1, CA1, CB1) (1a)

dCB1

dt
=

F2CB0 + Fr2CBr − F3CB1

V1

− r1(T1, CA1, CB1)

− r2(T1, CB1, CC1) (1b)

dCC1

dt
=

Fr2CCr − F3CC1

V1

+ r1(T1, CA1, CB1)

− r2(T1, CB1, CC1) (1c)

dCD1

dt
=

Fr2CDr − F3CD1

V1

+ r2(T1, CB1, CC1) (1d)
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dT1

dt
=

Q1 + F1CA0HA(TA0) + F2CB0HB(TB0)
A,B,C,D

∑

i

Ci1CpiV1

+

A,B,C,D
∑

i

(Fr2CirHi(T4) − F3Ci1Hi(T1))

A,B,C,D
∑

i

Ci1CpiV1

+
−∆Hr1r1(T1, CA1, CB1)

A,B,C,D
∑

i

Ci1CpiV1

+
−∆Hr2r2(T1, CB1, CC1)

A,B,C,D
∑

i

Ci1CpiV1

(1e)

dCA2

dt
=

F3CA1 − F5CA2

V2

− r1(T2, CA2, CB2) (1f)

dCB2

dt
=

F3CB1 + F4CB0 − F5CB2

V2

− r1(T2, CA2, CB2)

− r2(T2, CB2, CC2) (1g)

dCC2

dt
=

F3CC1 − F5CC2

V2

+ r1(T2, CA2, CB2)

− r2(T2, CB2, CC2) (1h)

dCD2

dt
=

F3CD1 − F5CR2

V2

+ r2(T2, CB2, CC2) (1i)

dT2

dt
=

Q2 + F4CB0HB(TB0)
A,B,C,D

∑

i

Ci2CpiV2

+

A,B,C,D
∑

i

(F3Ci1Hi(T1) − F5Ci2Hi(T2))

A,B,C,D
∑

i

Ci2CpiV2

+
−∆Hr1r1(T2, CA2, CB2)

A,B,C,D
∑

i

Ci2CpiV2

+
−∆Hr2r2(T2, CA2, CB2)

A,B,C,D
∑

i

Ci2CpiV2

(1j)

dCA3

dt
=

F5CA2 − F7CA3

V3

− r1(T3, CA3, CB3) (1k)

dCB3

dt
=

F5CB2 + F6CB0 − F7CB3

V3

− r1(T3, CA3, CB3)

− r2(T3, CB3, CC3) (1l)

dCC3

dt
=

F5CC2 − F7CC3

V3

+ r1(T3, CA3, CB3)

− r2(T3, CB3, CC3) (1m)

dCD3

dt
=

F5CD2 − F7CD3

V3

+ r2(T3, CB3, CC3) (1n)

dT3

dt
=

Q3 + F6CB0HB(TB0)
A,B,C,D

∑

i

Ci3CpiV3

+

A,B,C,D
∑

i

(F5Ci2Hi(T2) − F7Ci3Hi(T3))

A,B,C,D
∑

i

Ci3CpiV3

+
−∆Hr1r1(T3, CA3, CB3)

A,B,C,D
∑

i

Ci3CpiV3

+
−∆Hr2r2(T3, CB3, CC3)

A,B,C,D
∑

i

Ci3CpiV3

(1o)

dCA4

dt
=

F7CA3 + F9CA5 − FrCAr − F8CA4

V4

(1p)

dCB4

dt
=

F7CB3 + F9CB5 − FrCBr − F8CB4

V4

(1q)

dCC4

dt
=

F7CC3 + F9CC5 − FrCCr − F8CC4

V4

(1r)

dCD4

dt
=

F7CD3 + F9CD5 − FrCDr − F8CD4

V4

(1s)

dT4

dt
=

Q4 +
A,B,C,D

∑

i

(F7Ci3Hi(T3) + F9Ci5Hi(T5))

A,B,C,D
∑

i

Ci4CpiV4

−

(FrCirHi(T4) + F8Ci4Hi(T4)
A,B,C,D

∑

i

Ci4CpiV4

−

FrCirHvapi)
A,B,C,D

∑

i

Ci4CpiV4

(1t)

dCA5

dt
=

Fr1CAr − F9CA5

V5

− r3(T5, CA5, CD5) (1u)

dCB5

dt
=

Fr1CBr − F9CB5

V5

− r2(T5, CB5, CC5) (1v)

dCC5

dt
=

Fr1CCr − F9CC5

V5

− r2(T5, CB5, CC5)

+ 2r3(T5, CA5, CD5) (1w)

dCD5

dt
=

Fr1CDr + F10CD0 − F9CD5

V5

+ r2(T5, CB5, CC5) − r3(T5, CA5, CD5) (1x)

dT5

dt
=

Q5 + F10CD0HD(TD0)
A,B,C,D

∑

i

Ci5CpiV5

+

A,B,C,D
∑

i

(FrCirHi(T4) − F9Ci5Hi(T5))

A,B,C,D
∑

i

Ci5CpiV5

+
−∆Hr2r2(T5, CB5, CC5)

A,B,C,D
∑

i

Ci5CpiV5

+
−∆Hr3r3(T5, CA5, CD5)

A,B,C,D
∑

i

Ci5CpiV5

(1y)

In the process model of Eq. 1, r1, r2 and r3 are the

reaction rates of reactions 1, 2 and 3 respectively and Hi,

i = A, B, C, D, are the enthalpies of the reactants. The

reaction rates are related to the concentrations of the reactants

and the temperature in each reactor as follows:

r1(T, CA, CB) = kr1C
0.32
A C1.5

B ,

r2(T, CB, CC) =
kr2C

2.5
B C0.5

C

(1 + kEB2CD)
,

r3(T, CA, CD) =
kr3C

1.0218
A CD

(1 + kEB3CA)
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with

kr1 = 0.0840e(−9502/RT ), kr2 = 0.0850e(−20640/RT ),

kr3 = 237.8e(−61280/RT ), kEB2 = 0.0152e(−3933/RT ),

kEB3 = 0.4901e(−50870/RT ).

The heat capacities of the species are assumed to be

constants and the molar enthalpies have a linear dependence

on temperature as follows:

Hi(T ) = Hiref + Cpi(T − Tref )

where Cpi, i = A, B, C, D are heat capacities.

The model of the flash tank separator is developed under

the assumption that the relative volatility of each species has

a linear correlation with the temperature of the vessel within

the operating temperature range of the flash tank, as shown

below:

αA = 0.0449T4 + 10, αB = 0.0260T4 + 10
αC = 0.0065T4 + 0.5, αD = 0.0058T4 + 0.25

where αi, i = A, B, C, D, represent the relative volatilities.

It has also been assumed that there is a negligible amount

of reaction taking place in the separator. The following

algebraic equations model the composition of the overhead

stream relative to the composition of the liquid holdup in the

flash tank:

Mi = (F7Ci3 + F9Ci5)
αi(F7Ci3 + F9Ci5)

A,B,C,D
∑

k

αk(F7Ck3 + F9Ck5)

where Mi, i = A, B, C, D are the molar flow rates of

the overhead reactants. Based on Mi, i = A, B, C, D, we

can calculate the concentration of the reactants in the recycle

streams as follows:

Cir =
Mi

A,B,C,D
∑

k

Mi/Ck0

, i = A, B, C, D

where Ck0, k = A, B, C, D, are the mole densities of pure

reactants. The condensation of vapor takes place overhead,

and a portion of the condensed liquid is purged back to

separator to keep the flow rate of the recycle stream at a fixed

value. The temperature of the condensed liquid is assumed

to be the same as the temperature of the vessel.

The definitions for the variables used in the above model

can be found in Table I, with the parameter values given in

Table II.

Each of the tanks has an external heat/coolant input. The

manipulated inputs to the process are the heat injected to or

removed from the five vessels, Q1, Q2, Q3, Q4 and Q5, and

the feed stream flow rates to CSTR-2 and CSTR-3, F4 and

F6.

The states of the process consist of the concentrations of

A, B, C, D in each of the five vessels and the temperatures of

the vessels. They are assumed to be available continuously to

the controllers. We consider a stable steady state (operating

point), xs, of the process which is defined by the steady-state

TABLE I

PROCESS VARIABLES

CA1, CB1, CC1 , CD1 Concentrations of A, B, C, D in CSTR-1
CA2, CB2, CC2 ,CD2 Concentrations of A, B, C, D in CSTR-2
CA3, CB3, CC3 , CD3 Concentrations of A, B, C, D in CSTR-3
CA4, CB4, CC4 , CD4 Concentrations of A, B, C, D in separator
CA5, CB5, CC5 , CD5 Concentrations of A, B, C, D in CSTR-4
CAr , CBr , CCr , CDr Concentrations of A, B, C, D in Fr

T1, T2, T3, T4, T5 Temperatures in each vessel
Tref Reference temperature
F3, F5, F7, F8, F9 Effluent flow rates from each vessel
F1, F2, F4, F6, F10 Feed flow rates to each vessel
Fr , Fr1, Fr2 Recycle flow rates
HvapA, HvapB Enthalpies of vaporization of A, B

HvapC , HvapD Enthalpies of vaporization of C, D

HAref , HBref Enthalpies of A, B at Tref

HCref , HDref Enthalpies of C, D at Tref

∆Hr1, ∆Hr2, ∆Hr3 Heat of reactions 1, 2 and 3
V1, V2, V3, V4, V5 Volume of each vessel
Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel
CpA , CpB , CpC , CpD Heat capacity of A, B, C, D

αA, αB , αC , αD Relative volatilities of A, B, C, D

CA0, CB0, CC0 , CD0 Molar densities of pure A, B, C, D

TA0, TB0, TD0 Feed temperatures of pure A, B, D

TABLE II

PARAMETER VALUES

F1 = 7.1 × 10
−3

m
3
/s Fr = 0.012 m

3
/s

F2 = 8.697 × 10
−4

m
3
/s Fr1 = 0.006 m

3
/s

Fr2 = 0.006 m
3
/s V1 = 1 m

3

F10 = 2.31 × 10
−3

m
3
/s V2 = 1 m

3

HvapA = 3.073 × 10
4

J/mole V3 = 1 m
3

HvapB = 1.35 × 10
4

J/mole V4 = 3 m
3

HvapC = 4.226 × 10
4

J/mole V5 = 1 m
3

HvapD = 4.55 × 10
4

J/mole CpA = 184.6 J/mole ·K
∆Hr1 = −1.536 × 10

5
J/mole CpB = 59.1 J/mole ·K

∆Hr2 = −1.118 × 105
J/mole CpC = 247 J/mole ·K

∆Hr3 = 4.141 × 105
J/mole CpD = 301.3 J/mole ·K

CA0 = 1.126 × 104
mole/m

3
Tref = 450 K

CB0 = 2.028 × 104
mole/m

3
TA0 = 473 K

CC0 = 8174 mole/m
3

TB0 = 473 K

CD0 = 6485 mole/m
3

TD0 = 473 K

inputs Q1s, Q2s, Q3s, Q4s, Q5s, F4s and F6s, as shown in

Table III. The steady-state values of the temperatures in the

five vessels are the following:

T1s = 477.24 K, T2s = 476.97 K, T3s = 473.47 K,
T4s = 470.60 K, T5s = 478.28 K.

II. DESIGN OF DISTRIBUTED MODEL PREDICTIVE

CONTROLLERS

In this section, we will first construct a Lyapunov-based

controller which can stabilize the closed-loop process asymp-

totically; and then we will construct a centralized Lyapunov-

based model predictive control (LMPC) design and two

Process

Sensors

x

LMPC
x

u1 u3u2

Fig. 2. Centralized LMPC.
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TABLE III

STEADY-STATE INPUT VALUES FOR xs .

Q1s -4.4×106 [J/s] Q2s -4.6×106 [J/s]

Q3s -4.7×106 [J/s] Q4s 9.2×106 [J/s]

Q5s 5.9×106 [J/s] F4s, F6s 8.697×10−4 [m3
/s]

TABLE IV

MANIPULATED INPUT CONSTRAINTS.

|u11| ≤ 7.5 × 10
5

[J/s] |u1i| ≤ 5 × 10
5

[J/s], (i = 2, 3)

|u21| ≤ 6 × 10
5

[J/s] |u22| ≤ 5 × 10
5

[J/s]

|u31| ≤ 4.93 × 10−5 [m3
/s] |u32| ≤ 4.93 × 10−5 [m3

/s]

distributed model predictive control (DMPC) designs based

on the Lyapunov-based controller. Specifically, the central-

ized LMPC is based on the LMPC proposed in [8], [9]

which guarantees practical stability of the closed-loop sys-

tem, allows for an explicit characterization of the stability

region. The two DMPC schemes are proposed in [1]. One of

them adopts a one-directional communication network and

its distributed controllers are designed via LMPC techniques,

evaluated in sequence and once at each sampling time.

This DMPC design will be termed as sequential DMPC

below. The other DMPC scheme utilizes a bi-directional

communication network and its distributed controllers are

also designed via LMPC techniques; they are evaluated in

parallel and iterate to improve closed-loop performance. This

design will be termed as iterative DMPC below.

The control objective is to regulate the system from an

initial state to the steady state. The first distributed controller

(LMPC 1) is designed to compute the values of Q1, Q2 and

Q3, the second distributed controller (LMPC 2) is designed

to compute the values of Q4 and Q5, and the third distributed

controller (LMPC 3) is designed to compute the values of

F4 and F6. Taking these into account, the process model of

Eq. 1 belongs to the following class of nonlinear systems:

ẋ(t) = f(x) + g1(x)u1(x) + g2(x)u2(x) + g3(x)u3(x)

where the state x is the deviation of the state of the process

from the steady state, uT
1 = [u11 u12 u13] = [Q1−Q1s Q2−

Process

LMPC 1

LMPC 2

LMPC 3

Sensors

x

x

u3

u2

u1

u3

u3,u2

Fig. 3. Sequential DMPC.

Process

LMPC 1

LMPC 2

LMPC 3

Sensors

x

x

u3

u2

u1

ui

ui

Fig. 4. Iterative DMPC.

Q2s Q3−Q3s], uT
2 = [u21 u22] = [Q4−Q4s Q5−Q5s] and

uT
3 = [u31 u32] = [F4 − F4s F6 − F6s] are the manipulated

inputs which are subject to the constraints shown in Table IV.

In the centralized LMPC scheme, the centralized LMPC

optimizes the values of u1, u2 and u3 in a single optimization

problem as shown in Fig. 2. In the DMPC schemes, one

LMPC is assigned to each manipulated input. In the sequen-

tial DMPC scheme, the distributed controllers communicate

in one-directional manner as shown in Fig. 3. Specifically,

LMPC 3 sends its future input to LMPC 2 and LMPC 2

sends its and LMPC 3’s future input to LMPC 1. In the

iterative DMPC scheme, each distributed controller is able to

communicate to all the other controllers as shown in Fig. 4.

Specifically, LMPC 1, LMPC 2 and LMPC 3 can exchange

future input information before each iteration, and they can

iterate to improve the closed-loop performance.

In the control of the process, u1 and u2 are necessary

to keep the stability of the closed-loop system, while u3

can be used as an extra manipulated input to improve the

closed-loop performance. We first construct the Lyapunov-

based controller h(x) = [h1(x) h2(x) h3(x)]T . Specifically,

h1(x) and h2(x) are designed as follows [7]:

hi(x) =

{

−LfV +
√

(Lf V )2+(Lgi
V )4

(Lgi
V )2 Lgi

V if Lgi
V 6= 0

0 if Lgi
V = 0

where i = 1, 2, LfV =
∂V

∂x
f(x) and Lgi

V =
∂V

∂x
gi(x)

denote the Lie derivatives of the scalar function V with

respect to the vector fields f and gi (i = 1, 2), respectively.

The controller h3(x) is chosen to be h3(x) = [0 0]T because

the input set u3 is not needed to stabilize the process. In

the simulations, we consider a quadratic Lyapunov function

V (x) = xT Px with P being the following weighting matrix:

P = diag∗(Pv).

where Pv = [1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1
1 1 10]. The weights in P are chosen by a trail-and-

error procedure. The basic idea behind this procedure is

that more weight should be put on the temperatures of

the five vessels because temperatures have more significant

effect on the overall control performance, and the Lyapunov-

based controller h(x) should be able to stabilize the closed-

loop system asymptotically with continuous feedback and

actuation.

Based on h(x), we design the centralized LMPC, the

sequential distributed LMPC and the iterative distributed

LMPC. The sampling time used is ∆ = 30 s and the

weighting matrices

Qc = diag(Qv)

where Qv = [1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1
103 1 1 1 1 103] and Rc1 = diag([10−8 10−8 10−8]),
Rc2 = diag([10−8 10−8]) and Rc3 = diag([1 1]).

∗
diag(v) denotes a matrix with its diagonal elements being the ele-

ments of vector v and all the other elements being zeros.
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Fig. 5. Trajectories of temperatures under the Lyapunov-based controller
h(x) (solid line), the centralized LMPC (dashed line), the sequential DMPC
(dash-dotted line) and the iterative DMPC with c = 1 (dotted line).

III. SIMULATION RESULTS

First, we carried out a set of simulations to demonstrate

that the Lyapunov-based controller and the different control

designs can all drive the state of the process to the required

steady-state. Figure 5 shows the trajectories of the tempera-

tures in the five vessels. From the figure, we can see that the

centralized LMPC, the sequential and iterative LMPCs give

similar temperature trajectories and enforce the convergence

of the states to the desired steady-state much faster than

the trajectories under the Lyapunov-based controller h(x).
All the concentration trajectories in the five vessels display

similar convergence trends of the temperature trajectories.

We omit the figures of the concentration trajectories here

due to space limitations.

In order to illustrate the asymptotical convergence of

the state of the closed-loop process under different control

schemes, we also show the trajectories of the Lyapunov

function V (x) under the different control schemes in Fig 6.

Note that because of the stability constraints in the formula-

tions of the sequential, iterative DMPCs and the centralized

LMPC (see [8], [9], [1] for the designs of these LMPCs),

the trajectories of V (x) under the centralized LMPC, the

sequential DMPC and the iterative DMPC are bounded by

the corresponding trajectory of V (x) under the Lyapunov-

based controller h(x).
Next, we compare the mean evaluation times of the

0 100 200 300 400 500 600 700 800
0

5

10

15
x 10

4

Time (s)

V
(x

)

Fig. 6. Trajectories of the Lyapunov function V (x) under the Lyapunov-
based controller h(x) (solid line), the centralized LMPC (dashed line), the
sequential DMPC (dash-dotted line) and the iterative DMPC with c = 1

(dotted line).

TABLE V

MEAN EVALUATION TIME OF DIFFERENT LMPC OPTIMIZATION

PROBLEMS FOR 100 EVALUATIONS.

N = 1 (s) N = 3 (s) N = 6 (s)

Centralized LMPC 2.192 8.694 27.890

LMPC 1 0.472 2.358 6.515
Sequential LMPC 2 0.497 1.700 4.493

LMPC 3 0.365 1.453 3.991

LMPC 1 0.484 2.371 6.280
Iterative LMPC 2 0.426 1.716 4.413

LMPC 3 0.185 0.854 2.355

centralized LMPC optimization problem with the mean eval-

uation times of the LMPC optimization problems in the

sequential and iterative DMPCs. Each LMPC optimization

problem was evaluated 100 times at different conditions.

Different prediction horizons were considered in this set of

simulations. The simulations were carried out using Java

programming language in a Pentium 3.20 GHz computer.

The optimization problems were solved by the open source

interior point optimizer Ipopt [10]. The results are shown in

Table V. We can see that for different prediction horizons,

the time needed to solve the optimization problems of the

centralized LMPC is much larger than the time needed to

solve the optimization problems in the sequential or iterative

DMPC. This is because the centralized LMPC has to solve

a much larger (in terms of decision variables) optimization

problem than the ones of the distributed LMPCs. Another

observation from the table is that the evaluation time of the

centralized LMPC is larger than the sum of evaluation times

of LMPC 1, LMPC 2 and LMPC 3 of the sequential DMPC,

and the times needed to solve the distributed LMPCs in both

sequential and iterative distributed schemes are of the same

order of magnitude.

In another set of simulations, we compare the centralized

LMPC and the two DMPC schemes from a performance

index point of view. The prediction horizon for this set of

simulations is N = 1. To carry out the comparison, the same

initial condition and parameters are used for the different

control schemes and the total cost index under each control

scheme is computed as follows:

J =
M
∑

i=0

(x(ti)
T Qcx(ti) + u1(ti)

T Rc1u1(ti))

+
M
∑

i=0

(u2(ti)
T Rc2u2(ti) + u3(ti)

T Rc3u3(ti))
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TABLE VI

TOTAL PERFORMANCE COST ALONG THE CLOSED-LOOP SYSTEM

TRAJECTORIES I.

J (×107)

Centralized 1.8858

Sequential 1.8891

c = 1 c = 3 c = 5 c = 7

Iterative 1.8955 1.8883 1.8867 1.8863
c = 9 c = 11 c = 13 c = 15

1.8862 1.8859 1.8858 1.8858
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Fig. 7. Total performance cost along the closed-loop system trajectories of
centralized LMPC (dashed line), sequential distributed LMPC (dash-dotted
line) and iterative distributed LMPC (solid line).

where t0 = 0 is the initial time of the simulations, ti = t0 +
i∆ are the time instants taken into account and tM = 1000 s
is the end of the simulations. Table VI shows the total cost

along the closed-loop system trajectories under the different

control schemes. In this set of simulations, the centralized

LMPC gives the lowest performance cost, the sequential

DMPC gives lower cost than the iterative DMPC when there

is no iteration (c = 1). However, as the iteration number c
increases, the performance cost given by the iterative DMPC

decreases and converges to the cost of the one corresponding

to the centralized LMPC. This point is also shown in Fig. 7.

Note that the above set of simulations only represents one

possible case. As we discussed in Remarks 11-12 in [1],

there is no guaranteed convergence of the performance of dis-

tributed MPC to the performance of a centralized MPC, and

there is also no guaranteed superiority of the performance

of one DMPC scheme over the others. Specifically, we show

another two sets of simulations to illustrate these points. In

both sets of simulations, we chose different matrices Rc1

and Rc2, and all the other parameters (Qc, Rc3, ∆, N )

remained the same as the previous set of simulations. In the

first set of simulations, we picked Rc1 = diag([5×10−5 5×
10−5 5× 10−5]), Rc2 = diag([5× 10−5 5× 10−5]) and the

results are shown in Table VII. It shows that the centralized

LMPC provides a much lower cost than the ones of both

the sequential and iterative DMPCs. We can also see that as

the number of iterations increases, the iterative distributed

LMPC converges to a value which is different from the

one obtained by the centralized LMPC. In the second set of

simulations, we picked Rc1 = diag([1× 10−4 1× 10−4 1×
10−4]), Rc2 = diag([1 × 10−4 1 × 10−4]) and the results

are shown in Table VIII, from which we can see that the

centralized LMPC provides a higher cost than the ones of

both DMPCs.

TABLE VII

TOTAL PERFORMANCE COST ALONG THE CLOSED-LOOP SYSTEM

TRAJECTORIES II.

J (×107)

Centralized 5.052

Sequential 7.039

c = 1 c = 3 c = 5 c = 6

Iterative 7.2286 7.2241 7.2240 7.2240

TABLE VIII

TOTAL PERFORMANCE COST ALONG THE CLOSED-LOOP SYSTEM

TRAJECTORIES III.

J (×10
7)

Centralized 3.8564

Sequential 3.6755

c = 1 c = 3 c = 4

Iterative 3.6663 3.6639 3.6639

IV. CONCLUSIONS

In this work, we focused on the application of the theo-

retical results of DMPC architectures developed in [1] to

a catalytic alkylation of benzene process example which

consists of four continuous stirred tank reactors (CSTRs)

and a flash separator. First principle model developed via

mass and energy balances was used to carry out simulations.

Three separate Lyapunov-based model predictive controllers

were designed to control the process in a coordinative

fashion. Extensive simulations were carried out to compare

the proposed DMPC architectures with existing centralized

LMPC techniques from computational time and closed-loop

performance points of view.
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[1] J. Liu, X. Chen, D. Muñoz de la Peña, and P. D. Christofides,
“Sequential and iterative architectures for distributed model predictive
control of nonlinear process systems. Part I: theory,” Proceedings of

2010 American Control Conference, in press.
[2] H. Ganji, J. Ahari, A. Farshi, and M. Kakavand, “Modelling and

simulation of benzene alkylation process reactors for production of
ethylbenzene,” Petroleum and Coal, vol. 46, pp. 55–63, 2004.

[3] W. J. Lee, “Ethylbenzene dehydrogenation into styrene: kinetic model-
ing and reactor simulation,” Ph.D. dissertation, Texas A&M University,
College Station, TX, 2005.

[4] C. Perego and P. Ingallina, “Combining alkylation and transalkylation
for alkylaromatic production,” Green Chemistry, vol. 6, pp. 274–279,
2004.

[5] G. B. Woodle, Ethylbenzene. New York: Taylor & Francis Group,
2006, vol. I, ch. Petrochemicals and Petrochemical Processing, pp.
929–941.

[6] H. You, W. Long, and Y. Pan, “The mechanism and kinetics for
the alkylation of benzene with ethylene,” Petroleum Science and

Technology, vol. 24, pp. 1079–1088, 2006.
[7] E. Sontag, “A ‘universal’ construction of Artstein’s theorem on non-

linear stabilization,” Systems and Control Letters, vol. 13, no. 13, pp.
117–123, 1989.

[8] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Predictive control
of switched nonlinear systems with scheduled mode transitions,” IEEE

Transactions on Automatic Control, vol. 50, pp. 1670–1680, 2005.
[9] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Stabilization of

nonlinear systems with state and control constraints using Lyapunov-
based predictive control,” Systems and Control Letters, vol. 55, pp.
650–659, 2006.
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