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Abstract  When two bodies are in mutual motion, it should not be considered that one of them is stationary while 
the other moves or vice versa, but that both bodies move in relation to the center of mass (which is motionless, 
conditionally) and that they move at speeds dependent on the relationships of their masses, which is the consequence 
of the law of conservation of momentum. The time of a light signal travelling between two bodies A and B in mutual 
motion at the velocity of v0 depends on the relationship between the masses of these bodies mA and mB, so light 
signal travel time from the body A to the body B differs from the light signal travel time from the body B to the body 
A. In accordance with this, the following notions are defined: the relationship of the time difference (interval) 
between two successively emitted light signals from one body and the time difference (interval) of receiving these 
two signals by the other body, as well as the intensity and relationship between the relative velocities v of the two 
bodies measured from one body and from the other body. In addition, the expressions are derived for the Doppler 
shift in the function of velocity v0 of the mutual motion of two bodies A and B and the relationship between the 
masses of these bodies mA and mB. The results of this study prove that the formulae of the special theory of relativity 
(STR) have not been duly derived (since they disregard the masses of the bodies in mutual motion) and that they do 
not offer correct results. 
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1. Introduction 
The information about a phenomenon is obtained on the 

basis of recording the information which has reached 
either our senses or the devices used for registering that 
phenomenon. This information is transmitted at the final 
velocity dependent on the information transmitter and the 
medium through which the information is transmitted. 

Also, the interactions between individual bodies 
(particles) are transmitted at the final velocity which 
depends on the information transmitter and the medium 
through which the interaction is transmitted. 

When it comes to the bodies which are mutually 
motionless, the information and interactions are received 
at the same rate as they are emitted since successive 
signals travel the same distance. However, when it comes 
to the bodies which are in mutual motion, the rate of 
receiving and emitting information (interaction) is not 
identical because each forthcoming information (interaction) 
travels a different distance length. 

Thus, considering the bodies in mutual motion, it is 
necessary to find the dependence of the sent and received 
information (interactions) in the function of the speed of 

transmitting this information (interactions) and the speed 
of the movement of the bodies. 

The special theory of relativity (hereinafter referred to 
as STR), proposed by Albert Einstein at the beginning of 
the 20th century, is generally accepted nowadays. 

STR regards the mutual motion of two inertial systems 
WITH NO MASS assuming that it is irrelevant whether 
one system is motionless and the other is moving or the 
second system is stationary while the first system is 
moving [1]. Thus, bodies are regarded as mathematical 
points with no mass, and not as physical bodies with mass, 
which does not correspond to reality. 

The subject of this paper is proposing a new theory 
named MSR (Motion Shapes Reality) on the transmission 
of light signals between two bodies in mutual motion, 
based on the law of conservation of momentum. 

When talking about the motion of two bodies, it is 
necessary to bear in mind that each body has its mass! 

So, while two bodies are moving, one of them should 
not be considered to be still while the other is moving and 
vice versa, but both bodies should be considered to be 
moving in relation to the center of mass (which is 
motionless, conditionally) and that they move at velocities 
dependent on the relationships of their masses, which is 
the consequence of the law of conservation of momentum 
[2], which is a consequence of Newton's third law [3]. 
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2. Transmitting Information and Interactions 
during Motion 

The information about a phenomenon is obtained on the 
basis of recording the information which has reached 
either our senses or the devices used for registering that 
phenomenon. This information is transmitted at the final 
velocity dependent on the information transmitter and the 
medium through which the information is transmitted. 

Also, the interactions between individual bodies (or 
particles) are transmitted at the final velocity which 
depends on the information transmitter and the medium 
through which the interaction is transmitted. 

When it comes to the bodies which are mutually 
motionless, the information and interaction are received at 
the same rate as they are emitted since successive signals 
travel the same distance. However, when it comes to the 
bodies which are in mutual motion, the rate of receiving 

and emitting information (interaction) is not identical 
because each upcoming information (interaction) covers a 
different distance length. 

Thus, in relation to the bodies in mutual motion it is 
necessary to find the dependence of the sent and received 
information (interactions) in the function of the speed of 
transmitting this information (interactions) and the speed 
of the bodies. 

2.1. The Motion of Two Bodies in the Same 
Line 

When talking about the motion of two bodies, it is 
necessary to bear in mind that each body has its mass. 

Figure 2.1 illustrates the motion of two bodies A and B 
having the masses mA and mB. 

According to the law of conservation of momentum, it 
follows: mAvA=mBvB 

 

Figure 2.1. 

Thus, when it comes to the motion of two bodies with 
masses mA and mB where one of them moves at the 
velocity of v0 in relation to the other, one of them should 
not be considered to be still while the other is moving and 
vice versa, but both bodies should be considered to be 
moving in relation to the center of mass (which is 
motionless, conditionally) and that they move at the 
velocities of vA and vB which are dependent on the 
relationship of the masses mA and mB. 

2.1.1. Light Signals between Two Bodies in Motion 
Let us consider the travel time of a light signal with the 

speed of c0 between two bodies A and B in mutual motion 
at the speed of v0, according to the Figure 2.1. It has been 
accepted that the plus sign is used for the velocity when 
the bodies move away from each other. So, if the bodies 
approach each other, the sign in front of the velocity 
symbol should be changed in the following expressions. 
a) The light signal from the body A towards the body B 

A light signal emitted from the body A at the speed of 
c0 reaches the body B during the time tA; the body B needs 
the same time (tA) to move away for the additional 
distance of ΔLB= tAvB, moving at the speed of vB in 
relation to the center of mass cm, so that the total distance 
covered by the light signal amounts to:  

 B A 0 B A BL '  t c  L L  L t v= = + ∆ = +  

Solving for tA , the travel time of the light signal from A 
to B is obtained: 

 ( )A 0 Bt  L / c v= −  (2.1.1.a) 

b) The light signal from body B towards body A 
When a light signal emitted from the body B at the 

speed of c0 reaches the body A during the time tB, the body 
A needs the same time to move away for the additional 

distance of ΔLA= tBvA, moving at the speed of vA in 
relation to the center of mass cm, so that the total distance 
covered by the light signal amounts to:  

 A B 0 A B AL '  t c  L L  L t v= = + ∆ = +  

Solving for tB , the travel time of the light signal from B 
to A is obtained: 

 ( )B 0 At  L / c v= −  (2.1.1.b) 

c) The relationship of signals from A to B and from B 
and A 

Comparing the travel times of tA and tB of light signals 
from the body A to the body B and from the body B to the 
body A, it is perceived that they are different, i.e. tA≠tB 
(except for the bodies of identical masses mA=mB when 
both vA=vB and LA=LB): 

 ( ) ( )A B 0 A 0 Bt / t  c v / c v .= − −  (2.1.1.c) 

2.1.2. Time Intervals of Two Bodies In Motion 
Let us consider the time difference (interval) between 

two successively emitted light signals from the body A 
and the time difference (interval) of receiving these 
signals by the body B, according to Figure 2.1. 

In order to simplify the text, all 'A' marks will be 
replaced by 'E' (emitter), and all 'B' marks will be replaced 
by 'R' (receiver).  

As seen in section 2.1.1.a, the travel time of the first 
light signal from E to R is: 

 ( )1 0 Rt  L / c v .= −  

Let us define the travel time from the body E to the 
body R of the second light signal emitted from the body E 
after particular time ΔtE in relation to the first signal. 
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During the time ΔtE the body E covers the additional 
distance of ΔLE= ΔtEvE and the body R covers the 
additional distance of ΔLR1= ΔtEvR. While the light signal 
travels from the body E to the body R during the time t2, 
the body R covers the additional distance of ΔLR2= t2vR; 
thus, the total distance covered by the second light signal 
from the body E to the body R amounts to:  

 2 2 0 R1 R2 E

E R 2 R E E

L '  t c  L L L L
 L t v t v t v
= = + ∆ + ∆ + ∆

= + ∆ + + ∆
 

Solving it for t2, the following is obtained: 

 ( ) ( )2 E 0 0 Rt  L t v / c v .= + ∆ −  

The difference in the duration of the travelling of the 
first and second signal from E to R amounts to:  

 
( ) ( ) ( )
( )

2 1 E 0 R 0 R

E 0 0 R

t t  L t v / c v  L / c v

 t v / c v

− = + ∆ − − −

= ∆ −
 

thus, the time interval of the signal reception is:  

 
( ) ( )

( ) ( )
R E 2 1 E 0 0 R

E 0 E R

t t t t  t 1 v / c v

 t c v / c v

 ∆ = ∆ + − = ∆ + − 
= ∆ + −

 

 ( ) ( )R E 0 E 0 Rt t c v / c vγ γ∆ = ∆ = + − (2.1.2.1) 

If light signals are simultaneously emitted from the end 
points of a line segment of LE length on the body E 
towards the body R, they will reach the body R at the 
same time and the same length LR= LE will be recorded on 
the body R. Thus, there is no contraction of the length. 

However, the body A’s crossing the distance ΔLE= 
vEΔtE at the speed of vE during the time ΔtE will be read 
out on the body R as the crossing of the distance (ΔLE) 
during the time ΔtR, so the velocity of the body E in 
relation to the center of mass will be read out on the body R: 

 
( ) ( )

( )
E E 0 R 0 E E

E E E E

v '  v c v / c v  v /

v  v ' v  v 1 1/

γ

γ

= − + =

∆ = − = −
(2.1.2.1a) 

Since the body R moves at the velocity vR in relation to 
the center of mass, the total velocity of movement of the 
body E in relation to the body R will be recorded on the 
body R: 

 
( )

R E R E

0 E

v  v v '  v v /
v  v v 1 1/

γ
γ

= + = +

= + −
 (2.1.2.1b) 

In the case when mR is insignificantly small in relation 
to mE, an approximate expression is obtained: 

 ( )
R E

0 0 0

0

t t
 c / c v

v  v

γ

γ

∆ = ∆

= −

=

 (2.1.2.2) 

In the case when mE is insignificantly small in relation 
to mR, an approximate expression is obtained: 

 ( )
( )

R E

0 0 0

0 0 0 0

t t
 c v / c

v  v c / c v

γ

γ

∆ = ∆

= +

= +

 (2.1.2.3) 

The previous formulae are derived for the situation of 
the two bodies moving away from each other. As already 

mentioned in the introductory part of chapter 2.1.1, if the 
bodies approach each other, the sign before the velocity 
symbol should be changed in the previous expressions. 
Thus, the expressions are as follows: 

 ( ) ( )
( )

R E

0 E 0 P

0 0 0 E

t t
 c v / c v

v  v c / c v

γ

γ

∆ = ∆

= − +

= −

 (2.1.2.4) 

In the case when mR is insignificantly small in relation 
to mE, an approximate expression is obtained: 

 ( )
R E

0 0 0

0

t t
 c / c v

v  v

γ

γ

∆ = ∆

= +

=

 (2.1.2.5) 

In the case when mE is insignificantly small in relation 
to mR an approximate expression is obtained: 

 ( )
( )

R E

0 0 0

0 0 0 0

t t
c v / c

v v c / c v

γ

γ

∆ = ∆

= −

= −

 (2.1.2.6) 

2.1.3. The Doppler Shift 
The Doppler shift z is defined in the expression [4]: 

 ( )R E R R E Rz / / / 1f f f f f f f= ∆ = − = −  

where: 
ƒE emitted frequency ƒE =1/ΔtE 
ƒR observed frequency ƒR =1/ΔtR 
Δ ƒ  the difference between the emitted and observed 
frequency   Δ ƒ= ƒR-ƒE 

 ( ) ( )E R E R R E/ 1/ t  / 1/ t t / tf f = ∆ ∆ = ∆ ∆  

 R Ez  t / t 1 1.γ= ∆ ∆ − = −  (2.1.3) 

a) The Doppler shift when E and R are moving away 
from each other 

Applying the formulae (2.1.2.1), we have: 

( ) ( )
( )

( )
( )

( )
0 E R 0 E R

0 E R E E

0 0 R 0

R

0 R

v m m zc m m
z v

c m m

z 1 v / c v 1 z  v / c

vm 1 m m

v

z

 = + − − =

+ +
= =

+ +

 

− +

−

(2.1.3.1) 

In the case when mR is insignificantly small in relation 
to mE, an approximate expression is obtained: 

 ( ) ( )0 0 0 0 0z  v / c v v  zc / z 1≈ − ≈ + (2.1.3.2) 

In the case when mE is insignificantly small in relation 
to mR, an approximate expression is obtained: 

 0 0 0 0z  v / c v  zc≈ ≈  (2.1.3.3) 

b) The Doppler shift when E and R are approaching 
each other 

Applying the formulae (2.1.2.4), we have: 

( )[ ] ( )
( )

( )
( )

( )
E R 0 E R

0 E R 0 E E R

0 0 R 0 0 R

v m m

z 1 v / c v 1

zc m m
z v

c m m

z v / c v

v m z 1 m m

= − +

− + − +
= =

+ + +

= −

+

− +

(2.1.3.4) 

In the case when mR is insignificantly small in relation 
to mE, an approximate expression is obtained: 
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 ( ) ( )0 0 0 0 0z v / c v v zc / z 1≈ − + ≈ − + (2.1.3.5) 

In the case when mE is insignificantly small in relation 
to mR, an approximate expression is obtained: 

 0 0 0 0z v / c v zc≈ − ≈ −  (2.1.3.6) 

c) The Doppler shift in astronomy 
When the Earth receives light signals from massive 

stars, the Earth’s mass mR is insignificantly small in 
relation to the mass of stars mE, so the approximate 
expressions can be applied (2.1.3.2): 

 ( ) ( )0 0 0 0 0z  v / c v and v  zc / z 1 .≈ − ≈ +  

Table 2.1.3 offers a comparative description of the 
relationship between the Doppler shift z and the velocity 
v0 calculated according to the relativistic Doppler Effect 
(STR) [5] and according to the formulae of MSR 
(Movement Shapes Reality). 

It can be noticed that STR calculates a smaller Doppler 
shift for the same velocities, i.e. it calculates bigger 
velocities for the same Doppler shift. The bigger the 
velocity, the bigger the error in calculating the Doppler 
shift according to STR. 

Table 2.1.3. The Doppler shift in astronomy according to STR and 
MSR 

v0/c z’ (STR) z (MSR) Δz=z-z' z/z' 
0,01 0,0101 0,0101 0,0001 1,0050 
0,02 0,0202 0,0204 0,0002 1,0101 
0,05 0,0513 0,0526 0,0013 1,0257 
0,10 0,1055 0,1111 0,0056 1,0528 
0,20 0,2247 0,2500 0,0253 1,1124 
0,30 0,3628 0,4286 0,0658 1,1814 
0,40 0,5275 0,6667 0,1391 1,2638 
0,50 0,7321 1,0000 0,2679 1,3660 
0,60 1,0000 1,5000 0,5000 1,5000 
0,70 1,3805 2,3333 0,9529 1,6902 
0,80 2,0000 4,0000 2,0000 2,0000 
0,90 3,3589 9,0000 5,6411 2,6794 
0,93 4,2509 13,2857 9,0349 3,1254 
0,96 6,0000 24,0000 18,0000 4,0000 
0,98 8,9499 49,0000 40,0501 5,4749 
0,99 13,1067 99,0000 85,8933 7,5534 

2.2. The Motion of Two Bodies on Parallel 
Lines 

Let us consider the mutual movement of two bodies A 
and B on parallel lines at the relative velocity of v0 , 
according to Figure 2.2. 

 

Figure 2.2. 

2.2.1. Light Signals Between Two Bodies in Motion 
Let us think about the travel time of a light signal of the 

emitted speed of c0 between bodies A and B, according to 
Figure 2.2.1. It has been accepted that the positive sign of 
the velocity is used when two bodies move away from 
each other. So, if the bodies approach each other, in the 
following formulae the sign before the velocity symbol 
should be altered. 

 

Figure 2.2.1. 

a) The light signal from the body A towards the body B 
While a light signal travels from A towards B at the 

speed c during a particular time tA, the body B covers the 
distance of ΔXB= tAvB in that time, so the light signal 
covers the distance of DA= tAc0= (X+tAvB)/cosφA. Solving 
this for tA, it is obtained as follows:  

 ( )A 0 A Bt X / c cos vϕ= −  (2.2.1.a) 

b) The light signal from the body B towards the body A 
While a light signal travels from B towards A at the 

speed c during a particular time tB, the body A covers the 
distance ΔXA= tBvA in that time, so the light signal covers 
the distance of DB= tBc0= (X+tBvA)/cosφB. Solving this for 
tB , it is obtained as follows:  

 ( )B 0 B At  X / c cos vϕ= −  (2.2.1.b) 

c) The relationship of the signal from A to B and from 
B to A  

Comparing the travel times of tA and tB of light signals 
from the body A to the body B and from the body B to the 
body A, it is perceived that they are different, i.e. tA≠tB 
(except for the bodies of identical masses mA=mB when 
both vA=vB and φA= φB): 

 ( ) ( )A B 0 B A 0 A Bt / t c cos v / c cos vϕ ϕ= − − (2.2.1.c) 
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2.2.2. Time Intervals of Two Bodies in Motion 
Let us consider the time difference (interval) between 

two successively emitted light signals from the body B 
and the time difference (interval) of receiving these same 
signals by the body A, according to the Figure 2.2. 

In order to simplify the text, all 'B' marks will be 
replaced by 'E' (emitter), and all 'A' marks will be replaced 
by 'R' (receiver), according to Figure 2.2.2. 

 

Figure 2.2.2. 

The total distance covered by the body R from the 
emission of the first signal to the reception of the first 
signal amounts to ΔX1 = t1vR. 

Let us define the travel time from the body E to the 
body R of the second light signal emitted from the body E 
after particular time ΔtE in relation to the first signal. 

During the time ΔtE the body E covers the additional 
distance of ΔXE= ΔtEvE and the body R covers the 
additional distance of ΔXR1= ΔtEvR. 

While the light signal travels from the body E to the 
body R during the time t2, the body R covers the additional 
distance of ΔXR2= t2vR; thus, the total distance of moving 
away of the bodies E and R on the motion line (x-axis) 
from the emission of the first signal to the reception of the 
second signal amounts to:  

 2 E R1 R2

E E E R 2 R

X  X X X
t v t v t v .

∆ = ∆ + ∆ + ∆
= ∆ + ∆ +

 

Since vE+vR= v0, the previous expression becomes: 
ΔX2= ΔtEv0+t2vR so 

 ( )2 1 E 0 2 1 RX X  t v t t v∆ −∆ = ∆ + −  

Applying the law of sine to Figure 2.2.2, we have: 

 ( ) ( )2 1 0 E 0 2 1 Rt t c / sin t v t t v / sinβ α− = ∆ + −    

Changing 

 
( ) ( )
( ) ( )

/ 2 ' / 2 sin cos ' / 2

/ 2 ' / 2 sin cos ' / 2

α π ϕ ϕ α ϕ ϕ

β π ϕ ϕ β ϕ ϕ

= + − = −  
= − + = +  

 

in the previous expression and solving for (t2-t1), we have: 

 

'

0

2 1 ' '

0

1 tan tan
2 2

1 tan tan 1 tan tan
2 2 2 2

E

R

v

t t t

c v

ϕ ϕ

ϕ ϕ ϕ ϕ

 
−  

 − = ∆
   
+ − −      

   

 

that is, introducing the relation 

'
tan

2

tan
2

k

ϕ

ϕ

 
  
 =
 
 
 

 

 

2
0

2 1
2 2

0

1 tan
2

1 tan 1 tan
2 2

E

R

v k
t t t

c k v k

ϕ

ϕ ϕ

 − 
 − = ∆

   + − −   
   

 (*) 

Since the time interval between the reception of the first 
and second signal equals 

 ( )R E 2 1t  t t t∆ = ∆ + −  

we have: 

 

2
0

2 2
0

1 tan
21

1 tan 1 tan
2 2

R E

R

v k
t t

c k v k

ϕ

ϕ ϕ

  −    ∆ = ∆ +
    + − −        

 

that is: 

 R E R E 0 Et   t v  v v / v  v v (1 1/ )γ γ γ∆ = ∆ = + = + −  

 

2
0

2 2
0

1 tan
21

1 tan 1 tan
2 2R

v k

c k v k

ϕ

γ
ϕ ϕ

 − 
 = +

   + − −   
   

(2.2.2.1) 

Applying the law of sine to Figure 2.2.2, we have: 

 )2 2 1 02 – (
sin ' sin

D t t cD
ϕ ϕ

=
−

 

)

'
2

2 2
2 1 ' 20 0

tan 1 tan
2 2sin( 1 1

'sin tan 1 tan
2 2

D Dt t
c c

ϕ ϕ

ϕ
ϕ ϕϕ

  
+       = − = −         +   



−



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Equalizing the previous expression with the expression 
(*) and solving for k, we have: 

 

20 0
0

2

0 0
0

2

2
0

2
20 0

0
2

0 0
0

2

2 2 2
0

2
0

tan
2

2( ) tan
2

tan
2

4( ) tan
2 .

2( ) tan
2

E
R

E
R

R

E
R

E
R

R

R

v c tc v
D

v c tc v
D

k
c v

v c tc v
D

v c tc v
D

c v

c v

ϕ

ϕ

ϕ

ϕ

ϕ

  ∆
+ +  

  
  ∆ − − −    =

+

   ∆ + +         ∆  − − −      
 + −  +

+

 

Introducing the change 1/ΔtE = ƒE (the frequency of the 
emitted signal), we have: 

 

20 0 0 0
0 0

2 2

2
20 0

0
2

0 0
0

2

2 2 2
0

2
0

tan
ƒ 2

tan
ƒ 2

ƒ

4( ) tan
2

2( ) tan
2

R R
E E

R
E

R
E

R

R

v c v cc v c v
D D

v cc v
D

v cc v
D

c v

f

k
c v

ϕ

ϕ

ϕ

ϕ

    
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(2.2.2.2) 

The above mentioned shows that the relationship 
between the time intervals ΔtR and ΔtE does not depend 
only on the angle φ and velocity v0 but also on the 
distance between E and M (D2) and on the time interval of 
the emitted signals, i.e. on the frequency of the emitted 
signal ƒE. 

In the case of long distances and high signal frequency, 

the member 0 0

2 ƒE

v c
D

 can be disregarded. 

2.2.2.1. Time Intervals for φ << π/2 
In the case of long distances for the angle φ<<π/2 and 

the small velocity v, an insignificantly small difference of 
the angles φ’ and φ (φ’≈ φ) is obtained, so k≈1 and the 
formula (2.2.2.1) is simplified to the approximate formula: 

 R E R E 0 Et  t v ' v v / v ' v v (1 1/ )γ γ γ∆ = ∆ = + = + −  

 0 0

0 0

cos cos
1

cos cos
E

R R

v c v
c v c v

ϕ ϕ
γ

ϕ ϕ
+

= + =
− −

(2.2.2.1.1) 

vEcos ϕ is the vector projection of velocity vE on the line 
ER and vRcos ϕ is the vector projection of velocity vR on 
the line ER, i.e. these are collinear vectors on the line ER 
so the expression (2.2.2.1.1) is simplified to (2.1.2.1): 

 0

0 0
1 ELL

PL RL

c vv
c v c v

γ
+

= + =
− −

 (2.2.2.1.1a) 

where , andL EL RLv v v  are the components of the 
velocities 0 , andE Rv v v  on the line of the light signal ER. 

In the case when mR is insignificantly small in relation 
to mE, an approximate expression is obtained: 
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In the case when mE is insignificantly small in relation 
to mR, an approximate expression is obtained: 
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a) intervals for φ = 0 
For φ = 0， cos φ = 1 so the equation (2.2.2.1.1) 

becomes: 

 
( ) ( )

( ) ( )
( ) ( )

0 E 0 R R E

0 E 0 R

R E 0 P 0 E

c v / c v , t  t ,

c v / c v ,

v v v c v / c v .

γ = + − ∆ = ∆

+ −

= + − +

(2.2.2.1.4) 

which is identical to the expression (2.1.2.1).  
In the case when mR is insignificantly small in relation 

to mE, the expression (2.2.2.1.4) becomes: 
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0 0 0 R E
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c / c v , t  t ,
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γ = − ∆ = ∆

− =
 (2.2.2.1.5) 

which is identical to the expression (2.1.2.2). 
In the case when mE is insignificantly small in relation 

to mR, the expression (2.2.2.1.3) becomes: 
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( ) ( )
0 0 0 R E

0 0 0 0 0 0 0

c v / c , t t ,

c v / c , v v c / c v .

γ = + ∆ = ∆

+ = +
 (2.2.2.1.6) 

which is identical to the expression (2.1.2.3). 
b) the reception of the signal from Cosmos 

When the Earth receives light signals from massive 
stars, the Earth’s mass mR is insignificantly small in 
relation to the mass of stars mE, so the expressions 
(2.2.2.1.2) and (2.2.2.1.5) can be applied. 
c) the intervals in the case of approaching bodies 

The previous expressions have been derived for the 
situation of the bodies moving away from each other. As 
mentioned above, if the bodies approach each other, the 
sign in front of the velocity symbol should be changed in 
the previous expressions. 
2.2.2.2. TIME INTERVALS FOR  φ = π/2 

For the angle φ near π/2, the formula (2.2.2.1) is used 
after the angle φ' has been calculated according to the 
formulae (2.2.2.2).  

For the angle φ= π/2, tg(φ/2)= 1 so the expression 
(2.2.2.1) becomes: 
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In the case when mR is insignificantly small in relation 
to mE , the expression (2.2.2.2.1) becomes: 
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In the case when mE is insignificantly small in relation 
to mR , the expression (2.2.2.2.1) becomes: 
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When it comes to cosmic distances, the member 0 0

2 ƒE

v c
D

 

can be disregarded, so for φ= π/2 we have k=1, γ=1. 
The previous expressions have been derived for the 

situation of the bodies moving away from each other. As 
mentioned above, if the bodies approach each other, the 
sign in front of the velocity symbol should be changed in 
the previous expressions. 

2.2.3. The Doppler Shift  
The Doppler shift z is defined in the formula: 

 ( )R E R R E Rz / / / 1f f f f f f f= ∆ = − = −  

where: 
ƒE emitted frequency  ƒE =1/ΔtE 
ƒR observed frequency  ƒp =1/ΔtR 
Δ ƒ  the difference between the emitted and observed 

     Δƒ= ƒR-ƒE 

 ( ) ( )E R E R R E/ 1/ t  / 1/ t  t / t  f f γ= ∆ ∆ = ∆ ∆ =  

 R Ez t / t 1 1γ= ∆ ∆ − = −  (2.2.3) 

Applying the expression (2.2.2.1.) to the formula 
(2.2.3), general formulae are obtained: 

For E and R moving away from each other: 
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For E and R approaching each other: 
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2.2.3.1. Angle φ<< π/2 
In the case of long distances for angle φ<<π/2 and small 

velocity v0, an insignificantly small difference of the 
angles φ’ and φ (φ’≈ φ) is obtained, so k≈1 and the 
formulae (2.2.3.1) and (2.2.3.2) are simplified to the 
approximate formulae: 

For E and R moving away from each other: 
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For E and R approaching each other: 
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If mR is insignificantly small in relation to mE , then 
vR≈v and vE≈ 0, so the expressions (2.2.3.1.1) and 
(2.2.3.1.2) become: 

For E and R moving away from each other: 
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For E and R approaching each other: 
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If mE is insignificantly small in relation to mR , then vE≈ 
v and vR≈ 0, so the expressions (2.2.3.1.1) and (2.2.3.1.2) 
become: 

For E and R moving away from each other: 

 0 0

0 0

z  v cos / c
v  zc / cos

ϕ
ϕ

=

=
 (2.2.3.1.5) 

For E and R approaching each other: 

 0 0

0 0

z v cos / c
v zc / cos

ϕ
ϕ

= −

= −
 (2.2.3.1.6) 

For φ = 0 (longitudinal Doppler shift) the equations 
(2.2.3.1.3) to (2.2.3.1.6) are simplified to the equations 
(2.1.3.2) and (2.1.3.3), that is (2.1.3.5) and (2.1.3.6). 

2.2.3.2. Angle φ = π/2 
For angle φ near π/2 the formula (2.2.3.1) is used after 

the angle φ' has been calculated according to the formula 
(2.2.2.2).  

For the angle φ= π/2 the formula (2.2.3.1) is used after 
the angle φ' has been calculated according to the formula 
(2.2.2.2.1).  

If one of the masses is insignificantly small in relation 
to the other mass and the angle φ=π/2 (transversal Doppler 
shift), the formulae (2.2.2.2.2) and (2.2.2.2.3) are used for 
calculating the angle φ'. 

When it comes to cosmic distances, the member 
0 0

2 ƒE

v c
D

 can be disregarded, so for φ= π/2 we have k=1, 

γ=1, z=0. 

2.2.4. Exchange of Information with the Satellite 
Let us consider the communication between the Earth 

and the satellite through a light signal. 
Since the satellite’s mass mS is insignificant in relation 

to the Earth’s mass mE, the Earth can be considered to be 
at rest (vE=0) while the satellite moves at the speed of 
vS=v0. 

However, the communication with the satellite is not 
performed from the center of the Earth’s mass but from 
the surface 6.400km distant from the center of the Earth’s 
mass and the Earth rotates around its axis (tangential 
velocity on the equator around 0,465km/sec). Thus, in the 
communication with the satellite we should also take into 
account the rotational velocity of the point from which the 
communication is carried out, as well as the satellite’s 
trajectory in relation to the direction of the Earth’s rotation, 
i.e. the projection of the rotational velocity on the line of 
the satellite’s movement during the communication.  

The growth of the satellite’s distance and the deviation 
of the signal’s angle of π/2 in relation to the current 
direction of rotational velocity lead to the decrease of the 
influence of the Earth’s rotation so it can be disregarded in 
the case of long distances and small angles of signals. 
Also, when the point from which the communication with 
the satellite is performed is in the vicinity of one of the 
Earth’s poles (i.e. when the rotational velocity is vrot≈0), 
the Earth’s rotation can be disregarded. 

This chapter will deal with the situation when the 
angle of the signal is φ<< π/2 and when the influence of 
the Earth’s rotation can be disregarded. 

Communication with the satellite includes sending the 
signal from the Earth towards the satellite and its returning 
to the Earth at specific intervals, according to Figure 
2.2.4.1. 

 

Figure 2.2.4.1. 

We will observe two signals which, at the interval Δt1, 
are emitted from the Earth (E) towards the satellite (S) and 
returned to the Earth. 

While the first signal takes time t1 to reach S from E 
moving at the speed of c0, the satellite covers the 
additional distance of ΔX1= t1v0. Returning from S to E 
(having in mind that E is motionless), the return signal 
covers the same distance t1c0 as the emitted signal. 

After particular time Δt1 the second signal is emitted. 
During the same time, S covers the additional distance of 
ΔX2= Δt1v0. While the second signal reaches E from S 
during the time t2, the satellite covers the additional 
distance of ΔX3=t2v0. Returning from S to E (since E is 
motionless), the return signal covers the same distance t2c0 
as the emitted signal. 
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Since the travel time of the first signal from E to S and 
back is T1=2t1 and the travel time of the second signal 
from E to S and back is T2=2t2, the time interval between 
the reception of the first signal and the second signal 
equals 

 ( )2 1 2 1t  t 2 t t∆ = ∆ + −  

so we have: 
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 (2.2.4.1) 

Since the communication with satellites is performed at 
high frequencies (about 3GHz) and that the situation of 
long satellite distance and small velocity v0 (in relation to 
the signal speed c0) is being considered, the formula 
(2.2.4.1) for the signal angle φ1<< π/2 is reduced to the 
approximate formula: 
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 [ ]2 1 0 0t t 1 2v cos / cϕ∆ = ∆ +  (2.2.4.2) 

Introducing the expression (2.2.4.2) in the formula 
(2.2.3), approximate formulae for the Doppler shift are 
obtained. 

For E and S moving away from each other: 
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ϕ
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=

=
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For E and S approaching each other: 

 0 0

0 0

z 2v cos / c
v zc / 2cos .

ϕ
ϕ

= −

= −
 (2.2.4.4) 

2.2.4.1. Pioneer 10 Anomaly 
Two spacecrafts, Pioneer 10 and 11, which were 

launched in 1972 and 1973, do not behave according to 
the calculations based on the relativistic formulae and on 
the basis of the measured Doppler shift [6].  

Pioneer 10 should move at the speed of 12,2 km/sec. 
However, on the basis of the measured Doppler shift 

according to the relativistic calculations, the spacecraft 
moves at the increasingly slower speed so that each year it 
covers the distance which is smaller than expected by 
8000 km. 

Table 2.2.4.1 represents the difference of the Doppler 
shift calculated according to STR (special theory of 
relativity) and according to MSR (motion shapes reality). 
The calculation is performed for the leaving and returning 
(coming) signal on the basis of the approximate values of 
the signal angle (φ1) in relation to the line of the 
spacecraft’s movement. 

The calculation according to MSR is carried out on the 
basis of the formula (2.2.4.3): 

 0 0z 2v cos / c .ϕ=  

STR is used as the basis for calculating the Doppler 
shift z': 

 ( )2 2 2z ' [(c v*cos ) / c v ] 1ϕ= + − −  

Table 2.2.4.1. 

v (km/sec) c (km/sec) 12,2 
3,0E+05  The Doppler shift for Pioneer 10 leaving and coming signal   

Year φ (°) cos φ According to STR (z') According to MSR (z) Δz=z-z' Δv, km/sec ΔD, km/year 

1980 20,7 0,9354 7,6086E-05 7,6083E-05 -3,101E-09 -2,486E-04 -7.840 

1982 17,6 0,9532 7,7529E-05 7,7526E-05 -3,156E-09 -2,484E-04 -7.832 

1984 14,7 0,9673 7,8674E-05 7,8671E-05 -3,201E-09 -2,482E-04 -7.827 

1986 12,5 0,9763 7,9409E-05 7,9405E-05 -3,230E-09 -2,481E-04 -7.825 

1988 10,8 0,9823 7,9896E-05 7,9893E-05 -3,250E-09 -2,481E-04 -7.824 

1990 9,6 0,9860 8,0198E-05 8,0194E-05 -3,262E-09 -2,481E-04 -7.824 

 0 1,0000 8,1337E-05 8,1333E-05 -3,308E-09 -2,481E-04 -7.823 

The table shows that, for the given speed, the Doppler 
shift calculated according to STR is bigger than the one 
calculated by MSR. The difference indicates the annual 
“lags“ which extremely precisely correspond to the 
measured values. Thus, it is not an anomaly but the 
incorrect “relativistic“ calculation. 

2.3. On the Speed of Light 
When talking about the speed of light, a difference 

should be made between the speed of light (photon) in 
relation to the body E emitting the light and the speed of 
light reaching the body R which moves in relation to the 
body E. 

The speed of light is determined by the system of fixed 
emitters and receivers [7]. 

Thus, the postulate on the constant speed of light refers 
to the constant speed of the emitted light, independently of 
its frequency (the speed of the emitted light of any 
frequency is the same). 

According to the analyses in chapter 2.2, when 
determining the speed of light reaching the body R in the 
system of two bodies E (light emitter) and R (light 
receiver) which are moving in relation to each other, the 
mutual motion of these two bodies should be taken into 
account. 

When the photon moves from the body E at the speed 
of light c0 towards the body R, this body R escapes from 
the photon at the speed v according to (2.2.1), (2.2.1a) and 

(2.2.1b). Thus, the speed of the photon reaching the body 
R is reduced by the escape speed of the body R, i.e. the 
speed of the photon (c) which has reached the body R, 
according to the classical law on velocity addition, 
amounts to: 

0 R E 0 Ec  c v, v  v v / , v  v  v ( 1) /γ γ γ= − = + = − − (2.3.1) 

where v0, vE, vR and v are collinear components of the 
velocities on the line ER, according to (2.2.2.1.1) and 
(2.2.2.1.1a). 

This change of the speed of light is recorded as the 
change of frequency (the speed of photon oscillation), i.e. 
as the Doppler shift. 

Since the Doppler shift is z= γ-1, i.e. γ= z+1, by 
changing in (2.3.1) we have: 

( ) ( )0 E 0 0 Ev  v  v z / z 1 , c  c v  v z / z 1= − + = − + + (2.3.2) 

The comments in chapter 2.2. illustrate that the 
difference of the velocities v0 and v in the function of the 
relationship of the masses of the emitter mE and the 
receiver mR is: 

vE= v0mR/(mE+mR)  vR= v0mE/(mE+mR)  v0= 
vE+vR v= v0- vE z/(z+1) 

If mR is insignificantly small in relation to mE , then vR≈ 
v and vE≈ 0, so the expressions (2.3.2) become: 

 0 0 0v  v , c  c v= = −  (2.3.3) 
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If mE is insignificantly small in relation to mR, then vE≈ 
v and vR≈ 0, so the expressions (2.3.2) become: 

 
( ) ( )

( ) ( )
0 0 0 0 0

2
0 0 0 0 0

v v / z 1  c v / c v ,

c=c v / z 1  c / c v

= + = +

− + = +
 (2.3.4) 
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