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ABSTRACT 

 
High dimensionality and computational complexity are 

curses typically associated with many product family design 
problems. In this paper, we investigate interactive methods 
that combine two traditional technologies – optimization and 
visualization – to create new and powerful strategies to 
expedite high dimensional design space exploration and 
product family commonality selection. In particular, three 
different methods are compared and contrasted: (1) exhaustive 
search with visualization, (2) individual product optimization 
with visualization, and (3) product family optimization with 
visualization. Among these three, the individual product 
optimization with visualization methods appears to be the 
most suitable one for engineer designers, who do not have 
strong optimization background. This method allows designers 
to “shop” for the best designs iteratively, while gaining key 
insight into the tradeoff between commonality and individual 
performance. The study is conducted in the context of 
designing a UTC product using an in-house, system-level 
simulation tool. The challenges associated with (1) design 
space exploration involving mixed-type design variables and 
infeasibility, and those associated with (2) visualizing product 
family design spaces during commonality selection are 
addressed. Our findings indicate a positive impact on the 
company’s current approach to product family design and 
commonality selection.     

 
1 INTRODUCTION  
  

In many technology-focused companies, engineering 
practice is evolving to a state where rigorous physics-based 
models are being used to analyze and verify product design 
performance and reliability. Increased product complexity and 
competitive pressure to accelerate product introductions to 
market have motivated large companies such as Boeing, Ford, 
General Motors, and United Technologies Corporation (UTC) 
to pursue rigorous analytical approaches to engineering 
design. At UTC, for instance, benchmarks have shown that a 
commitment to model-based design, analysis, and verification 
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can provide as high as 30% savings in engineering costs, and 
also cut development time in half.  

To complicate matters further, most companies now 
offer many of their products as variants within a large product 
family. A product platform concept, consisting of common 
components or subsystems across the family, is typically used 
to generate high profits [1, 2].  A typical product family 
consists of a set of products that have (1) some unique 
characteristics and (2) shared components and modules.  As 
such, product family optimization inherits all of the 
idiosyncrasies involved with single product optimization (such 
as multiple objectives and mixed variable types), while adding 
coordination across the family. The latter involves additional 
intricacies such as making commonality decisions, 
significantly high dimensionality, and combined 
combinatorial-attribute decision making. This creates 
additional challenges (such as high computing requirements) 
when physics-based models are used for engineering design 
and verification of product families. We refer the reader to 
work by de Weck [3], which provides a thorough example of 
the types of models needed to translate product family design 
decisions into profitability for a company.  

Typical steps in product family optimization include: (1) 
defining the product family, (2) formulating the product 
family optimization problem, (3) solving the product family 
optimization problem, and (4) evaluating the tradeoff between 
different product family design alternatives and making a final 
decision. In this paper, we discuss the challenges involved 
with formulating the product family design problem within an 
industrial setting. Thereafter, we compare and contrast three 
methods that focus on the last step of the aforementioned 
process, i.e., evaluating the tradeoff and making a final 
decision. While the arguments, challenges, methods, and 
results discussed in this paper are within the context of a 
specific problem, we assert that our findings are generalizable 
to industrial problems of similar complexity and of 
comparable levels of technical difficulty.   

The next section reviews challenges in product family 
design and optimization as well as related work in this area.  
Section 3 introduces a UTC product family design problem 
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used in this work.  Section 4 presents, compare, and down-
select between the three methods that we are investigating. 
Section 5 presents and discusses the results obtained using the 
down-selected method.  Section 6 provides closing remarks.   

 
2. RELATED WORK IN PRODUCT FAMILY DESIGN 

 
As mentioned earlier, a typical product family consists 

of a set of products that share common components and/or 
modules. There are many advantages of sharing common 
components [4], including: (1) economies of scale, (2) reduced 
development time, (3) reduced SKU (Stock Keeping Units), 
(4) reduced manufacturing and service complexity, and (5) 
increased product quality due to less part variety. From a 
business perspective, these advantages can be tied to low cost 
products or increased profitability of a product line. However, 
these advantages must be carefully weighed against the 
potential disadvantages of commonality.  

Perhaps the biggest drawback to commonality is the 
increased potential for the lack of product distinctiveness [5]. 
As more components are shared, it becomes increasingly 
difficult to differentiate between product variants in the 
market [6]. Moreover, individual product performance may 
degrade significantly due to commonality, resulting in the loss 
of market share [7].  

Therefore, a product family designer must carefully 
balance the tradeoff between commonality and individual 
product differentiation. More than 40 optimization-based 
approaches have been proposed to help resolve this tradeoff 
[8]. These approaches can be generally categorized into one of 
three product family design strategies: (1) select the platform 
first and then optimize the platform and individual products, 
(2) optimize the individual products first and then select the 
platform that causes the minimum performance loss with 
maximum commonality savings, and (3) simultaneously select 
the platform while optimizing the platform and the individual 
products. There are advantages and disadvantages to each 
strategy [9]. Note that strategy (1) requires a priori selection of 
the platform. Typically, such selection is based on designer’s 
experience and, often, no systematic processes are used during 
selection. On the contrary, the three methods presented in the 
current paper are based on strategies (2) and (3), which 
provide systematic platform selection processes, see Section 4. 

Regardless of which particular strategy is employed, 
product family design optimization entails (a) exploration of 
product family design space and (b) ultimately making a 
decision regarding the appropriate level of commonality in the 
family, what we refer to as commonality selection. With 
regards to (a), involvement of multiple products significantly 
increases the dimensionality and complexity of product family 
design space, even for modest-sized product families. As 
shown in Figure 1, design space exploration of a product 
family involves not just one product model, but all the 
individual product models within a product family.  
 2
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Figure 1 Challenges in Product Family Optimization:  

Design Space Exploration  

Product family optimization consists of both 
combinatorial optimization (to select the common components 
and modules that embody the platform) and parametric 
optimization (to optimize both the platform and non-platform 
design variables). Working with mixed-type design variables 
and multiple conflicting design objectives exacerbates the 
problem further, as does having “black box” simulations with 
implicit constraints that yield many infeasible solutions within 
the design space. This makes the design space discontinuous 
such that it is difficult to apply traditional optimization 
techniques to search the design space.  

Once the design space has been explored to the best 
extent possible, then designers can proceed with (b), namely, 
determining the appropriate level of commonality for the 
product family. The challenges associated with commonality 
selection are: (1) it involves the aforementioned tradeoff 
between commonality and individual product performance, 
which needs human preference guidance, and (2) there are 
multiple valid solutions for each individual product [10], and 
commonality selection needs to examine all of the data and 
make sound judgment.  

What we have seen and experienced in practice, 
however, is that designers – already leery about enforcing 
commonality – are all the more hesitant to trust the 
optimization results, and rightly so given the challenge in 
formulating an accurate optimization problem that reflects the 
subjectivity involved in the tradeoff between commonality and 
individual performance. This reluctance also stems from (1) 
an innate, albeit unfounded, belief that any commonality will 
adversely affect the product’s performance combined with (2) 
the inability to view the tradeoffs that are occurring within the 
design space. It is one thing to visualize how an individual 
product performs relative to a known baseline design, but it is 
much more challenging to visualize how an entire family of 
products performs. Work in this area has been very limited to 
date [10], and this motivated our current study, namely, to 
promote commonality, designers must be able to visualize the 
tradeoffs that are occurring in the product family. We propose 
to take this one step further by putting designers “in the loop” 
during optimization process as shown in Figure 2, leveraging 
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recent research to support “Design by Shopping” approaches 
to engineering design [11, 12, 13, 14].  
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Figure 2 Challenges in Product Family Optimization: 

Commonality Decision Making 

An intuitive approach to make commonality decisions is 
to present all of the possible solutions to designers, and allow 
them to make commonality decisions interactively. However, 
this is easier said than done given the high dimensionality and 
sheer amount of data associated with a product family design. 
The three methods investigated in Section 4 provide three 
different approaches for exploring the design space and then 
visualizing it before making commonality decisions. Before 
introducing the methods, however, we first introduce the UTC 
product family design problem that has motivated our work. 
 
3 UTC PRODUCT FAMILY DESIGN PROBLEM 

 
Figure 3 depicts the scope of the UTC product family 

problem. Because of the proprietary nature of the products 
being designed, we restrict ourselves to terminologies such as 
UTC product and UTC product family. The family consists of 
11 product variants that are each defined by three continuous 
and two categorical variables. The overall UTC product family 
design problem includes a total of 33 continuous and 22 
categorical variables, 23 objectives (2 objectives/unit plus a 
commonality index), and more than hundred constraints. The 
constraints are internal to the system-level product simulation 
model that was developed in-house to support physics-based 
design and analysis.  The challenges involved in solving the 
UTC product family design problem are discussed next before 
being used to illustrate, compare, and contrast the interactive 
product family design methods in Section 4.  

 
3.1 UTC Product Design Space and Optimization 
Algorithm 

For the UTC product family problem, we consider five 
design variables for each product, X1 to X5, of which three are 
continuous and two are categorical. Unlike continuous 
variables, the numerical values of categorical variables do not 
have any physical significance. For example, refrigerant 
temperature is a continuous variable, as its value indicates 
hotness or coldness. On the other hand, a compressor model 
number is a categorical variable, as it does not necessarily 
contain any physical meaning.  

Handling continuous and categorical variables 
simultaneously poses computational challenges for any 
 3
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optimization environment. Either mixed-integer nonlinear 
programming (MINLP) or non-gradient based methods can 
potentially be used to solve such an optimization problem, and 
MINLP formulations for product family design are being 
investigated [15]. Success of MINLP approaches in finding 
optimal solutions typically depends on a number of factors, 
such as: starting point, convexity of design space, and 
continuity and infeasibility associated with the design space. 
The UTC product family design problem entails a significant 
level of (1) discontinuity and (2) infeasibility, making it 
inappropriate for MINLP methods. As such, most of the 
product family optimization problems are discontinuous in 
nature due to discrete choices of platform and non-platform 
variables. As for the infeasibilities, for UTC product family, 
they arise from non-convergence of the system-level 
simulation model itself – an area of ongoing investigation and 
future research. Our experience suggests that when the 
existing UTC product model is randomly sampled within the 
design space, at best 40% of the samples yield feasible 
designs. If we extend this observation to the UTC family of 11 
products, the feasibility of the design space would be (0.4)11 = 
0.004%. To put than in perspective, the initial sample size of 
GA algorithm will have to be at least 25000 to get one feasible 
solution. This significant infeasibility poses additional 
challenges to the design space exploration process, impacting 
the choice of the algorithm used for optimization.   

To overcome these discontinuities and infeasibilities, we 
selected a non-gradient-based evolutionary algorithm for the 
UTC product family problem. In particular, we use the Non-
Dominated Sorting Genetic Algorithm (NSGA-II), a popular 
multi-objective genetic algorithm (GA) developed by Deb 
[16]. NSGA-II is robust to discontinuities in the design space 
and is capable of searching for global optima. An important 
feature of the NSGA-II is its ability to explore Pareto frontiers, 
and it has been used by many researchers to solve product 
family optimization problems successfully [8]. The objectives 
for the UTC problem are discussed next. 

 

 
Figure 3 Scope of UTC Product Family Design Problem 

3.2 Objectives for the UTC Product Family 
As seen in Figure 3, each UTC product family involves 

multiple objectives. Specifically, each product has two 
objectives, with a preference for maximizing Objective 1 and 
minimizing Objective 2. This creates 22 objectives for the 
family, with the 23rd objective being commonality index 
within the product family (see Section 3.3).   

Handling multiple instances of similar objectives poses a 
unique challenge for product family design. Aggregating 
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similar objectives into a single objective seems to be an 
intuitive way of tackling the problem at hand. However, 
aggregation poses some critical computational and practical 
challenges, such as: (1) loss of individuality, (2) handling 
different scales of objectives (e.g., value of Objective 1 for 
one of the product variants may be in tens, whereas that for 
another variant may be in thousands), and (3) handling the 
relative importance between different units.  

Based on our observations, these critical challenges have 
been handled based on ad-hoc rules, which can potentially be 
a significant source of sub-optimality. Decomposition-based 
optimization strategies can be implemented to alleviate some 
of these challenges, but at the expense of added computational 
complexity and coordination cost [9]. As we shall see in the 
next section, visualization-aided decision making framework 
appears more effective than simple aggregation of objectives. 

 
3.3 Commonality Selection 

Typically, an engineering system consists of a number of 
possible commonality choices (components and modules). As 
such, comprehensive product family design involves exploring 
potential commonality options for all these components and 
modules. For this study, we will focus on selecting only one 
common feature among different UTC products; refer to as the 
commonality variable.  

Quantifying the benefits of commonality is important for 
making commonality decisions; however, quantifying the 
benefits of commonality is extremely difficult in practice. 
Hence, commonality indices are typically used as surrogates to 
qualify the resulting cost savings. A typical commonality 
index is a function of the number of components / assemblies / 
manufacturing processes that are common across different 
products in the family [17]. Khajavirad and Michalek [18] 
argue that the commonality index (CI) introduced by Martin 
and Ishii [19] captures the tooling cost savings of component 
commonality better than any other commonality metric.  
Using this index as our starting point, and given our limited 
focus on commonality variable, our commonality index for 
this product family optimization problem is expressed as a 
percent of the number of different commonality variable 
values used in the family – see Section 4.3 for more detail. 
Interestingly, in Section 4.2, we show the effectiveness of the 
visualization aided commonality selection procedure that does 
not rely on traditional commonality indices. 

 
4. INTERACTIVE VISUALIZATION METHODS  

 
In this section, we discuss the three methods that we 

used to solve the UTC product family problem. Table 1 
summarizes the aspects of each method. We discuss each 
method in detail in the sub-sections that follow. 
 4
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Table 1: Summary of Product Family Optimization 
Methods 

  Design Space 
Exploration

Commonality 
Selection   Advantage Disadvantage 

Method 
1 

DOE 
sampling 

Interactive 
visualization  Simple, 

interactive, 

No optimality 
Computationally 

intensive, 

Method 
2 

Individual 
product 

optimization

Interactive 
visualization  

Interactive, 
Pareto 

Optimal 

Limited variety 
of product 
families 

Method 
3 

Product 
family 

optimization

Formulated in 
optimization  

Unlimited 
variety in 
product 
families 

Computationally 
intensive, 

Not interactive 

 
4.1 Method 1 (Exhaustive + Visualization) 

Figure 4 shows the steps used in Method 1: exhaustive 
sampling followed by visualization.  In this method, the design 
space is explored exhaustively (and separately) for each 
product using a large number of sample points. The number of 
sample points typically depends on factors such as: (1) 
available time, (2) computational resource, (3) number of 
design variables, and (4) prior knowledge of the design space. 
Based on our experience, the first two factors dominated the 
UTC product family design problem.  

 

 
Figure 4 Exhaustive Product Family Design 

After exhaustive sampling, the input and output data for 
each product is assembled into a single file location (typically 
an Excel spreadsheet or a text document) for product family 
design. In particular, the product family data is processed to 
enable commonality decisions using any of a variety of 
filtering tools or sorting techniques. For example, when 
selecting the value of commonality variable, the designer can 
successively filter different commonality variable values to 
identify UTC products that share a particular variable value.  

According to our experience, such text-based filtering is 
unfriendly and time-consuming for designers. They prefer 
visual tools to do this processing interactively – such 
techniques are simpler, more user friendly, and allow the 
designer to explore larger design spaces with ease. Also, we 
found that the quality (tradeoff between the objectives) of the 
design selected using visualization technique is frequently 
superior to that obtained from the aforementioned text-based 
filtering techniques. Since the specific visualization techniques 
are also used in Method 2, they are discussed in the next 
section after introducing Method 2.   
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In summary, the advantages of Method 1 are that it is 
easy to use, and it retains many aspects of the engineer’s 
current design practice. While this latter point may seem 
counter-intuitive, it is critical when considering adoption of 
new techniques in current practice. Disadvantages of this 
method are that exhaustive sampling many not uniformly 
sample the objective space and the computational expense of 
the simulation model may limit the number of samples that 
can be obtained. Both of these may lead to designs that have 
poor tradeoff between design objectives, creating an 
opportunity to utilize optimization to search the design space 
more efficiently as advocated in Method 2 as discussed next.     
 
4.2 Method 2 (Individual Opt + Visualization) 

Method 2 is similar to Method 1 except that the 
exhaustive design space exploration used in Method 1 is 
replaced by systematic optimization of individual products in 
Method 2 to search the design space more efficiently. Figure 5 
shows the integration of the UTC simulation model within 
Engineous’ iSight environment [20] for performing individual 
optimization.  As discussed earlier, the UTC product design 
problem includes categorical variables, which are mapped to 
arithmetic variables before sending them to the system level 
model, as shown in Fig. 5. Next, we discuss the use of 
visualization for exploring product family design space.  

 

 
Figure 5 Optimization of Individual Product 

4.2.2 Interactive Visualization 
After individual optimization of all the products is 

completed, multi-dimensional data visualization is used to 
perform commonality selection. For this work, we employ the 
Applied Research Laboratory’s Trade Space Visualizer 
(ATSV) [12, 21, 22, 23, 24], a Java-based application that 
displays multidimensional data using glyph, histogram, 
scatter, scatter matrix, and parallel coordinate plots.  The 
ATSV is developed entirely in Java, making it cross-platform 
compatible, and offers linked views, brushing (filtering), 
preference shading, and Pareto filtering to help designers 
“shop” for the best design, which in this case, is the best 
product family given a selected level of commonality.   

In the past, ATSV has been used primarily for single 
product optimization. The uniqueness of this paper includes 
extending the use of ATSV for product family optimization. 
As such, assembling data from individual optimizations of 
different products into a single file is a part of customizing 
ATSV for product family optimization. An important outcome 
of the current research is the identification of product family-
specific capabilities for ATSV, such as data pre-processing for 
aggregating individual product data.  
 5
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Figure 6 shows the design space for five variants in the 
UTC product family. Specifically, Figure 6(a) shows 
Objective 1 vs. Objective 2 space for different UTC product 
variants, while Figure 6 (b) shows available commonality 
variable values for different variants. Interestingly, Figure 6(b) 
suggests that commonality variable can potentially be shared 
by all five product variants by setting its value high.  

This shows the simplicity and effectiveness of multi-
dimensional data visualization in exploring the design space 
for a complete product family.  Also, visualization (Fig. 6) has 
provided high-level information to the designer regarding 
possible commonality choices in the family. 

Next, we use the commonality variable data shown in 
Figure 6(b) for making commonality selections. The impact of 
commonality selection is evaluated using the Objective 1 vs 
Objective 2 data shown in Figure 6(a). 

 

 
 
 

Figure 6 Product Family Design Space Obtained from 
Individual Optimization 

4.2.2 Commonality Selection with Visualization 
 Figure 7 (a) and (c) show the effect of commonality 
variable values A and B on Objective 1 and Objective 2. Also, 
Figure 7 (b) shows the brushing controls in ATSV, which act 
as a sliding data filter to allow users to evaluate different 
commonality selections.  

In Figure 7 (b), the brushing is set for the commonality 
variable. As the brush slides from left to right, the designs that 
have the corresponding commonality variable values are 
shown in colors. On the other hand, the designs with 
commonality variable values different from that selected by 
the brush are automatically turned grey, as seen in Figure 7 (a) 
and (c). Thus, by simply sliding the brush controller, the 
designer can visually evaluate the effect of change in the 
commonality variable value on the two objectives for all the 
products in the family 

 
We further explain the commonality selection with the 

help of Figure 7 (a) and (c). By setting the brush at 
Commonality A, we generate Figure 7 (a). We can observe 
that commonality variable value A can be made common 
between all variants of the UTC products units. Additionally, 
we can also observe that commonality variable value A results 
in designs that are on the Pareto frontiers of the most UTC 
products. On the other hand, commonality variable value B 
does not result in any feasible design for product variant 3. 
Hence, commonality variable value B cannot be made 
common for the entire product family. 

 
 

(a) Efficiency vs Cost (b) Commonality vs variants
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Figure 7 Effect of Different Commonality Selection 

 
Thus we observe that by combining individual product 

optimization with interactive visualization, we have developed 
a powerful method that is simple yet effective in making 
commonality selection. Additional advantages of Method 2 
include an improved ability to find designs with better tradeoff 
resolution (all objectives show simultaneous improvement) 
over Method 1, added flexibility while still being moderately 
easy to use. A disadvantage of Method 2 is the post-processing 
of the individual product data to aggregate it for visualization. 
Also, there is a conflict of interest in that the optimization 
drives towards Pareto optimality for the individual products, 
while commonality selection may force you away from these 
individual Pareto frontiers for the benefit of the family. 
Solutions obtained from the individual optimization may not 
always be most appropriate for commonality selection, which 
is why visualization is all the more critical at this stage of the 
product family design process. 
 
4.3 Method 3 (Product Family Opt + Visualization) 

Within the context of the UTC product family design 
problem, we have also applied two product family-based 
optimization techniques: (1) all-in-one approach and (2) 
decomposition-based approach [9]. As the name implies, the 
all-in-one approach takes all the inputs and outputs of each 
individual product optimization problem, and combines them 
into a large optimization problem. A typical all-in-one 
optimization problem uses commonality index as an additional 
objective that ties all the products together.  

(a) Effect of commonality variable values A 

(c) Effect of commonality variable values B 

(b) Brushing control for commonality selection
 6 
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Formulation of the all-in-one approach for the UTC 
product family design problem is shown in Figure 8. 
Typically, an all-in-one problem scales the number of design 
variables, constraints and objectives based on the number of 
product variants. This scaling increases the complexity of the 
all-in-one optimization problem. The two objectives, Obj1 and 
Obj2, shown in Figure 8 are obtained from aggregating 
corresponding objectives from each product. Commonality 
index (CI), in this case is simply the number of distinct values 
taken by the commonality variable across the product family. 
The CI ranges from 1 to k, k indicates each product uses a 
unique commonality variable value, while 1 implies that all 
the products share the same commonality variable value.  

For all-in-one approach, visualization techniques can 
also be applied to help designers make commonality decisions. 
Figure 9 shows an illustrative scatter plot (Obj1 vs. Obj2) for a 
commonality study. We want to maximize Obj1 while at the 
same time minimize Obj2. Each point on Figure 9 represents a 
possible solution from the all-in-one optimization. Without a 
visualization tool, the designers were not able to differentiate 
between the commonality associated with each design. By 
color coding the solutions according to CI, the designers were 
able to see the clustering of the solutions based on different 
commonality levels. In Figure 9, the color code from 1 to 7 
represents different number of commonality variable values 
needed for the UTC product family. The figure indicates that 
using 3 values for the commonality variable, which 
corresponds to the green color, makes a reasonable balance 
between Obj1 and Obj2. Using only one commonality variable 
value across the whole product family increases the obj2, see 
Figure 9 - dark blue solutions. 
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Figure 8 All-in-one Product Family Optimization 
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Figure 9 Results from Product Family Optimization 

There are disadvantages associated with all-in-one 
approach. Since the approach lumps all outputs together, it 
does not considers individual performance explicitly, making 
it difficult to tradeoff performance among individual products. 
At the same time, typically, it is difficult to scale the problem 
formulation as the number of product variants increases. 
Consequently, the decomposition-based approach is an 
alternative approach to platform family optimization 
advocated by Khajavirad, et al. [9]. This approach considers 
each individual product performance explicitly, which makes 
it flexible to accommodate individual product specific 
evaluation criteria. Khajavirad, et al. [9] also hypothesized that 
the decomposition approach is likely to explore global 
optimality efficiently than the all-in-one approach.   

 
Figure 10 Decomposition-based Product Family 

Optimization 

As shown in Figure 10, in the decomposition-based 
approach, the product family optimization problem is 
decomposed into two levels: (1) commonality optimization 
and (2) individual optimization. The commonality 
optimization determines the optimal platform configuration, 
while each individual optimization explores design space for 
each product variant.  First, the commonality optimization 
problem communicates commonality decisions to individual 
optimizations. Second, an individual optimization problem 
typically uses the commonality decision as additional 
constraints, to search for a design that optimizes product 
performance. Finally, the individual optimization problems 

Individual 
Optimization 

Variance 1 

Commonality 
Optimization 

Individual 
Optimization… 

Variance k
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communicate corresponding product performance back to the 
commonality optimization problem. 

Typically, product family-based optimization approaches 
should be able to handle multiple commonality assessments 
concurrently, for example, potential commonalities for more 
that one component. According to our experience, these 
approaches also require less data post-processing.  

In the current phase of the research, we have developed 
optimization formulations for both, all-in-one and 
decomposition, approaches. Results shown in Figure 9 were 
obtained by implementing this formulation on a single 
processor computer, which were found to significantly 
inadequate from computational perspective. In the future, we 
will implement both the formulations on a parallel computing 
facility, which is needed to solve the UTC product family 
problem.  

4.4 Comparison of Methods: Our Experience 
 
This investigation of three methods had a dual purpose: 

(1) design a UTC product family and (2) determine the extent 
to which designers would embrace/accept any of the proposed 
methods. As noted in Section 2, designers have been hesitant 
when it comes to commonality selection. Our tenet was that 
having tools to visualize (1) the product family data, and (2) 
tradeoffs from sharing common components, would help 
overcome these fears. Although we cannot present specifics of 
the product family due to its proprietary nature, we share our 
experiences and observations at a relatively high level. Table 2 
summarizes our findings, and specific aspects of each method 
are discussed in the ensuing paragraphs. We note that the 
comparison of the three methods is based on our experience 
with UTC product family only. Although because of the 
limited scope of our study, we do not make any firm 
conclusions in the current paper, we expect that our findings 
should provide insight into the advantages and disadvantages 
of each method. 

 
Method 1: 

As shown in Table 2, Method 1 faired surprisingly well 
in every category, yet it did produce poor quality of designs 
(poor tradeoff resolution between different objectives). As 
such, the designs obtained from Method 1 were substantially 
inferior to those found using Method 2. Results indicate that 
the search strategy – exhaustive sampling – used in Method 1, 
failed to explore the product family design space sufficiently. 
Increasing the number of samples is an intuitive approach to 
improve design space exploration. Unfortunately, such an 
increase is ad-hoc, and may not always ensure improved 
design space exploration. Consequently, Method 1 was less 
attractive compared to Method 2. 
Copyright © 2008 by ASME 
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Table 2: Comparison of Methods 1, 2, and 3* 

 
* Reporting current state, work is still in progress 

 
 
Method 2: 

According to our experience, Method 2 was found to be 
the most attractive of all three, which was unexpected. As 
shown in Table 2, Method 2 was found to be the best method 
(and the only so far) for obtaining designs with superior 
tradeoff resolution (all objectives show simultaneous 
improvement compared to other methods), which is the 
underlying premise of this research. Because of the 
visualization–aided commonality selection, Method 2 is very 
interactive, which proved to be its biggest strength. However, 
Method 2 does require (1) availability of optimization tool and 
(2) a formal training to the designers in the use of such tools. 
On the positive side, for our application, Method 2 does not 
require specialized computational facilities (e.,g parallel 
computing). Interestingly, once the optimization was 
complete, designers were able to identify promising 
commonality options in a relatively short time (few minutes) 
using the visualization tools. 

As we recall, Method 2 uses NSGA-II as an optimization 
algorithm. Typically, NSGA-II requires customizing some of 
its parameters, such as population size and number of 
generations. For the UTC product family design problem, 
significant convergence infeasibility required a population size 
of 300 and at least 25 generations to generate a uniform Pareto 
frontier for all product variants. Since the simulation models 
were not computationally expensive, we could execute them 
overnight, providing new data in the morning. More 
computationally intensive simulations will require other 
strategies (e.g., approximations, surrogate models) when using 
individual product optimization as advocated in Method 2.  

In this paper, we demonstrated Method 2 on a three 
objective problem (objective 1, objective 2, and 
commonality). At times, the product family may involve more 
than three objectives, in which case more visualization 
windows than Figure 11 will have to be investigated 
simultaneously.  Typically, the decision making complexity 
increases rapidly with the number of objectives in any 
optimization problem, and so will in the case of Method 2. 
However, the visualization assisted interactive decision 
making aspect of Method 2 is expected to lower the 
complexity of decision making in multi-objective design 
space. Extending Method 2 to problems with multiple 
 8 
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objectives in the future would be important to understand 
decision making complexities associated with this method. 

Overall, Method 2 was found to be the most suitable 
because it is (1) simple yet effective for commonality selection, 
(2) capable of finding product family designs, and (3) is 
suitable for implementing in an environment where designers 
have limited knowledge of formal optimization techniques.  
 
Method 3: 

Method 3 is the most computationally intensive method 
of all three based on our experiences to date. Significant 
increase in computational expenses can be attributed to the 
following factors. 

 The convergence infeasibility of the entire product 
family is nearly 100% for the all-in-one approach, as all of the 
products in the family are handled simultaneously in a single 
optimization problem. Thus, for this UTC problem, Method 3 
needs substantially larger population and generation sizes. To 
date, population sizes of 500 running for more than 200 
generations have failed to yield an optimal solution or a 
solution with better tradeoff resolution than other methods. It 
is important to note that the computational cost of Method 3 is 
a magnitude higher than that of Method 2. In the case of the 
decomposition strategy, it involves solving 11 individual 
optimization problems in a single iteration of commonality 
optimization. The computational cost of decomposition 
appears to be even higher than all-in-one approach. Also, 
problem formulation and algorithm settings require 
specialized training, which does not bode well for user 
adoption.  
 
Pareto Band: 

An interesting off-shoot of Method 2 has been the 
identification of a new concept, which we refer to as the 
Pareto Band (see Figure 12). In particular, when reviewing the 
product families resulting from Method 2, we observed that 
the product family solutions typically lie in a “band” around 
individual Pareto frontiers, and typically not on the frontiers. 
The width of this band indicates the tradeoff between 
commonality and performance – the larger the band, the larger 
the tradeoff as shown in Figure 12.  The concept is similar to 
the design bandwidth idea advocated by Claesson and 
Berglund [25] However, it works in reverse in that it is driven 
by the range of solutions that is obtainable in the objective 
space versus the range of bandwidth one has in the design 
space.  

We are continuing to investigate this finding in more 
detail to understand its implications better, with the most 
notable being a potentially new objective for product family 
optimization, namely, targeting a width of this band to balance 
the tradeoff between commonality in the family and the 
individual product performance. As such, it is our tenet that 
the Pareto Band approach may find its application in other 
fields as well, such as robust optimization of a single product. 
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Figure 12 Pareto Band Approach 

 
 

5 IMPLICATIONS OF COMMONALITY SELECTION 
PROCESS  

 
After reviewing all three methods for the UTC product 

family design problem, the individual product optimization + 
visualization method appears to be the most suitable one for 
adoption with UTC’s business units. The details of the 
commonality decision making process is shown in Figure 13 
and elaborated as follows.  

Step 1: Build individual product models using 
appropriate simulation tools. 

Step 2: Integrate each model with an optimization tool. 
Step 3: Conduct individual product multiple-objective 

optimization. In this work NSGA-II is chosen as the 
optimization algorithm. 

Step 4:  Post process results from individual optimization 
such that the final data file is ready for interactive 
commonality selection. 

Step 5: Apply data filtering and visualization to make 
commonality selection.  

Step 6: Generate alternative concepts based on the 
desired level of commonality and performance. 

Step 7: Compare performance of the new concepts 
against current baseline designs.   

The designers typically need to iterate between Steps 5 
and 7 until they are satisfied with the commonality selection 
and the resulting product family.  
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Figure 13 Commonality Decision Making Process 

By working closely with designers and applying the 
commonality selection standard work for the UTC product 
family design, we have identified three new product concepts. 
The current baseline design uses four commonality variable 
values, while the new product concepts have either two or 
three commonality variable values, as shown in Figure 14. In 
Figure 14, Ci represents ith coil and Ci+Ci indicates that the ith 
coil has been used twice. 
 

 
Figure 14 Commonality concepts Selected Using Method 2 

The cost savings per year of the new product concepts 
relative to the current baseline designs are shown in Figure 15. 
Please note that the cost savings are only from material cost 
savings, and further cost savings are expected from reduction 
of design time, qualification tests, supplier volume discount, 
inventory management, etc.  
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Figure 15 Estimated Yearly Cost Savings for UTC Product 

Family 

 
6 CONCLUDING REMARKS 

 
In this paper, we presented the product family 

optimization research conducted at the United Technologies 
Research Center, and its application to a UTC product family. 
Recognizing the challenges associated with product family 
design with regard to design space exploration and 
commonality selection, this paper exploits combined 
optimization-visualization strategies to facilitate product 
family design. Three different methods are compared and 
contrasted, and recommendations are given to support UTC’s 
current product family design.  

This paper recognizes gaps occurring in many 
engineering design practices, i.e., the designer’s experience 
and adoption of design methods. Many times designers rely 
solely on their own domain knowledge to make design 
decisions, rather than seeking help from optimization or other 
advanced design methods. One of the rationales for such gaps 
is that designers typically do not have visibility inside the 
result generation process of black-box optimization methods. 
Without the capability to view solutions and visualize the 
tradeoffs, they are often leery of trusting such results.   

The individual product optimization and interactive 
visualization method (Method 2) proposed in this paper 
attempts to bridge this gap by giving designers freedom to 
interactively make commonality selection and, perhaps more 
importantly, visualize its effect on individual product 
performance. As such, the method attempts to visually present 
the effect of designers’ commonality selection on two key 
entities: (1) the gain from commonality and (2) performance 
losses incurred in individual products.  

To realize complete benefits of the individual product 
optimization and visualization method, the following 
improvements are warranted in the future: (1) the visualization 
tool, which requires substantial data possessing at present, 
needs to be customized for visualizing product family design 
space; (2) at times, the absolute benefits and corresponding 
performance losses of commonality decisions are not obvious 
until the designer post-process the concepts. Development of 
additional subroutines is required that will eliminate the need 
for post-processing outside the framework of method 2; and 
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(3) the interactivity only happens after the design spaces for 
all the products have been explored by optimization 
techniques. It would be worthwhile to explore the impact of 
providing the designers access to optimization assisted design 
exploration process.  

We expect that, by gaining such access, the designer 
might be able to guide the design space exploration process 
towards regions of interest. However, on a cautious note, such 
an approach will (1) put additional burden on the designer, and 
(2) not expose the designer to the entire design space prior to 
decision making, and could potentially constrain the 
exploration in a narrow design space. As such, the current 
ATSV offers visual steering capabilities to let the user guide 
the exploration process for a single product [24]. However, 
further development work is needed to enable above 
mentioned interactivity for the entire product family. 
Potentially, such interactivity during individual optimization 
can also be integrated within the decomposition-based 
approach, which could potentially line-up with our goal of 
developing completely interactive product family optimization 
approaches. 

Future work also includes developing robust platform 
optimization approaches that account for system variability, 
e.g., uncertain operating conditions, such that the product 
family designs are less sensitive to these variations. 
Development of robust platform optimization method would 
require combining robust design methods with platform 
optimization approaches.  

  
ACKNOWLEDGEMENTS 

 
Dr. Simpson acknowledges support from the National 

Foundation under NSF Grant No. CMMI-0620948.  Any 
opinions, findings, and conclusions or recommendations 
presented in this paper are those of the authors and do not 
necessarily reflect the views of the NSF. 

 
REFERENCES 

 
[1] Simpson, T. W., Siddique, Z. and Jiao, J., Eds., 2005, 

Product Platform and Product Family Design: 
Methods and Applications, New York, Springer. 

[2] Simpson, T. W., Marion, T. J., de Weck, O., Holtta-
Otto, K., Kokkolaras, M. and Shooter, S. B., 2006, 
"Platform-Based Design and Development: Current 
Trends and Needs in Industry", ASME Design 
Engineering Technical Conferences - Design 
Automation Conference, Philadelphia, PA, ASME, 
Paper No. DETC2006/DAC-99229. 

[3] de Weck, O., 2005, "Determining Product Platform 
Extent", Product Platform and Product Family 
Design: Methods and Applications, Simpson, T. W., 
Siddique, Z. and Jiao, J., New York, Springer, 241-
301. 

[4] Collier, D. A., 1981, "The Measurement and 
Operating Benefits of Component Part 
Commonality," Decision Sciences, 12(1), 85-96. 

[5] Robertson, D. and Ulrich, K., 1998, "Planning 
Product Platforms," Sloan Management Review, 
39(4), 19-31. 
Copyright © 2008 by ASME 

http://www.asme.org/about-asme/terms-of-use



Downlo
[6] Miller, S., 1999, VW Sows Confusion With Common 
Pattern for Models --- Investors Worry Profits May 
Suffer As Lines Compete, Wall Street Journal. New 
York, A.25. 

[7] Lutz, R. A., 1998, Guts: The Seven Laws of Business 
that Made Chrysler the World's Hottest Car 
Company, New York, John Wiley. 

[8] Simpson, T. W., 2005, "Methods for Optimizing 
Product Platforms and Product Families: Overview 
and Classification", Product Platform and Product 
Family Design: Methods and Applications, Simpson, 
T. W., Siddique, Z. and Jiao, J., New York, Springer, 
133-156. 

[9] Khajavirad, A., Michalek, J. and Simpson, T. W., 
2007, "A Decomposed Genetic Algorithm for 
Solving the Joint Product Family Optimization 
Problem", 3rd AIAA Multidisciplinary Design 
Optimization Specialist Conference, Honolulu, HI, 
AIAA, AIAA-2007-1876. 

[10] Valliyappan, S. and Simpson, T. W., 2006, 
"Visualization Strategies to Support Product Family 
Design Optimization", 11th AIAA/ISSMO Symposium 
on Multidisciplinary Analysis and Optimization, 
Portsmouth, VA, AIAA, AIAA-2006-6949. 

[11] Balling, R., 1999, "Design by Shopping: A New 
Paradigm?" Proceedings of the Third World 
Congress of Structural and Multidisciplinary 
Optimization (WCSMO-3), Buffalo, NY, University 
at Buffalo, 295-297 

[12] Stump, G., Yukish, M., Simpson, T. W. and Harris, 
E. N., 2003, "Design Space Visualization and Its 
Application to a Design by Shopping Paradigm", 
ASME Design Engineering Technical Conferences - 
Design Automation Conference, Chicago, IL, ASME, 
Paper No. DETC2003/DAC-48785. 

[13] Winer, E. H. and Bloebaum, C. L., 2001, "Visual 
Design Steering for Optimization Solution 
Improvement," Structural Optimization, 22(3), 219-
229. 

[14] Eddy, J. and Lewis, K., 2002, "Multidimensional 
Design Visualization in Multiobjective 
Optimization", 9th AIAA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Atlanta, 
GA, AIAA, AIAA-2002-5621. 

[15] Khajavirad, A. and Michalek, J., 2007, "A Single-
Stage Gradient-Based Approach for Solving the Joint 
Product Family Platform Selection and Design 
Problem Using Decomposition", ASME Design 
Engineering Technical Conferences - Design 
Automation Conference, Las Vegas, NV, ASME, 
Paper No. DETC2007/DAC-35611. 

[16] Deb, K., 2001, Multi-Objective Optimization Using 
Evolutionary Algorithms, John Wiley & Sons, New 
York. 

[17] Thevenot, H. J. and Simpson, T. W., 2006, 
"Commonality Indices for Product Family Design: A 
Detailed Comparison," Journal of Engineering 
Design, 17(2), 99-119. 

[18] Khajavirad, A. and Michalek, J., 2007, "An 
Extension of the Commonality Index for Product 
Family Optimization", ASME Design Engineering 
 11 

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
Technical Conferences - Design Automation 
Conference, Las Vegas, NV, ASME, Paper No. 
DETC2007/DAC-35605. 

[19] Martin, M. V. and Ishii, K., 1997, "Design for 
Variety: Development of Complexity Indices and 
Design Charts", Advances in Design Automation, 
Sacramento, CA, ASME, Paper No. DETC97/DFM-
4359. 

[20] Koch, P. N., Evans, J. P. and Powell, D., 2002, 
"Interdigitation for Effective Design Space 
Exploration using iSIGHT," Structural and 
Multidisciplinary Optimization, 23(2), 111-126. 

[21] Stump, G., Yukish, M. and Simpson, T. W., 2004, 
"The Advanced Trade Space Visualizer: An 
Engineering Decision-Making Tool", 10th 
AIAA/ISSMO Multidisciplinary Analysis and 
Optimization Conference, Albany, NY, AIAA, 
AIAA-2004-4568. 

[22] Stump, G., Yukish, M., Simpson, T. W., Harris, E. N. 
and O'Hara, J. J., 2004, "Trade Space Exploration of 
Satellite Datasets Using a Design by Shopping 
Paradigm", IEEE Aerospace Conference, Big Sky, 
MT, IEEE, IEEE-1039-04. 

[23] Yukish, M., Stump, G. M. and Lego, S., 2007, 
"Visual Steering and Trade Space Exploration", 2007 
IEEE Aerospace Conference, Big Sky, MT, IEEE, 
IEEE-2007-1188. 

[24] Stump, G., Lego, S., Yukish, M., Simpson, T. W. and 
Donndelinger, J. A., 2007, "Visual Steering 
Commands for Trade Space Exploration: User-
Guided Sampling with Example", ASME Design 
Engineering Technical Conferences - Design 
Automation Conference, Las Vegas, NV, ASME, 
DETC2007/DAC-34684. 

[25] Claesson, A. and Berglund, F., 2005, "Design 
Bandwidth", 2005 Innovations in Product 
Development Conference - Product Families and 
Platforms: From Strategic Innovation to 
Implementation, Cambridge, MA 

  
 

Copyright © 2008 by ASME 

: http://www.asme.org/about-asme/terms-of-use


