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Abstract We consider a simplified version of the kinetic model of simple reacting
spheres (SRS) for a quaternary reactive mixture of hard-spheres in the dilute-gas
limit. The model mimics a coloring process occurring with probability αR, described
by the reversible chemical law A1 +A2 
 A3 +A4. We provide the linearized colli-
sional operators of our model and investigate some of their mathematical properties.
In particular we obtain an explicit and symmetric representation of the elastic and
reactive kernels and use this to prove the compactness of the linearized collisional
operator in (L2(R3))4.

1 Introduction

In these proceedings we continue the work developed by the authors in the context
of the simple reacting spheres (SRS) model in the kinetic theory of chemically re-
acting gases (see [1] and [2]). The SRS kinetic theory has been initially proposed
by Marron [3] and then developed by Xystris, Dahler and Qin in a series of papers
devoted to the kinetic modeling, non-equilibrium processes, transport properties,
and extension to dense-gas limit (see [4], [5] and [6]). Some advances related to
the mathematical analysis of the SRS model have been done by Polewczak in pa-
per [7], proving the existence of global-in-time, spatially inhomogeneous, and L1-
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renormalized solutions for the SRS system, in the case that there is no mass transfer
and no alteration of molecular diameters.

In the SRS kinetic theory, the molecules behave as if they were single mass points
and the elastic and reactive collisions are assumed of hard-sphere type. Moreover,
reactive collisions occur when the collision is sufficiently energetic, that is when
the kinetic energy of the colliding molecules exceeds the activation energy of the
chemical reaction. This theory incorporates some important aspects that renders the
SRS kinetic model so interesting. For example, reactive and elastic collisions are
treated in equal pair, contrary to those other models that consider the reactive terms
as a small perturbation of the elastic ones (see, for example, [8], [9] and [10]).
As a consequence, the SRS theory results to be appropriate to deal with processes
considerably influenced by chemical reactions. Also, the dynamics of the reaction
is fully integrated into the model, so that the detailed balance condition and the
microscopic reversibility principle are built in the model. Additionally, when the
chemical reactions are turned off, the SRS kinetic model reduces to the Boltzmann
kinetic system of four species.

All these aspects motivate the authors to investigate some mathematical and
physical problems for the SRS kinetic theory.

Continuing with the work presented in paper [2], we consider here a simplified
version of the SRS model that accounts for a coloring process with probability αR
described by a reversible law of type A1 +A2 
 A3 +A4. Since this process does
not modify the mass or chemical binding energy of the reactants, the reactive terms
become straightforward and the corresponding SRS kinetic system results much
simpler than the one of the general model considered in [2]. This allows to obtain a
more tractable linearized SRS system and a better representation of the elastic and
reactive kernels. The main purpose of the present paper is to use this representation
of the kernels to prove the compactness of some of the elastic and reactive linearized
operators, in particular, operators Q(1), Q(2), T (2), and R(2), in the notation of
Section 6. On the other hand, additional techniques are required for the remaining
operators, Q(3), T (3) and R(3), and work is in progress to complete the proof of
compactness for these operators. Once the compactness of these linearized operators
is achieved, we plan to provide full spectral analysis of these operators, and this will
be used to obtain expressions for the transport coefficients, the asymptotic behavior
of the evolution operator associated with the linearized SRS system, and ultimately
hydrodynamics limits for these systems.

The paper is organized as follows. In the next section, with reference to the con-
sidered coloring process, we describe the SRS kinetic model and state its consis-
tency properties. Section 3 is devoted to the equilibrium solutions and trend to equi-
librium. In Section 4 we present the linearized SRS system and state its main prop-
erties. In Section 5 we provide the explicit representation of the kernels of the lin-
earized elastic and reactive operators and state some symmetry properties. Finally,
in Section 6 we prove the compactness of two elastic and one reactive linearized
operators.
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2 SRS kinetic system

With reference to the simple reacting spheres (SRS) model [4, 5, 6], we consider a
dilute gas mixture of four constituents, whose particles behave as if they were single
mass points. Internal degrees of freedom for the gas particles, such as vibrational
and rotational energies, are not taken into account. Particles undergo binary elastic
collisions and reactive collisions, both of hard-sphere type. Reactive collisions obey
the chemical law

A+B 
 A∗+B∗, (1)

where A, B, A∗ and B∗ indicate the constituents of the mixture. We use the indices
1,2,3,4 for the constituents A, B, A∗ and B∗, respectively. Furthermore, mi, di and Ei
denote the molecular mass, the molecular diameter and the chemical binding energy
of each i-constituent. In general, the chemical reaction results in a redistribution of
masses among the constituents, in such a way that the law of mass conservation
holds in the form

m1 +m2 = m3 +m4.

At the same time, the chemical reaction implies a rearrangement of energies (kinetic
and binding) so that a conservation law of the total energy holds. The balance of
chemical binding energy of products and reactants of the chemical reaction defines
the reaction heat, namely QR = E3 +E4−E1−E2. If QR is positive, the reverse
chemical reaction, A∗+B∗⇀ A+B, is exothermic.

In our paper [2], we described the SRS kinetic system for a general bimolecular
chemical reaction. In particular, we introduced in detail the mathematical aspects
of the SRS system and the relevant properties of the collisional operators for what
concerns the mathematical and physical consistency of the model. Our main result in
that paper is the representation of the SRS system linearized around the equilibrium
and the explicit representation of the kernels of the reactive operators.

In the present paper we consider a simplified version of the SRS system, in which
the reaction law (1) describes a coloring process with a fixed probability αR. We
assume that

m3 = m1, m4 = m2, d3 = d1, d4 = d2, E3 = E1, E4 = E2. (2)

When a hard-sphere A collides with another hard-sphere B, there is a probability αR
that they change their colors in the process A+B ⇀ A∗+B∗, without modifying
their molecular masses or diameters, and without altering their chemical binding
energies. The same probability rule is applied to the reverse reaction A∗+B∗ ⇀
A+B.

This dynamical model represents a simplified version of the SRS system that is
appropriate to describe a coloring process.
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2.1 Collisional dynamics

An elastic collision between particles from constituents i and s, with velocities v
and w, respectively, results in a change of velocities, say (v,w)→ (v′,w′), with i,s =
1, ...,4. Since the linear momentum and kinetic energy of the colliding particles are
conserved, we have

miv+msw = miv′+msw′, (3a)

miv2 +msw2 = miv′
2
+msw′

2
. (3b)

We consider elastic cross sections of hard-spheres type, given by

σ
2
is =

1
4
(di +ds)

2. (4)

Conditions (3) and (4), imply that the elastic post-collisional velocities are given by

v′ = v−2
µis

mi
〈ε,v−w〉ε and w′ = w+2

µis

ms
〈ε,v−w〉ε, (5)

where ε is a unit vector along the line passing through the centres of the colliding
particles at the moment of the impact, and µis is the reduced mass of the colliding
particles,

ε ∈ S2
+, with S2

+=
{

ε ∈R3 : ‖ε‖= 1, 〈ε,v−w〉> 0
}
, and µis=

mims

mi +ms
. (6)

On the other hand, a reactive collision in our model is a coloring event in which the
participating molecules only change, besides their velocities, their color. Thus the
reactive collision between particles from constituents i and j with velocities v and
w, respectively, results in a transition into constituents k and l with different colors
from i and j, and a consequent change of velocities to v� and w�. The indices
(i, j,k, l) can take the values (1,2,3,4), (2,1,4,3), (3,4,1,2) and (4,3,2,1). The
conservation laws of linear momentum and total energy of the colliding particles
are represented by

m1v+m2w = m3v�+m4w�, (7a)

m1v2 +m2w2 = m3(v�)2 +m4(w�)2, (7b)

where the molecular masses satisfy conditions (2). The chemical reactive cross sec-
tions associated to the coloring process are given by

σ
∗2
12 = αRσ

2
12 and σ

∗2
34 = αRσ

2
34 (8)

for the direct and inverse reaction, respectively. The post-collisional velocities asso-
ciated to the direct reaction A+B ⇀ A∗+B∗, for the constituents k and l, are given
by
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v� = v−2
µi j

mk
〈ε,v−w〉ε and w� = w+2

µi j

ml
ε〈ε,v−w〉. (9)

where (i, j,k, l)∈{(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}. The post-collisional
velocities associated to the backward reaction A∗+B∗⇀ A+B, for the constituents
i and j, are given by the same expressions (9), thanks to the assumptions (2) on the
molecular masses.

2.2 Kinetic system

Within the kinetic theory for rarefied gases, the state of the mixture is described by
the one-particle distribution functions fi(t,x,v), i = 1,2,3,4, such that fi(t,x,v) rep-
resents the probability density of finding, at time t, a particle of the Ai-constituent
occupying the position x with velocity v. Here, the time-space evolution of the func-
tions fi(t,x,v) is given by the SRS kinetic system formulated for the coloring prob-
lem, in the form

∂ fi

∂ t
+ v ·∇x fi = JE

i + JR
i , i = 1, . . . ,4, (10)

where JE
i is the elastic collisional operator, given by

JE
i =

4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

[
fi(t,x,v′) fs(t,x,w′)− fi(t,x,v) fs(t,x,w)

]
〈ε,v−w〉dεdw (11)

−αRσ
2
i j

∫
R3

∫
S2
+

[
fi(t,x,v′) f j(t,x,w′)− fi(t,x,v) f j(t,x,w)

]
〈ε,v−w〉dεdw

with (i, j)∈{(1,2),(2,1),(3,4),(4,3)}, and JR
i is the reactive collisional operator,

given by

JR
i =αRσ

2
i j

∫
R3

∫
S2
+

[
fk(t,x,v�) fl(t,x,w�)− fi(t,x,v) f j(t,x,w)

]
〈ε,v−w〉dεdw, (12)

with (i, j,k, l)∈{(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}. Velocities v′, w′ and
v�, w� are given by Eqs. (5) and (9), respectively. Moreover, the second term in the
expression (11) of JE

i , with 0≤ αR ≤ 1 in front of it, singles out those collisions that
result in a coloring process and prevent double counting of the events in the elastic
collisional integrals.

The collisional operators JE
i and JR

i satisfy some mathematical properties, which
assure the physical consistency of the model, at least from the formal point of view.

Proposition 1 The collisional operators are such that

(a)
∫
R3

JE
i dv = 0, i = 1,2,3,4;
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(b)
∫
R3

JR
1 dv =

∫
R3

JR
2 dv =−

∫
R3

JR
3 dv =−

∫
R3

JR
4 dv;

(c)
4

∑
i=1

∫
R3

ψi
(
JE

i + JR
i )dv = 0, where ψ =(ψ1,ψ2,ψ3,ψ4) is alternatively given

by ψ =(1,0,1,0), ψ =(1,0,0,1), ψ =(0,1,1,0), or by ψi =miv1, ψi =miv2,
ψi =miv3, with v1,v2,v3 being the spatial components of the velocity v, and
ψi =

1
2 miv2. �

Property (a) assures that elastic collisions do not modify the number of particles of
each color.
Property (b) states the correct exchange rates of all constituents, in agreement with
the chemical law (1) describing the coloring process.
Property (c) implies seven independent macroscopic conservation laws, for the total
number of particles of the reactant-product pairs of the form A1-A3, A1-A4 and A2-
A3, as well as for the three momentum components and kinetic energy of the whole
mixture. Proper linear combinations of the former three functions ψ in (c) reproduce
conservation of the particle number density and of total mass of the mixture. Note
that, in contrast to a non-reactive mixture, there is no mass conservation for the
individual constituents in our simple model.

The conservation laws involve macroscopic quantities defined, as usual, as appro-
priate velocity moments of the distribution functions fi(t,x,v). Paper [2] includes a
rather complete definition of the macroscopic variables for the more general SRS
system with bimolecular chemical reaction. The paper also includes the set of bal-
ance equations and conservation laws of the system. Here, for sake of brevity, we
omit the analysis of the macroscopic framework of the model.

3 Equilibrium solutions and H-Theorem

Definition 1 The equilibrium solutions of system (10), (11) and (12) are distribution
functions fi(t,x,v) satisfying

JE
i + JR

i = 0, i = 1, . . . ,4. (13)

The above definition of equilibrium solutions is motivated by the following result:

Proposition 2 For ni(t,x), u(t,x), and T (t,x) with fi(t,x,v) ≥ 0, the following
statements are equivalent:

1. Mi = ni

( mi

2πkT

)3/2
exp
(
−mi(v−u)2

2kT

)
, i = 1, . . . ,4, and n1n2 = n3n4;
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2. JE
i ({Mi}) = 0 and JR

i ({Mi}) = 0, i = 1, . . . ,4;

3.
4

∑
i=1

∫
R3

[
JE

i ({Mi})+ JR
i ({Mi})

]
log(Mi/µi j) dv = 0.

The notations JE
i ({Mi}) and JR

i ({Mi}) signify the fact that for i = 1, . . . ,4, the colli-
sional operators depend on the set one-particle distribution functions, M1, M2, M3,
and M4. Also µi j = mim j/(mi +m j) with (i, j) = (1,2),(2,1),(3,4),(4,3), and

ni =
∫
R3

fi(t,x,v)dv, i = 1, . . . ,4, (14a)

u =
4

∑
i=1

∫
R3

miv fi(t,x,v)dv
/ 4

∑
i=1

∫
R3

mi fi(t,x,v)dv, (14b)

T =
1
3k

4

∑
i=1

∫
R3

mi(v−u)2 fi(t,x,v)dv
/ 4

∑
i=1

ni, (14c)

where k is the Boltzmann constant. �

Equation n1n2 = n3n4 appearing in item 1. of Proposition 2 represents the mass
action law for our coloring system. The proof of Proposition 2 follows the same
line of arguments as the proof of Proposition 3.2 in [7]. See also the discussion in
Refs. [2, 11].

The Maxwellian distribution functions satisfy the properties stated in the next two
lemmas, which will be used in the next section.

Lemma 1. The Maxwellian distribution functions Mi appearing in Proposition 2
with the number densities ni are such that

Mi(t,x,v′)Ms(t,x,w′) = Mi(t,x,v)Ms(t,x,w), i,s = 1,2,3,4, (15)

where v and w are pre-collisional velocities of species Ai and As, respectively, and
v′ and w′ are the corresponding elastic post-collisional velocities given by (5). �

Lemma 2. The Maxwellian distribution functions Mi with number densities ni con-
strained by the mass action law are such that

Mk(t,x,v�)Ml(t,x,w�) = Mi(t,x,v)M j(t,x,w), (16)

where (i, j,k, l)∈{(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}, v and w are the pre-
collisional velocities of constituents Ai and A j, respectively, and v� and w� are the
corresponding reactive post-collisional velocities of constituents Ak and Al , respec-
tively, given by (9). �

Lemma 1 follows from the energy conservation of elastic events (3b). and Lemma
2 follows from the law of mass action and from the energy conservation of reactive
events (7b).
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The trend to equilibrium of the reactive mixture and the macroscopic irreversibility
of the coloring process are assured by an H -theorem. In fact, for a nonnegative
smooth solution fi(t,x,v) of our kinetic system (10), (11) and (12), the convex func-
tion H(t) defined by

H(t) =
4

∑
i=1

∫
Ω

∫
R3

fi(t,x,v) log
[

fi(t,x,v)/µi j
]
dvdx, (17)

is a Liapunov functional (see for example, [7]). Here, µi j is the reduced mass defined
in Proposition 2, and (i, j) = (1,2),(2,1),(3,4),(4,3). Moreover, H(t) attains its
minimum when the velocity distribution functions are Maxwellians given in Propo-
sition 2. Here, Ω is the physical evolution domain of the mixture. We assume that
Ω can be either the whole space R3 or a box with boundary conditions of periodic
type or boundary conditions of specular reflection at the walls.

4 Linearized SRS kinetic system

We assume that the evolution regime of the gas mixture corresponds to a small devi-
ation of the thermodynamical equilibrium. We then expand the distribution function
fi(t,x,v) around the Maxwellian Mi(t,x,v) with zero drift velocity u = 0 and densi-
ties satisfying the mass action law. We introduce a new unknown function hi(t,x,v)
connected to fi(t,x,v) through the expansions

fi(t,x,v) = Mi(t,x,v)+M1/2
i (t,x,v)hi(t,x,v), i = 1, . . . ,4. (18)

For each i = 1, . . . ,4, the term M1/2
i hi represents the deviation of the distribution

function fi from the equilibrium. The factors M1/2
i in front of hi, i = 1, . . . ,4, make

the linearized operator symmetric in L2 space without a need to introduce additional
weigh functions, see [13]. Inserting expansions (18) into Eqs. (10-12), and using the
properties (15) and (16), we obtain the linearized SRS kinetic system, as stated in
the next proposition. For sake of brevity, we use the notations h = (h1,h2,h3,h4)

T,
hi(v) instead of hi(t,x,v), and ĥi = M1/2

i hi.

Proposition 3 The linearized SRS kinetic system for our model is given by

∂ ĥi

∂ t
+ v ·∇x ĥi = L E

i (ĥ)+L R
i (ĥ)≡Li(ĥ), i = 1, . . . ,4, (19)

with
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L E
i (ĥ)=

4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

[
Ms(w)M

1/2
i (v)M−1/2

i (v′)ĥi(v′)

+Ms(w)M
1/2
i (v)M−1/2

s (w′)ĥs(w′)−Ms(w)ĥi(v)

−M1/2
s (w)M1/2

i (v)ĥs(w)
]
〈ε,v−w〉dε dw

−αRσ
2
i j

∫
R3

∫
S2
+

[
M j(w)M

1/2
i (v)M−1/2

i (v′)ĥi(v′)

+M j(w)M
1/2
i (v)M−1/2

j (w′)ĥ j(w′)−M j(w)ĥi(v)

−M1/2
j (w)M1/2

i (v)ĥ j(w)
]
〈ε,v−w〉dε dw, (20)

L R
i (ĥ)=αRσ

2
i j

∫
R3

∫
S2
+

[
M j(w)M

1/2
i (v)M−1/2

k (v�)ĥk(v�)

+M j(w)M
1/2
i (v)M−1/2

l (w�)ĥl(w�)−M j(w)ĥi(v)

−M1/2
j (w)M1/2

i (v)ĥ j(w)
]
〈ε,v−w〉dε dw, (21)

where (i, j,k, l) ∈ {(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}. �

We introduce the linearized collision operator L with components Li = L E
i +

L R
i , i = 1,2,3,4, where L E

i and L R
i are defined above. Such operator possesses

fundamental properties that are stated below. At this end, we consider the Hilbert
space Y =L2(R3)×L2(R3)×L2(R3)×L2(R3) endowed with the inner product de-
fined by

〈F ,G〉=
4

∑
i=1

∫
R3

Fi(v)Gi(v)dv, (22)

for F =(F1,F2,F3, f4)∈Y and G=(G1,G2,G3,G4)∈Y , with Fi,Gi (i = 1,2,3,4)
real-valued functions. Then we have the following result.

Proposition 4 The linearized collisional operator L is symmetric and non-positive
semi-definite, that is

(a) 〈L (F),G〉= 〈F ,L (G)〉, for all F ,G ∈ Y ;

(b) 〈L (F),F〉 ≤ 0, for all F∈Y . Additionally, 〈L (F),F〉=0 if and only if F is
a collisional invariant weighted by M1/2=(M1/2

1 , M1/2
2 , M1/2

3 , M1/2
4 ), that is the

null space of the operator L is 7-dimensional and is spanned by the collisional
invariants (weighted by M1/2) associated to the conservation laws of the partial
number densities n1 +n3, n1 +n4, n2 +n3, momentum components and kinetic
energy of the mixture. �
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5 Kernels of the linearized operators

In the case of a gas mixture, even if without chemical reaction, the representation of
the kernels is much more involved than in the case of a single inert gas. In fact, the
complexity of the collisional terms increase significantly when collisions between
particles of different constituents and different molecular masses are considered,
especially when chemical reactions are also allowed. The computation of the kernels
of the linearized collisional operators requires much more work and therefore the
explicit representation of the kernels becomes, in our opinion, a very difficult task.

In the last years, we have been interested in this topic and some results have been
obtained in this direction. In particular, the explicit representation of the kernels
of the SRS linearized operators, both elastic and reactive, is presented in [11], for
the general case of a quaternary mixture with reversible bimolecular reaction and
arbitrary molecular masses. The expressions are, in general, quite long and rather
complicated, because some of the transformations used to compute the kernels do
not retain the symmetry of the integral operators. A better representation has been
obtained in paper [2], for a similar chemically reactive mixture but considering that
the constituents have equal molecular masses. The expressions are more tractable
but those of the reactive operators are still intricate.

For the simplified version of the SRS model considered in the present paper, we
were able to obtain a rather simple representation of the kernels. In particular, the
expressions of both elastic and reactive kernels keep the symmetry property of the
corresponding integral operators. In this section, we give the kernels of the operators
and briefly explain the computations. We also state some symmetry properties of the
kernels useful in the next section 6.

5.1 Explicit representation of the kernels

In view of the explicit computations, we first work on the expression of the lin-
earized operator Li by manipulating expressions (20) and (21) of L E

i and L R
i . The

last two contributions of L E
i and L R

i are equal with opposite signs and thus they
cancel out. Then, using the energy conservation (3b) of elastic events we modify
those contributions appearing in the expression of L E

i with the perturbation func-
tion ĥ evaluated in the post collisional velocities v′ and w′.

Analogously, we use the energy conservation (7b) of the reactive events and the
mass action law to work on those contributions in L R

i with ĥ evaluated in the post
collisional velocities v� and w�. Using the same notations L E

i and L R
i for the

elastic and reactive contributions in the resulting expression of Li, we obtain
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L E
i (ĥ)=

4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

[
M1/2

s (w)M1/2
s (w′)ĥi(v′)+M1/2

s (w)Mi
1/2(v′)ĥs(w′)

−Ms(w)ĥi(v)−M1/2
s (w)M1/2

i (v)ĥs(w)
]
〈ε,v−w〉dε dw

−αRσ
2
i j

∫
R3

∫
S2
+

[
M1/2

j (w)M1/2
j (w′)ĥi(v′)

+M1/2
j (w)M1/2

i (v′)ĥ j(w′)
]
〈ε,v−w〉dε dw, (23)

L R
i (ĥ)=αRσ

2
i j

∫
R3

∫
S2
+

[
M1/2

j (w)M1/2
l (w�)ĥk(v�)

+M1/2
j (w)M1/2

k (v�)ĥl(w�)
]
〈ε,v−w〉dε dw, (24)

where (i, j,k, l) ∈ {(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}.

5.1.1 Kernels of the elastic operators

We split the elastic linearized operator L E
i given by (23) in several contributions,

as follows

L E
i (h) =−νi(v)ĥi(v)−Q

(1)
i (h)+Q

(2)
i (h)+Q

(3)
i (h)−T

(2)
i (h)−T

(3)
i (h), (25)

with

νi(v) =
4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

Ms(w)〈ε,v−w〉dεdw, (26)

Q
(1)
i (ĥ) =

4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

M1/2
i (v)M1/2

s (w)ĥs(w)〈ε,v−w〉dεdw, (27)

Q
(2)
i (ĥ) =

4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

M1/2
s (w)M1/2

s (w′)ĥi(v′)〈ε,v−w〉dεdw, (28)

Q
(3)
i (ĥ) =

4

∑
s=1

σ
2
is

∫
R3

∫
S2
+

M1/2
s (w)Mi

1/2(v′)ĥs(w′)〈ε,v−w〉dεdw, (29)

T
(2)

i (ĥ) = αRσ
2
i j

∫
R3

∫
S2
+

M1/2
j (w)M1/2

j (w′)ĥi(v′)〈ε,v−w〉dεdw, (30)

T
(3)

i (ĥ) = αRσ
2
i j

∫
R3

∫
S2
+

M1/2
j (w)M1/2

i (v′)ĥ j(w′)〈ε,v−w〉dεdw, (31)

where νi(v) represents a generalized collision frequency.

We work separately on each operator. It is easy to extract the kernel of each operator
Q

(1)
i and Q

(2)
i . We obtain
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Q
(1)
i (ĥ) =

4

∑
s=1

∫
R3

K(1)
is (v,w)ĥs(w)dw, (32)

Q
(2)
i (ĥ) =

4

∑
s=1

∫
R3

K(2)
is (v,w)ĥi(w)dw, (33)

with the kernels K(1)
is and K(2)

is (i,s = 1, . . . ,4) given by

K(1)
is (v,w) = πσ

2
is ‖v−w‖

√
nins

(
mims

(2πkT )2

)3/4

exp
(
−miv2+msw2

4kT

)
, (34)

K(2)
is (v,w) = σ

2
isns

( ms

2πkT

)1/2
(

mi

2µis

)2 1
‖v−w‖

(35)

×exp

[
− ms

8kT

(
v2−w2

)2

‖v−w‖2 −
ms

8kT

(
mi

ms

)2

(v−w)2

]
.

The computation of the kernel of Q
(3)
i requires more work. It results convenient to

split the operator Q
(3)
i as a summation according to the molecular masses ms and

mi. Thus, we introduce the following sets of indices

I=
{

1,2,3,4
}
,

I0=
{

s ∈ I : ms=mi
}
, I+=

{
s ∈ I : ms > mi

}
, I−=

{
s ∈ I : ms < mi

}
,

and split the operator Q
(3)
i into three contributions, namely

Q
(3)
i (ĥ) = Q

(30)
i (ĥ)+Q

(3+)
i (ĥ)+Q

(3−)
i (ĥ), (36)

where

Q
(30)
i (ĥ) = ∑

s∈I0

∫
R3

K(30)
is (v,w)ĥs(w)dw, (37)

Q
(3+)
i (ĥ) = ∑

s∈I+

∫
R3

K(3+)
is (v,w)ĥs(w)dw, (38)

Q
(3−)
i (ĥ) = ∑

s∈I−

∫
R3

K(3−)
is (v,w)ĥs(w)dw. (39)

Then we obtain the kernels of the operators (37-39) in the form
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K(30)
is (v,w) = σ

2
is (nins)

1/2
(

mi

2πkT

)1/2 1
‖v−w‖

(40)

×exp
[
− mi

8kT
(v2−w2)2

‖v−w‖2 −
mi

8kT
(v−w)2

]
, i = 1,2,3,4, s ∈ I0,

K(3+)
is (v,w) =

2πσ2
is(

ms−mi
ms+mi

)2 (nins)
1/2
(

mims

(2πkT )2

)3/4

‖v−w‖

×exp
[
− 1

4kT
(msw−miv)2

mi +ms

]
(41)

×
∫

π/2

0
cos2

θ exp

−µis

kT

(‖v+w‖
2

− ‖v−w‖cosθ

ms−mi
ms+mi

)2

+
‖v−w‖‖v+w‖cosθ (1− cosθ ?)

ms−mi
ms+mi

)]
dθ , i = 1,2,3,4, s ∈ I+,

K(3−)
is (v,w) =

2πσ2
is(

ms−mi
ms+mi

)2 (nins)
1/2
(

mims

(2πkT )2

)3/4

‖v−w‖

×exp
[
− 1

4kT
(msw−miv)2

mi +ms

]
(42)

×
∫

π

π/2
cos2

θ exp

−µis

kT

(‖v+w‖
2

− ‖v−w‖cosθ

ms−mi
ms+mi

)2

+
‖v−w‖‖v+w‖cosθ (1− cosθ ?)

ms−mi
ms+mi

)]
dθ , i = 1,2,3,4, s ∈ I−.

In the above equations (41) and (42), θ ? is the angle defined by the vectors v+w
and ε . Observe that, in (41), we have ms > mi because s ∈ I+, whereas in (42), we
have ms < mi, because s ∈ I−.

Now we proceed with the operators T
(α)

i . We obtain

T
(2)

i (ĥ) =
∫
R3

N(2)
i j (v,w)ĥi(w)dw, (43)

T
(3)

i (ĥ) =
∫
R3

N(3)
i j (v,w)ĥ j(w)dw, (44)

and the computations are similar to those developed for Q
(2)
i and Q

(3)
i . For sake

of brevity, we omit their expressions here.
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5.1.2 Kernels of the reactive operators

The calculation of the reactive kernels are similar. We start by splitting the linearized
reactive collisional operator (24) as follows

L̂ R
i (ĥ) = R

(2)
i (ĥ)+R

(3)
i (ĥ), (45)

with

R
(2)
i (ĥ) = αRσ

2
i j

∫
R3

∫
S2
+

M1/2
j (w)M1/2

l (w�)ĥk(v�)〈ε,v−w〉dεdw, (46)

R
(3)
i (ĥ) = αRσ

2
i j

∫
R3

∫
S2
+

M1/2
j (w)M1/2

k (v�)ĥl(w�)〈ε,v−w〉dεdw. (47)

We obtain

R
(2)
i (ĥ) =

∫
R3

ϒ
(2)

i j (v,w)ĥk(w)dw, (48)

R
(3)
i (ĥ) =

∫
R3

ϒ
(3)

i j (v,w)ĥl(w)dw. (49)

with the kernels given as follows. For the operator R
(2)
i the calculations are simple

and

ϒ
(2)

i j (v,w) = αRσ
2
i j
√

n jnl

( m j

2πkT

)1/2
(

mi

2µi j

)2 1
‖v−w‖

(50)

×exp

[
−

m j

8kT

(
v2−w2

)2

‖v−w‖2 −
m j

8kT

(
mi

m j

)2

(v−w)2

]
.

Concerning the kernel of the operator R
(3)
i , similarly to what we have done before

for the elastic operator Q
(3)
i , we consider three different cases. If m j = mi, and

therefore all constituents have equal molecular masses, then the kernel is given by

ϒ
(30)

i j (v,w) = αRσ
2
i j (n jnk)

1/2
(

mi

2πkT

)1/2 1
‖v−w‖

(51)

×exp
[
− mi

8kT
(v2−w2)2

‖v−w‖2 −
mi

8kT
(v−w)2

]
.

If m j > mi, the kernel is given by
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ϒ
(3+)

i j (v,w) =
2παRσ2

i j(
m j−mi
mi+m j

)2 (n jnk)
1/2
(

mim j

(2πkT )2

)3/4

‖v−w‖

×exp
[
− 1

4kT
(m jw−miv)2

mi +m j

]
(52)

×
∫

π/2

0
cos2

θ exp

−µi j

kT


‖v+w‖

2
− ‖v−w‖cosθ

m j−mi
mi+m j

2

+
‖v−w‖‖v+w‖cosθ (1− cosθ ?)

m j−mi
mi+m j

dθ .

If m j <mi, the kernelϒ
(3−)

i j is given by a similar expression to (52), but with the inte-
gral in θ extended to [π/2,π] instead of [0,π/2]. In expressions (50), (51) and (52),
the indices i, j,k, l are from the set {(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}.

5.2 Properties of the kernels

From the explicit representation of the kernels given in the previous section, it is
easy to state the properties given below.

Proposition 5 For any i,s= 1,2,3,4, the following properties of the elastic kernels
K(α)

is , α = 1,2,3, hold for all v,w a.e. in R3:

(a) K(1)
is (v,w) = K(1)

si (w,v);
(b) K(2)

is (v,w) = K(2)
is (w,v);

(c) K(30)
is (v,w) = K(30)

si (w,v);

(d) K(3+)
is (v,w) = K(3−)

si (w,v). �

The properties stated in Proposition 5 assure the symmetry of the elastic integral
operators Q

(α)
i (α = 1,2,3). See expressions (32), (33), (37), (38) and (39).

Similar properties hold for the kernels N(α)
is of the elastic operators T

(α)
i (α = 2,3),

assuring the symmetry of these operators.

Proposition 6 For any (i, j)∈ {(1,2),(2,1),(3,4),(4,3)}, the following properties
of the reactive kernels ϒ

(α)
i j , α = 2,3, hold for all v,w a.e. in R3:

(a) ϒ
(2)

i j (v,w) =ϒ
(2)

i j (w,v);

(b) ϒ
(30)

i j (v,w) =ϒ
(30)
ji (w,v);

(c) ϒ
(3+)

i j (v,w) =ϒ
(3−)
ji (w,v).

�

The properties stated in Proposition 6 assure the symmetry of the reactive integral
operators R

(α)
i (α = 2,3). See expressions (48) and (49).
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6 Compactness of the linearized collisional operator

In this section, we study the compactness of the elastic and reactive linearized oper-
ators, as operators from

(
L2(R3)

)4 to
(
L2(R3)

)4. We introduce the notation

Q(α) = (Q
(α)
1 ,Q

(α)
2 ,Q

(α)
3 ,Q

(α)
4 ), α = 1,2,3,

T (α) = (T
(α)

1 ,T
(α)

2 ,T
(α)

3 ,T
(α)

4 ), α = 2,3,

R(α) = (R
(α)
1 ,R

(α)
2 ,R

(α)
3 ,R

(α)
4 ), α = 2,3.

(53)

We extend to our mixture of reactive gases the techniques introduced by Grad (see
[12, 13]) and then revisited by Cercignani, Illner and Pulvirenti (see [14]), for one
single inert gas. However, these techniques seem to be not enough for the opera-
tors Q(3), T (3) and R(3), due to the cumbersome expressions of their terms when
the molecular masses are different. See expressions (41), (42) and (52). For these
operators, our idea is to adapt to our model the methodology recently proposed by
Boudin, Grec, Pavić and Salvarani (see [15]) for a mixture of non-reactive gases.
In paper [15], the authors consider the non-reactive Boltzmann equation for gas
mixtures and propose a new approach to treat the terms of the linearized operators
associated with particles with different masses.

Work is in progress to extend the approach of paper [15] to the similar terms ap-
pearing in our model. In the present paper we focus on the compactness of both the
elastic operator Q(1) and the reactive operator R(2). Operators Q(2) and T (2) can
be treated in a similar way to R(2).

6.1 Compactness of the operator Q(1)

We consider the elastic kernel K(1)
is of the operator Q(1) defined by expression (34).

We start with the estimate for for K(1)
is stated in the following lemma.

Lemma 3. For each i,s = 1,2,3,4, the elastic kernel K(1)
is is square integrable with

respect to w. We have∫
R3

(
K(1)

is

)2
(v,w)dw≤C(1+‖v‖2)exp

(
−miv2

2kT

)
, (54)

where C depends only on mi, ni, σis, and T .

Proof. For i,s = 1,2,3,4, we have
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∫
R3

(
K(1)

is

)2
(v,w)dw = π

2
σ

4
isnins

(
mims

(2πkT )2

)3
2
exp
(
−miv2

2kT

)

×
∫
R3

|v−w|2 exp
(
−msw2

2kT

)
dw

≤ 2π
2
σ

4
isnins

(
mims

(2πkT )2

)3
2
exp
(
−miv2

2kT

)
×
∫
R3

(|v|2+|w|2)exp
(
−msw2

4kT

)
dw

≤ C(1+ |v|2)exp
(
−miv2

2kT

)
,

and the proof is complete. �

Then we can prove the compactness of Q(1), as follows.

Theorem 1 The linearized elastic operator Q(1) is a compact operator from
(L2(R3))4 to (L2(R3))4.

Proof. It is enough to show that each Q
(1)
i (i = 1,2,3,4) is a compact operator from

(L2(R))4 to L2(R). To this end, we notice that, for fixed i and s, the operator A
with the kernel K(1)

is given by (34) is a compact operator from L2(R3) to L2(R3).
Indeed, condition (54) implies that K(1)

is ∈ L2(R3×R3), showing that the operator
A, as a Hilbert-Schmidt operator, is compact from L2(R3) to L2(R3). Since this is
true for each s = 1,2,3,4, the operator Q

(1)
i (i = 1,2,3,4) is a compact operator

from (L2(R3))4 to L2(R3), and this completes the proof. �

6.2 Compactness of the operator R(2)

Similarly to what we have done in the previous subsection, we consider the reac-
tive kernel ϒ

(2)
i j of the operator R(2) defined by expression (50). We first state the

following result.

Proposition 7 For each i, j = 1,2,3,4, the reactive kernel ϒ
(2)

i j is square integrable
with respect to w. Moreover, we have

‖ϒ (2)
i j (v, ·)‖L2(R3) ≤C, (55)

where C is independent of v.



18 Filipe Carvalho, Jacek Polewczak and Ana Jacinta Soares

Proof. From

ϒ
(2)

i j (v,w) = αR σ
2
i j
√

n jnl

( m j

2πkT

)1/2
(

mi

2µi j

)2 1
‖v−w‖

×exp

[
−

m j

8kT

(
v2−w2

)2

‖v−w‖2 −
m j

8kT

(
mi

m j

)2

(v−w)2

]

≤αR σ
2
i j
√

n jnl

( m j

2πkT

)1/2
(

mi

2µi j

)2 1
‖v−w‖

(56)

×exp

[
−

m j

8kT

(
mi

m j

)2

(v−w)2

]
,

and for any M > 0, we obtain∫
R3

(
ϒ

(2)
i j

)2
(v,w)dw ≤ C1

∫
|w|≤M

1
‖v−w‖2 dw

+C2

∫
|w|>M

exp

[
−

m j

8kT

(
mi

m j

)2

(v−w)2

]
dw <C. (57)

The first term on the right hand side of (57) is bounded since 1/‖v−w‖2 is inte-
grable on any bounded set containing v, while the second term is bounded because
exp(−cx2) is integrable over R3 for any c > 0. The constant C does not depend on
v since the expression in (57) is translational invariant. �

We also have the following estimate for ϒ
(2)

i j .

Proposition 8 For each i, j = 1,2,3,4, the reactive kernel ϒ
(2)

i j is integrable with
respect to w, and we have∫

R3

ϒ
(2)

i j (v,w)dw≤ C
(1+‖v‖2)1/2 , (58)

where C is independent of v.

Proof. See [13] or [14]. �

Then we can prove the compactness of R(2), as follows.

Theorem 2 The linearized reactive operator R(2) is a compact operator from
(L2(R3))4 to (L2(R3))4.

Proof. It is enough to show that each R
(2)
i (i=1,2,3,4) is a compact operator from

(L2(R3))4 to L2(R3). For fixed i and j, consider the operator A with the kernel ϒ
(2)

i j
given by (50).
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For M > 0, define χM to be the characteristic function of the set {v ∈R3 : |v| ≤M}.
Consider the identity A f = χMA f +(1− χM)A f for f ∈ L2(R3). Proposition 7 im-
plies that for each M > 0, the operator χMA, as a Hilbert-Schmidt operator, is com-
pact from L2(R3) to L2(R3). Now, if ‖ · ‖B(L2(R3)) denotes the operator norm in the
space of bounded operators on L2(R3), then using Schwartz inequality, Propositions
7 and 8, the operator (1−χM)A has the property (see [14], Theorem 7.2.4),

‖(1−χM)A‖2
B(L2(R3)) = sup

‖ f‖L2(R3)≤1

∫
R3

(
1−χM(v)

)[ ∫
R3

ϒ
(2)

i j (v,w) f (w)dw

]2

dv

≤ sup
‖ f‖L2(R3)≤1

∫
R3

(
1−χM(v)

)[ ∫
R3

ϒ
(2)

i j (v,w)dw

]

×

[ ∫
R3

ϒ
(2)

i j (v,w)( f (w))2 dw

]
dv

≤ C sup
‖ f‖L2(R3)≤1

∫
R3

(
1−χM(v)

)(
1+‖v‖2

)−1/2

×

[ ∫
R3

ϒ
(2)

i j (v,w)( f (w))2 dw

]
dv

≤ C
(

1+M2
)−1/2

sup
‖ f‖L2(R)≤1

∫
‖v‖>M

[ ∫
R3

ϒ
(2)

i j (v,w)( f (w))2 dw

]
dv

≤ C(1+M2)−1/2 sup
‖ f‖L2(R3)≤1

∫
R3

[ ∫
R3

ϒ
(2)

i j (v,w)( f (w))2 dw

]
dv

≤ C
(

1+M2
)−1/2

sup
‖ f‖L2(R3)≤1

∫
R3

( f (w))2 dw ≤ C
(

1+M2
)−1/2

.

Therefore, (1− χM)A→ 0 in the operator norm as M → ∞. This also yields that
χMA→ A in the operator norm as M→ ∞. Since for each M > 0, χMA is a compact
operator from L2(R3) to L2(R3), and the set of compact operators is closed in the
space of bounded operators with the operator norm ‖ · ‖B(L2(R3)), we conclude that
A is compact as an operator from L2(R3) to L2(R3). Since this is true for each
j = 1,2,3,4, the operator R

(2)
i (i = 1,2,3,4) is a compact operator from (L2(R3))4

to L2(R3). Thus, the operator R(1) is compact from (L2(R3))4 to (L2(R3))4 and the
proof is complete. �
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