
Research Journal of Applied Sciences, Engineering and Technology 4(3): 245-248, 2012
ISSN: 2040-7467
© Maxwell Scientific Organization, 2012
Submitted: December 10, 2011 Accepted: January 27, 2012 Published: February 01, 2012

245

Adapting a Heuristic Oriented Methodology for Achieving Minimum Number of
Late Jobs with Identical Processing Machines

Hadi Mokhtari
Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract: This study deals with an identical parallel machines scheduling problem where the objective is to
minimize the number of jobs be late. The decision on this problem is known as a NP-Hard case. Hence, in this
paper, a novel heuristic evolutionary technique which is based on a simple principle, easy to implement, with
excellent evolutionary performance, is designed to achieve the optimal/near optimal solution for the considered
issue. A sequence of solutions are generated by iterating over a greedy construction heuristic in terms of
destruction and construction phases and then an improving local search is conducted to more improve the search
performance. In order to assess the effectiveness of the heuristic, some simulation experiments are carried out
which reveal out performance of the proposed heuristic as opposed to the traditional evolutionary framework.

Key words: Construction/destruction, greedy operations, heuristic algorithm, late jobs, parallel machines,
production scheduling

INTRODUCTION

Most of the researches performed on parallel
machines scheduling are focused on the identical case.
For example Guinet (1993) presented a makespan
minimization model for the identical parallel machines
problem where setup times are sequence-dependent
and proposed a heuristic for solving it. Moreover,
Gendreau et al. (2001) developed lower bounds and a
divide and merge heuristic algorithm with the minmax
objective for multi machine scheduling problem with
sequence dependent setup times. Anghinolfi and Paolucci
(2007) suggested a hybrid metaheuristic integrating
several features from Tabu Search (TS), Simulated
Annealing (SA) and Variable Neighborhood Search
(VNS) for solving a parallel machines job scheduling
problem with total tardiness objective, non-zero ready
times, distinct due dates, uniform machines and setup
times. Shim and Kim (2007) focused on a scheduling
problem with n jobs and m parallel machines and
developed dominance rules and lower bounds on the
tardiness of jobs for a partial schedule, and a branch and
bound algorithm using them. Additionally, Rocha et al.
(2007) proposed a model to analyze a VNS algorithm for
parallel processor scheduling problems with sequence
dependent setup times. Compared to a greedy randomized
adaptive search procedure, the comparison results indicate
the advantages of VMS in terms of generality, quality and
speed for large instances. Biskup et al. (2008) considered
the total tardiness minimization as performance measure

of a parallel machines scheduling problem, and then
developed a new general heuristic for finding optimal or
near-optimal schedules. Driessel and Mönch (2011)
discussed a job scheduling problem on identical parallel
machines with ready times of jobs, precedence
constraints, and sequence-dependent setup times. In their
study, the total weighted tardiness that is related to on
time delivery is regarded as performance measure to be
minimized. Hu et al. (2010) developed a heuristic
algorithm which is based on a combination of the largest
total amount of processing first rule and the enhanced
smallest machine load first rule for solving parallel
machine scheduling problem with precedence constraints
and machine eligibility restrictions with makespan
measure. Only a few studies have adapted the case of
resource-dependent processing time into more complex
shop scheduling environments such as parallel machines,
flow shops, and job sops. A number of parallel machine
scheduling with additional limited resources were
presented in literature (Li et al., 2011). More recently,
Mokhtari et al. (2011) developed a multi-objective
permutation flow shop problem with resource-dependent
processing times and several type of resources available.

Problem statement: In this section we aim at defining
the problem considered in this paper. In the proposed
problem, a set of n orders {J1, J2, …, Jn}, each one has a
customer due date, is to be processed on m identical
parallel machines {M1, M2, …, Mm}. The jobs can be
processed by either of the machines. The processing times

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357382635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Res. J. Appl Sci. Eng. Technol., 4(2): 245-248, 2012

246

are sequence independent and transportation times are
negligible. Each order is to be processed without
preemption. Machines have identical velocity and can
process only one order at a given time. All the jobs are
available at the beginning of planning period and
cancelation is not allowed. All machines are available in
the planning period without breakdown. The idleness is
allowed for machines. The parameters are deterministic
and known in advance and m and n are fixed.

An iterated heuristic solution algorithm: During recent
years, different optimal seeking methods have been
applied to solve complex optimization problems.
The Iterated Greedy (IG) algorithm is a recent novel
meta-heuristic that was first proposed by Ruiz and Stützle
(2007). In its basic form, heuristic starts from some initial
solution and then iterate through a main steps. There are
two main phases in each IG method:

C Destruction
C Construction

In the destruction step, a partial solution is produced
by randomly shifting a number of elements from the
solution. In the construction step, a greedy heuristic is
applied to sequentially insert the removed elements into
the partial candidate solution until a complete solution is
reconstructed. In sequel we describe how we have devised
the method for the parallel machines scheduling problem
proposed in current paper. Figure 1 shows the general
framework of IG heuristic.

Solution representation form: A solution is presented by
two different parts. The first one which is based on
scheduling component is coded by a random key of n
numbers on interval [1, m+1), in which each number
represents the job assignment by its integer part, and
shows the sequence of jobs on machines by its fractional
part. Each job with the lower fractional part on a certain
machine, has greater priority to be scheduled. For
example, consider a problem with n = 5, m = 3 and
processing time p = {5,10,20,5,25}. A solution encoded
as RK = {3.58, 2.41, 2.06, 1.91, 3.41} can be decoded as
follows. As RK vector represents, there are five jobs and
four machines. Since just one job (J4) has the RK with
integer part 1, the job J4 is only assigned to the first
machine. Among the jobs that have RKs with integer part
2 (J2, J3), the job J3 is planned at first J2 is planned after
that based on their RKs’ fractional parts. Similarly, the
sequence of jobs on third machine is (J5 ÷ J1).

Destruction and construction functions: The
destruction and construction are two main operations of
proposed method. After that the initial solution tO is

Select the initial solution t at random;
While termination condition does not meet do

Run destruction on t to generate partial solution t1;
Run construction on t1 to generate complete solution t2;
Apply decision criterion on t2 o reach solution t;

Endwhile

Fig. 1: The general framework of IG

Set k = 0;
While k # kmax do

S = 0;
S max = 2;
While S < Smax do

Select r1, r2 at random;
If S == 0 then t* = insert (t, r1, r2)
elseif S == 1 then t* = interchange (t, r1, r2)
endif
if f(t*) # f (t)then

S = 0;
P = P1;

else
S = S +1;

endif
endwhile
k = k + 1;

endwhile
if f (t*) # f (t) then

t = t*;
endif

Fig. 2: Pseudo code of local search

chosen randomly, a string of d elements of to is randomly
eliminated from it which creates two partial solutions; the
first one of size d is called tR and contains the removed
elements. The second segment with size (n-d) is the
original one without the removed elements that is called
tD. Once two partial solutions are created, the construction
phase is commenced. Here, all elements in tR are
reinserted in tD by applying the well-known dispatching
rule Shortest Processing Times (SPT). The SPT orders the
RKs of removed elements in tD in ascending job of their
processing times. In this step it is decided whether the
reconstructed solution is accepted or not as the incumbent
solution for the next iteration.

Improving with additional local search: A local search
is a classical optimization method that consists of
generating a local optimal solution by employing moves
from one solution to another. One of the main steps when
designing a local search method is the designing of the
neighborhood structure. In other words, a neighborhood
is delineated by modifying some components of a given
solution to create a new neighboring solution. Defining an
effective neighborhood structure makes efficient move
from one solution to another. As it is a common idea in
literature, in this section we employ a simple but efficient
local search after that re-constructed solution is achieved
at each iteration of suggested algorithm. In fact, such a

Res. J. Appl Sci. Eng. Technol., 4(2): 245-248, 2012

247

hybridization of construction heuristics with local search
is common practice in stochastic local search (Ruiz and
Stützle, 2008). The adapted local search is a kind of
neighborhood search which is based on Pair-wise
Interchange and Insert operators. After that destruction
phase is performed and the new complete solution is
reconstructed, the elements of two randomly selected
positions are interchanged as Pair-wise Interchange, and
then a random position of the resultant solution is chosen
and its element is placed in a new position at random in
Insertion phase. If this new solution results in better
performance, the current solution t is replaced by the new
one. This procedure iterates until a predefined number of
replications is met. The pseudo code of suggested local
search is illustrated in Fig. 2.

Experiments and comparisons: The Genetic Algorithm
(GA) which was first introduced by Holland (1975) is one
of the powerful stochastic search techniques recently used
for solving complex optimization problems. This
algorithm imitates the procedures of survival of fittest
tenet and offspring in natural world. Typically, a random
initial population is created and probabilistic operations
are used to generate the subsequent generations. Trough
some basic operations, the algorithm directs the
population towards the optimal/near optimal solution(s).
Individuals with the better fitness have higher chance to
produce the offspring. The operation of evolution is
usually performed many times until a predefined stopping
condition is violated. In recent years, many different
metaheuristics have been conducted for solving
scheduling problems. Since the genetic algorithms have
been effectively adapted, we apply it in current paper as
a comparison metric to evaluate the effectiveness of
proposed two-layered heuristic. In this regard, a vector of
processing time compression is regarded as solution
encoding format. The population is initialized with
random generated solutions. The well-known uniform
crossover and swap-based mutation are also considered
for intensification and diversification strategy. In uniform
crossover, every gene of parents is compared together
separately and their numbers are swapped with a
predefined probability. A set of uniform random numbers
are generated on interval [0,1]. If the corresponding
number is less than 0.5, the element from first parent is
selected, and if it is larger than 0.5, the other is chosen to
be moved into offspring. Consider the following example.
A manufacturer with three numbers of available machines
receives five jobs at the beginning of planning period.

In adapted mutation operator, one element from
parent is selected randomly and its symbol is replaced
with a new random generated gene. After that a new
solution is achieved, the list scheduling heuristic is carried

Table 1: The computational results for small instances
Problem Benchmark GA Proposed heuristic
sizes ----------------------------- -----------------------------------
(n× m) Best Worst Mean Best Worst Mean
(5×2) 2.65 3.66 3.25 2.74 3.17 3.01
(5×3) 3.79 4.56 4.07 3.61 5.04 4.18
(10×2) 6.59 7.47 7.00 6.30 7.43 6.85
(10×3) 8.39 9.38 8.86 8.21 8.58 8.42
(10×5) 6.31 7.85 6.96 5.90 7.55 6.46
(10×2) 11.64 13.70 12.70 9.61 11.77 10.76
(10×3) 10.71 12.50 11.57 9.63 11.21 10.37
(10×5) 13.24 13.86 13.59 10.78 13.01 11.66
(20×2) 15.66 17.97 16.91 12.68 14.86 13.96
(20×3) 14.53 16.08 15.27 13.95 14.79 14.39

Table 2: The computational results for medium instances
Problem Benchmark GA Proposed heuristic
sizes ----------------------------- -----------------------------------
(n× m) Best Worst Mean Best Worst Mean
(30×10) 24.94 28.96 26.72 24.29 27.48 26.31
(30×15) 26.45 29.07 27.74 24.11 27.40 25.80
(30×20) 19.92 24.18 21.35 17.55 21.99 20.26
(50×10) 40.28 42.26 40.98 39.50 45.10 41.82
(50×15) 45.66 51.25 47.62 41.02 44.59 43.11
(50×20) 43.10 46.13 44.25 40.98 44.08 42.29
(70×10) 54.22 56.87 55.23 54.73 56.18 55.25
(70×15) 56.12 59.68 57.73 55.11 57.73 56.05
(70×20) 56.86 63.73 59.76 58.69 62.73 60.89
(70×20) 63.09 66.28 64.55 60.24 62.82 61.73

Table 3: The computational results for large instances
Problem Benchmark GA Proposed heuristic
sizes ---------------------------- -----------------------------------
(n× m) Best Worst Mean Best Worst Mean
(80×15) 61.45 65.45 63.89 61.53 67.53 64.24
(80×20) 67.06 70.90 69.24 63.70 67.84 66.44
(80×30) 68.11 71.88 70.01 66.66 73.11 69.21
(100×15) 73.45 84.73 80.65 74.91 80.53 78.35
(100×20) 84.47 86.63 85.48 80.71 89.86 84.67
(100×30) 84.79 89.80 87.60 84.10 88.32 86.44
(120×15) 101.54 104.99 103.83 100.26 101.68 100.92
(120×20) 99.02 101.44 100.30 95.21 97.61 96.78
(120×30) 102.64 109.68 106.80 100.40 103.71 102.43
(120×50) 108.91 111.75 109.94 103.19 107.06 105.36

out to evaluate the fitness of that solution. Once a
predefined number of generation is met, the GA is
terminated.

To carry out the comparisons, the GA was
implemented in MATLAB environment, and a set of
random benchmarks are employed. Table 1 shows the
experimental results in terms of minimum (Min.),
maximum (Max.) and average (Ave.) of results obtained
by adapted GA, and suggested heuristic.

As the results presented in Table 1-3 reveal, the
suggested heuristic outperforms the GA in strong sense.
Our heuristic could find better solutions than GA for all
the test problems except 1 small problem, 2 medium
problems, and 2 large problems. Furthermore, the average
value of best solutions obtained by our method is 44.343,
while that of GA is 45.853 which shows the superiority of
suggested IG.

Res. J. Appl Sci. Eng. Technol., 4(2): 245-248, 2012

248

CONCLUSION

In this study, an iterated heuristic is devised for
achieving near optimal schedule of job scheduling
problem in parallel machine environment. It is considered
that a common non-renewable resource is available to be
allocated to the jobs and the objective is to simultaneously
minimize the number of late jobs and the amount of
resources consumed. Motivated by the computational
complexity of this problem, a novel heuristic is devised to
cope with the problem considered. In suggested heuristic,
a sequence of solutions is generated by iterating over a
greedy construction heuristic based on destruction and
construction functions. Moreover, local search phases
have been embedded into the heuristic to refine the search
in the region close to the candidate solution and enhance
the performance of algorithm in achieving optimal/near
optimal solutions. To validate and verify the proposed
heuristic, computational experiments were conducted on
some random test problems including small, medium and
large instances. The extensive experiments and simulation
analyses demonstrate that the good performance of
proposed algorithm against GA technique.

REFERENCES

Anghinolfi, D. and M. Paolucci, 2007. Parallel machine
total tardiness scheduling with a new hybrid
metaheuristic approach. Comp. Oper. Res., 34:
3471-3490.

Biskup, D., J. Herrmann and J.N.D. Gupta, 2008.
Scheduling identical parallel machines to minimize
total tardiness. Int. J. Prod. Econ., 115(1): 134-142.

Driessel, R. and L. Mönch, 2011. Variable neighborhood
search approaches for scheduling jobs on parallel
machines with sequence-dependent setup times,
precedence constraints and ready times. Comp.
Indus. Eng., 61(2): 336-345.

Gendreau, M., G. Laporte and E. Morais-Guimaraes,
2001. A divide and merge heuristic for the
multiprocessor scheduling problem with sequence
dependent setup times. Eur. J. Oper. Res., 133:
183-189.

Guinet, A., 1993. Scheduling sequence-dependent jobs on
identical parallel machines to minimize completion
time criteria. Int. J. Prod. Res., 31: 1579-1594.

Holland, J., 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

Hu, X., J.S. Bao and Y. Jin, 2010. Minimizing make span
on parallel machines with precedence constraints and
machine eligibility restrictions. Int. J. Prod. Res.,
48(6): 1639-1651.

Li, K., Y. Shi, S.L. Yang and B.Y. Cheng, 2011. Parallel
machine scheduling problem to minimize the makes
pan with resource dependent processing times. Appl.
Soft Comp. J., VOL: pp, In Press.

Mokhtari, H., I.N.K. Abadi and A. Cheraghalikhani,
2011. A multi-objective flow shop scheduling
with resource-dependent processing times: Trade-
off between makes pan and cost of resources. Int.
J. Prod. Res., 49(19): 5851-5875.

Ruiz, R. and T. Stützle, 2007. A simple and
 effective iterated greedy algorithm for the
permutation flow shop scheduling problem. Eur. J.
Oper. Res. 177: 2033-2049.

Ruiz, R. and T. Stützle, 2008. An Iterated Greedy
heuristic for the sequence dependent setup times flow
shop problem with makes pan and weighted tardiness
objectives, Eur. J. Oper. Res., 187(3): 1143-1159.

Rocha, M.L., M.G. Ravetti, G.R. Mateus and
P.M. Pardalos, 2007. Solving parallel machines
scheduling problems with sequence-dependent
setup times using variable neighborhood search. IMA
J. Manage. Mathe. 18: 101-115.

Shim, S.O. and Y.D. Kim, 2007. Scheduling on
parallel identical machines to minimize total
tardiness. Eur. J. Oper. Res., 177(1): 135-146.

