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Abstract

An integral representation result is provided for the I'-limit of integral functionals arising in homog-
enization problems for the study of coherent thermochemical equilibria in multiphase solids.
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1 Introduction

The target of this paper is the treatment of a single scale homogenization problem, formulated in terms of an
integral energy, occurring in the description of elastic materials which exhibit an overall behavior depending
not only on the strain but also on the chemical composition.

Homogenization theory deals with composites whose overall behavior is established taking into account
their microstructure. Indeed such materials are characterized by the fact that they contain two or more
several mixed constituents, that in a first approximation, can be thought to be periodically distributed, but
even more general dependences can be considered. The size of the heterogeneities is very small compared
with the dimension of the composite: the ratio between the microscopic and the macroscopic dimensions is
the ‘so called’ homogenization parameter €.

In detail we study the asymptotic behavior, as e — 07 of integral functionals of the form

/ fe (z, Vu(z),v(x)) dx (1.1)
Q

where f. is some oscillating integrand, € is an open bounded subset in R and Vu represents the deformation
gradient of some field v belonging to some Sobolev space whose fields are p-th power summable, and v is an
Le-function, (not necessarily scalar valued in our analysis), taking into account the chemical composition of
the material.

This type of integrals find applications not only in the study of coherent thermochemical equilibria for
multiphase solids as in [29, 28], but even in the ‘directors’ theory in Elasticity, (cf. [37] in the framework of
thin structures), and, when u is a field of Bounded Variation, the integrand can be intended as a TV model
(total variation model) for image decomposition (see [40], [43]).

For energies growing linearly without considering the chemical composition of the material, these kind of
homogenization problems have been sucessively studied in [7], [23] and in [9] with an extra surface energy
term.

To understand the asymptotic behavior of the (almost) minimizers of energies in the form of (1.1), we
perform a I'— convergence analysis (see [11, 22] for a detailed description of this subject), showing that the
T'-limit still admits an integral representation. The presence of the two vector fields with different growths
lead us to the crucial notion of quasiconvexity-convexity which requires an appropriate Lipschitz continuity
property (see Proposition 2.11).
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Similar problems, when the integrands depend just on one field and exhibit a periodic behavior in the

spatial variable, i.e., fe(x,&,0) = f (f,f) or f (%,b) have been studied by many authors with different sets
of assumptions and techniques. In the first case for energies with superlinear growth, i.e.,
S —C < fz,€) < C(|€JP+1), p> 1 we refer to pioneering papers [38] and [17] (where in the scalar case
f=f(y,&) is assumed to be convex with respect to ). The vectorial case is presented in the independent
works of [10] and [41]. A wide literature has been produced since the present time with different methods,
among the others we recall the papers [1] where the two-scale convergence method (see [42]) has been adopted,
in the scalar setting, [18] with the approach of the unfolding method (see [19, 20]) and recently [30] where
the unfolding method has been used to deal with linear differential constraints. The case when the function
fe is periodic in the first variable and it has just dependence on b has been treated in [39], adopting the
two-scale convergence method.

For what concerns the multiple scale case, for example, f.(z,£) = f (z,%,%,,) we refer, in particular
to [5, 12, 14, 36], (see also [3] in the realm of thin structures). In details, in [5], with very mild hypotheses
a characterization as ¢ — 07 of a family of integral functionals of the type fQ f (x, Z, Vu(:c)) dx where
u € Whp (Q;Rd) and p > 1 is obtained, using I'—convergence techniques combined with techniques of
two-scale convergence. Moreover, we recall [4, 6] where the approach through Young measures has been
adopted.

Besides we provide an integral representation theorem for the I'-limit (up to a subsequence) of the
functionals in (1.1) (see Theorem 3.2), generalizing the results of [11, 16]. To deal with the presence of the
new vector field which is in the L? space, we use an approximation argument which allows to work with
piecewise constant functions. We emphasize that we are mainly concerned with a single scale model, i.e.,
fe(z, &)= f (%5 , b), leaving to a forthcoming paper the multiple scales case. The case p = ¢ has already
been studied in [13], in the realm of .4-quasiconvexity, even if under the continuity assumption on f on all
the variables. In the present work, we consider any p,q > 1 and we only require f to be a Carathéodory
integrand satisfying

(Hy) f(-,€,b) is Q—periodic, for all (£,b) € RN x R™ (Q being the unit cube in RV);

(Hs) there exist p, ¢ > 1 and a positive constant C' such that
1
U +18%) = C < f(z,€,0) < C(L+ €[ + [o]),

for a.e. x € Q and for every (£,b) € RN x R™,

For ¢ > 0, we define the family of functionals F. : LP(Q; R?) x L4(;R™) — R by

L Vu(z),v(z))dz  if (u,v Lp(Q): RY () R™
Fo(u,0) = /Qf(E,V (z),v(2))d f (u,v) € WhP(Q;RY) x LI(Q;R™), "
+o00

otherwise.

We are interested in studying the asymptotic behavior of F, as ¢ — 07, using I'-convergence, i.e., we want
to show that the following functionals

e—0

.7:{75}(%1)) := inf {limirif F.(ue,ve) : ue — u in LP(Q;Rd)’UE —~9in Lq(Q;Rm)}

f{+€}(u,v) := inf {limsung(uE,vg) tue — win LP(Q;RY), v, — v in Lq(Q;Rm)}

e—0t

coincide, denoting the common value by Fy.y, the I-limit of {#.}, we will provide an integral representation
for it. Indeed, cf. Theorem 1.1, we will show that it coincides with the functional Fyom : LP(Q;Rd) X
L9(;R™) — R, such that

/fhom(Vu (z),v(z))dx if w e WhP(Q;RY) x LI(;R™),
Fhom(u,v) := Q
+o00

otherwise,



where the energy density from is defined as

from(;b) := lim inf {TIN/(O T)Nf(y7£+ Vo (y),b+n(y))dy
: (1.3)

p e W(}’P((O,T)N ;Rd), n e Lq((O,T)N s R™) /0 T)Nn(y) dy = 0}.

Using the classical techniques of I'-convergence (see [22]), integral representation theorems, together with
the local Lipschitz continuity properties of integrands (see formula (2.5) below) we prove our main result.

Theorem 1.1 Let Q@ C RY be a bounded open set and let f : Q x RN x R™ — R be a Carathéodory
function. Let {F.} be the family of functionals defined in (1.2). Under the hypotheses (H1) and (Hz), the
sequence {F.} T'-converges to Fhom, as € — 07, i.e.,

Fier (U, ) = From (u,v), V (u,v) € LP(Q;RY) x LI(Q;R™).

The proof is achieved as an application of a compactness result for I'-limits of general families of integral
functionals depending on two fields, one in W? through its gradient, and the other in L? (cf. Theorem 3.2).
Moreover, we call the attention that the existence of the I-limit for the whole family in (1.2) deeply relies
on a fundamental estimate suited to the present context (see Remark 3.6). Finally we apply an integral
representation result proven in Theorem 3.1.

Moreover, in order to achieve Theorem 1.1 and to characterize the convexity properties of the limit energy
density fhom in (1.3), namely its quasiconvexity-convexity in the last two variables (see Definition 2.9) we
prove the relaxation result below.

Theorem 1.2 Let 1 < p < 0o and 1 < ¢ < oo and assume that f : Q x RN x R™ — R is a Carathéodory

function that satisfies
1

c
for a.e. © € Q, for every (&,b) € RN x R™ and for some C > 0.
Then for every u € Wh? (A;RY) | v € L9 (A;R™) and A € A(Q) we have

(1" +1b|") = C < f(2,&,b) < C 1+ €7 + |b]%)

F(uy 05 A) = /A QCY (x,Vu (), v (x)) d,

where F (u,v; A) stands for the sequential lower semicontinuous envelope with respect to WP x L% conver-
gence, namely

F(u,v; A) = inf {hmlnf [z, Vu, (z), v, (2))dz : uy, — uw in WHP(A;RY), v, — v in Lq(A;R’”)}, (1.4)

n—-+oo
and QC f stands for the quasiconvez-convexr envelope of f with respect to the last two variables (cf. (2.3)).

Remark 1.3 For what concerns the case p = 1, the same result can be achieved using the arguments of
[18, Theorem 1.3], even if it is not known a pripori that the functional in (1.4) is sequentially weakly lower
semicontinuous with respect to the Wkt x L4 topology.

On the other hand, if we introduce the sequentially weakly lower semicontinuous envelope of the functional

(u,uA)HAf(m7Vu(x),v(x))dx

with respect to the W1 x L4 topology, call this functional G, one can get that F and G coincide, so F is indeed
the sequential lower semicontinuous envelope. To see this we use the sequential weak lower semicontinuity of

(0o, 4) = | QCf@. Vula). (@) da.

which follows as in the first part of the proof of Theorem 1.2, implying that F is sequentially weakly lower
semicontinuous, and finally from the sequential weak lower semicontinuity of G one gets G < F and thus, by
definition of G, the identity.



Theorem 1.2 provides also an extension of the relaxation theorem in [29] to the case where f exhibits
also dependence on z, (see also [44] for the homogeneous constrained case).

The paper is organized as follows. In section 2 we recall the notion of I'—convergence and present
standard results on this theory. A local Lipschitz property inherited by quasiconvex-convex functions which
satisfies (Hy) is derived. In section 3 we provide an integral representation result for functionals depending
on the strain and the chemical composition in the spirit of that obtained in the nonlinear elastic setting
by Buttazzo and Dal Maso in [16] to local functionals defined in W7 (Q;R%) x L4 (©; R™). This result is
applied to obtain an integral representation for a general family of functionals (see Theorem 3.2 below). In
section 4, Theorem 1.2 and Theorem 1.1 are proved as an application of Theorem 3.2 .

2 Preliminaries

This section is devoted to recall and prove concepts and results that will be exploited throughout the paper.
In the following 2 C RY is an open bounded set and we denote by A () the family of all open subsets

of Q. The unit cube in RY, (-3, %)N , is denoted by @ and we set Q (xg,¢€) := xg + €@ for € > 0. We write
B, () for the open ball in RV centered at = with radius p > 0.

The constant C' may vary from line to line.

2.1 TI'-convergence

First we remind De Giorgi’s notion of I'-convergence and some of its properties (see De Giorgi and Dal Maso
[24] and De Giorgi and Franzoni [25]). For a more extended treatment of the subject we refer to the books
[11] and [22].

Let (X, d) be a metric space.

Definition 2.1 (I'-convergence for a sequence of functionals) Let {F,} be a sequence of functionals
defined on X with values in R. The functional F: X — R is said to be the I’ — liminf (resp. T' — limsup)
of {F,,} with respect to the metric d if for every u € X

F(u) = inf {liminf Fo(up) :un € X,up — u in X} (resp. limsup).
Thus we write
F =T —liminf F,, (resp. F =T —limsup F,,).

n—oo

Moreover, the functional F is said to be the I'—limit of {F,} if

F =T —liminf F;, =T — limsup F,,

n—oo n—oo
and we may write
F=T- lim F,.
n—oo

For every € > 0, let F. be a functional over X with values in R, F. : X — R.

Definition 2.2 (I'-convergence for a family of functionals) A functional F : X — R is said to be the
[-liminf (resp. T-limsup or T-limit) of {F.} with respect to the metric d, as € — 07, if for every sequence
en — 01

F =T —liminf F, (resp. F =T —limsupF, or F =T — lim F_ ),

n—o0o N—00 n— oo

and we write
F=T- lim(i)r+1fF5 (resp. F =T —limsup F. or F =T — lim F.).

g e—0+ e—0+t

Next we state the Urysohn property for I'-convergence in a metric space.



Proposition 2.3 Given F: X — R and e, — 07, F =T — lim F._ if and only if for every subsequence
n—oo

{enj} = {¢;} there exists a further subsequence {Enjk} = {ex} such that {F;, } T'—converges to F.

In addition, if the metric space is also separable the following compactness property holds.

Proposition 2.4 Fach sequence &, — 0% has a subsequence {5n7.} ={¢g;} such that ' — lim F., exists.
h J—00

Proposition 2.5 If F =T — lim ir+1fFE (or T' — limsup F;) then F is lower semicontinuous (with respect to
e—0 e—0t
the metric d). Clearly, if F =T — limJr F, then F is lower semicontinuous.

e—0

Definition 2.6 A family of functionals {F.} is said to be equi-coercive if for every real number A there exists
a compact set Ky in X such that for each sequence &, — 0T,

{ue X : F,, (u) <A} CK) for everyn € N.

The next result states that I'-convergence is a variational convergence, in fact under suitable compactness
conditions, there is convergence of minimizers (or almost minimizers) of a family of equi-coercive functionals
to the minimum of the limiting functional.

Theorem 2.7 (Fundamental Theorem of I'-convergence) If {F.} is a family of equi-coercive func-
tionals on X and if
F=T- lim F.,
e—0+
then the functional F has a minimum on X and

in F'(u) = lim inf F, .
mp = g, jot ()

Moreover, given €, — 07 and {u,} a converging sequence such that

lim F. (u,)= lim inf F. (u), (2.1)

n— oo n—oo ueX

then its limit is a minimum point for F' on X.

If (2.1) holds, then {u,} is said to be a sequence of almost-minimizers for F'.

Now we recall the notion of I'—convergence for sequences of functionals on a suitable rich family of sets.
Let A (2) be the family of all open subsets of © compactly included in © and € (2) any class of subsets of
) containing Ay (£2) .

Definition 2.8 We say that {F,} T—converges to F in X if F is the inner regular envelope of both T' —

liminf F}, and I' — limsup F,,, this means
n—0o0 n— oo

F (u; A) = sup {F —liminfF, (u; B) : B€ £(R), B CC A}

n—oo

= sup {F —limsupF, (u; B): B€ £(R2), B CC A}

n—oo

for any Ae A(Q).

2.2 Quasiconvexity-convexity and Lipschitz continuity

Following [29, 37], see also [28] and [27] we recall the definition of quasiconvexity-convexity.



Definition 2.9 A Borel measurable function h : RN x R™ — R is said to be quasiconvex-convex if there
exists a bounded open set D of RN such that

1
h(£,b) < ﬁ /Dh(f + Vo(z),b+ n(x)) dx, (2.2)

for every (&,b) € RN xR™, for everyn € L°°(D;R™), with [, n(z) dx = 0 and for every ¢ € WOI’Oo (D;RY).

If h : RN x R™ — R is any given Borel measurable function bounded from below, it can be defined
the quasiconvex-convex envelope of h, that is the largest quasiconvex-convex function below h:

QCh(&,b) :=sup{g(£,b) : g < h, g quasiconvex-convex}.

Moreover, by Theorem 4.16 in [37]

Qcmaw=dﬁ{]t/"M£+V¢@xb+n@»dx:wGW®“axR%nequmeL/
Dl /o :

Remark 2.10 i) It can be easily proved that, if h is quasiconvez-convex, then, both condition (2.2) and
(2.3) hold for any bounded open set D C RN,

i) It can be also showed that if h satisfies a growth condition of the type (Hs) then in (2.2) and (2.3) the
spaces L and Wol’oo can be replaced by L9 and Wol’p, respectively.

iii) In the remainder of the paper when we will say that a function f, possibly defined in  x RN x R™,
s quasiconvex-convex, this property has to be understood with respect to the last two variables.

iv) Any function quasiconvex-convez is separately convex.

Next we state and prove the local Lipschitz property inherited by a separately convex function f which
satisfies a p — ¢ growth condition. We follow along the lines the proof of Proposition 2.32 in [21].

Proposition 2.11 Let f : RN x R™ — R be a separately convex function verifying the growth condition
[F(€,D)] < c(1+ b7+ [€]F), ¥ (£,0) € RN x R™ (2.4)

for some p, ¢ > 1.
Then, denoting by p’ and ¢, the conjugate exponent of p and q, respectively, there exists a constant v > 0
such that

£ &) = FE 0 <y (1+ 17 +1gP +1g P ) I+ (14 b1 + W1 + 1) o
(2.5)
for every b,/ € R™ and for every £,& € RIXN

Remark 2.12 By Remark 2.10 iv) this result applies, in particular, to quasiconvez-convex functions satis-
fying the growth condition (2.4).

Proof. For any (£,b), (¢/,b') € RN x R™ we have

|F(6,0) — F(E,6)] < |F(E,b) — F(E, )]+ | f(€,b) — f(€,)]

Therefore to achieve the Lipschitz condition stated in the theorem, it is enough to estimate each of the two
terms appearing in the right-hand of the previous inequality.
We recall that given any convex function g : R — R, it results for every A > u > 0 and for every t € R,

that
9t £n) —9t) _ gt£A) —g(t)

1 A




We will apply these inequalities to f, for a convenient choice of A and i, when all but one of the components
of (§,b) are fixed. Let & := (&2, ...,&uxn) and define for every b € R™ and t € R

g(t) = f((£,£1),0).

Choose A := 1+ ¢+ ¢/ + |b|q/p and p := &} — & (where without loss of generality it has been assumed that
& > &1). In order to evaluate |g(&1) — g(&])| we observe that

g(&1) —g(&) =g(& + (& —&)) —g&) < (& - 51)9(51 + )‘))\ —9(&)

<l _£1|C(1 + 107 + (& +/\,€1/\)|”) + e+ b7 + [€]7)

< O+ o7 + [P~ 1€/ 1P Y)e - &),

where we have used the p — ¢ growth condition (2.4).
Arguing in the same way, one deduce that

g(&1) — g(€1) = g(&; — (& — &) — g(€&]) < C(A+ b7 + |e[P~ 1€’ P7H )& — &1,

hence )
9(&1) — g(ED)] < C(L+ 97"+ |gP~ 41|77 1) g — €. (2.6)

Consequently, since

F(E,b) — F(E,0)=F((€1,61),b) — F((&],€1),b)+

dXN—2

+ Z [f(§§_7"'a§z/’7£i+1a§i+27'"7§d><N7b)_f(fg_w"7§£7£z{+1a€i+27"'angva)]—i_ (27)
i=1
+]0(5175/27'"75:1><N—1’£cl><N7b)7f(£/7b)'

Applying to each term, in the sum above, the estimate analogous to (2.6) one obtains
/ _ -1
FE5) — 7 (€0 < & (L4 [0+l 41177 ) 6 €. (28)

Analogously, let by := (bs,..., by) and define the convex function h : R — R by h(t) := f(&, (t,b1)).
Clearly, choosing A := 1+ |b| + |V/| + \§’|p/q and p = b} — b1, (assuming b} > by) and arguing as above it
results that

[B(b1) = h(BY)| < C(L+ B4 4 [ 6] T 4 [¢] 71 [ b — .

Finally, by splitting the difference f(£’,b) — f(&',b') in m terms as in (2.7) one gets

&) = (€0 <O (141177 [0 7141177 ) [b— b, (2.9)

Putting together (2.8) and (2.9) and choosing suitably the constant v we conclude the proof. m

3 General results

In this section we provide sufficient conditions for which a functional defined in W1?(Q;R?) x LI(;R™)
admits an integral representation. Next we apply this result to represent the I'-limit of certain sequence of
functionals.



3.1 Integral representation theorem

In this subsection we prove an integral representation theorem for local functionals defined on the product of
Sobolev spaces and the space of L? functions and on open sets, by following the proof of a classical integral
representation result proved by Buttazzo and Dal Maso (see [16] and the monograph of Buttazzo [15]) dealing
with functionals defined on Sobolev spaces and open sets.

Theorem 3.1 Letp>1,q¢>1 and F: Wh» (Q;Rd) x LT(Q;R™) x A(Q) — R satisfying

i) F is local on A(Q), i.e.
F (u,v; A) = F (u,7; A)

whenever A € A(Q), andu=1, v =T a.e. on A;
it) F (u,v;-) is the restriction to A () of a Radon measure;

i11) there exists C > 0 such that
F o) <C [ (14 V@) + o @) do
A

for any w € WP (;R?), v € LI (5 R™) and A € A(Q);
i) F is translation invariant in u, i.e., for every A € A(Q), u € WP (Q;Rd) , vELI(Q;R™), ceRY,

F(u+cv;A)=F(u,v;A);

v) for every A€ A(Q), F (-, A) is sequentially weak lower semicontinuous in WP (;R?) x L7 (; R™) .
Then there exists a Carathéodory function g : 2 x RN x R™ — R such that

a) |g(2,&b)| < C (14 [£]F + |b]?) for a.e. © € Q, for any (£,b) € RN x R™;

b) for every Ac A(Q), ue WH (;R?) and v € LI (Q;R™) the following integral representation holds

Fuod)= [ o Vu(@).o@)d.

Moreover, if
F (ug,v; By (y)) = F (ug, vo; By (2)) (3.1)

for every y, z € Q, for p > 0 such that B, (y) U B, (z) C S, and for every (£,b) € RN x R™ where
ue () :=&x and v, = b, then g is independent of x and it is quasiconvez-convez.

Proof. The proof follows the same argument as Theorem 4.3.2 in [15]. We start by proving the integral
representation for piecewise affine functions u in WP (Q; ]Rd) and piecewise constant functions v. Then we
will use a density argument to get the full result.

For every & € RN and for every b € R™, we will denote by ue the affine map ug(x) = {x and by v,
the constant map v, = b.

By hypothesis iii), we can assume, without loss of generality, that F' > 0. Using hypothesis i) and i),
for every (£,b) € RN x R™ we have that F (ug, vy, ) is absolutely continuous with respect to the Lebesgue
measure.

For every z € Q, (&,b) € RN x R™ set

F (ug, vp; By (2))

g (x,&,b) :=limsup (3.2)
p—0+ ‘BP (.I)l
By Besicovitch derivation theorem g (-, &,b) € L' (2) and
F (ug,vp; A) = / g (z,&,b)dx. (3.3)
A



Moreover, from hypothesis 4i7) it follows that g satisfies the growth condition a).
Let v € WhP (Q;Rd) be a piecewise affine function and v a piecewise constant function. Precisely, let
{€Q:},c; be a finite family of open pairwise disjoint subsets of 2 such that, for some b; € R™,

u|gq, is affine, v ="b; on ;, for each i € I (3.4)

and |Q\ U,; Q| = 0.
From (3.3) and hypotheses i) — 4i7) it follows that

F(u,v;m:/Agmwm,v(m)dx

for every u and v verifying (3.4) .
We claim that g (z,-, ) is separately convex for every x € Q, i.e.,

&— 9@, &, 61,8811, - Eaxn, b) (3.5)

is convex for every ¢ € {1,...,d x N} and
br— g (z,&,) (3.6)

is convex.
We leave the proof of the claim to the end and proceed with the rest of the argument.
By Proposition 2.11, g satisfies the Lipschitz condition (2.5) which ensures g is a Carathéodory function.
By Lebesgue dominated convergence theorem

(u,v) — /Ag (z,Vu (z),v () dx (3.7)

is strongly continuous in WP (Q; Rd) x LT (Q;R™).
We will now prove the integral representation for general functions u € W1 (Q; Rd) and v € L7 (Q;R™).
Let u € WP (Q; Rd) , Ac A(Q) with Acc Qandu e Wh? (Q; Rd) be with compact support in 2 and
such that « = @ on A. We may find a sequence {u,} of piecewise affine functions converging to u strongly
in Wt (Q;Rd) .
Let v € L7(;R™). Using a density argument, we obtain that, for every n € N there exists v, €
C (;R™) such that ||, — v[|;, < L.
Let
K, :=supp?,

which is included in an open subset A, of 2, and let > 0. For § > 0 let {Q?} be a family of pairwise
disjoint open cubes with side less than § and such that K,, C Ui‘iﬁ@? C A, and let

M
md"™ = inf 0,, = min v, s0 = E mo"
i T M Un = ny n i XQ?~
@5 Qf i=1

For sufficiently small 6, it is possible to get
||st - 5nHLOQ <. (3.8)
In fact, since %, is uniformly continuous in Q then
VneN, V>0, 36,>0:|r—2| <6, = |0, (z) =0, (2')] <n.
In particular, in each cube Q?

<.
LOO

I, = Bnll o =

inéf Uy, — Up,

i



On the other hand, if z ¢ UM Q¢ then = ¢ K,, and thus 3, = s’ = 0. Hence it follows (3.8) . Observe that

1
=R =R 1 =R 0 1 1
o= 88l 0 < llo = Ballgo + [ — ]l < = + (/Q 5, () — s (x)|qu) <yl

Choosing n < % and letting n — oo we conclude that s — v in L9 (Q;R™).
Hence

n—oo n—0oo

F (u,v; A) = F (@,v; A) < liminf F (u,,s); A) = hminf/ g9 (,Vuy, (), 85 () dz
A

z/g(x,Vﬂ(z),v(m))dxz/g(z,Vu(a:),v(x))dm
A

A

where we have used the fact that F' (-, -; A) is sequentially weak lower semicontinuous and the strong continuity
of (3.7) in WhP ((;R?) x L7 (;R™). Hence

Fluvid) < [ g Va(@) o @) ds
A
for every u € Wh? (Q;R?) and v € L7 (Q;R™).

To prove the reverse inequality, let us fix w € WP (Q; Rd) , v € L1(Q;R™) and denote by
H:Whr (Q;R?Y) x L (Q;R™) x A(2) — R the functional defined by

H(@,v;A) =F (u+a,v+7;4), ¥ (7,0) € W (4 R?Y) x LI (Q;R™), A € AQ).

Since H satisfies the conditions of the theorem then there exists a Carathéodory function h satisfying the
p — q growth condition a) and such that

H(m;A):/Ah(x,vmx),a(z))dx

for every w € WP (Q; Rd) piecewise affine and T piecewise constant.
Moreover, we have proved that

H (u,7;A) < / h(xz,Vu(z),v(x))dz
A
forwe W (;R?), v € L7 (Q;R™) and A CC Q.

Fix A € A(Q) such that A CC Q and let, as before, 1 € WP (Q; Rd) be with compact support in 2 and
such that u = 4 on A, {u,} a sequence of piecewise affine functions converging to # strongly in W1? (Q; Rd)7
and v, € C* (;R™) converging strongly to v in L2 (;R™).

We obtain

/Ah(:c,O,O)dm:H(O,O;A):F(u,U;A)S/Ag(cr:,Vu(x),v(x))dm

= / gz, Vu(z),v(z))dx = lim [ g(x,Vu, (x),v, (z))dz
A A

n—00

= lim F (up,v,;A) = lim H (u, — u,v, — v; A)

< lim | h(z,Vu,(z) — Vu(z),v, (z) —v(z))dx
n—oo A

= lim [ h(z,Vu, (z) — Vi (x),v, (z) —v(z))dx

n—oo A

/ h(z,0,0)dz,
A
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where we have used in the last identity the strong continuity of
(u,v) »—>/ h(z, Vu(z),v(z)) dx
A

in WhP(Q; R?) x L4(2;R™), which follows from Lebesgue dominated convergence theorem.

Hence

F(u,v;A) = / g (z,Vu(z),v(z)) dz (3.9)
A

for every u € WP (Q;R?), v € L?(Q;R™) and A € A(Q) with A CC Q. By virtue of (3.9) on open sets
A well contained in  and by the inner regularity of the integral and of F (recall that F is a measure as
assumed in ii)), the equality F(u,v; A) = [, g(z, Vu(z),v (x))dx holds for every A € A(Q), u € WHP(Q; R?)
and v € LI(;R™).

To finish the proof it remains to prove that g (x,-,-) is separately convex.

The convexity described in (3.5) follows from Zig-Zag Lemma 4.3.5 in [15] (see also Lemma 20.2 in [22]).
To prove (3.6), we argue as in [2], Theorem 5.1. Let £ € RY and define

vp = th; + (1 — t) bo
for t € (0,1) and by, be € R™. To prove the convexity of ¢ it suffices to prove
F (ug,v5; By (x)) < tF (ug, bi; By (7)) + (1 — t) F' (ug, ba; By ()

for every fixed z € Q) and for every p > 0.

Let z € Q, A:=Q (x, %p) and define v, (y) := bix(ny) + b2(1 — x(ny)), where x denotes the charac-
teristic function of A defined in the cube @ (z, p) and extended by periodicity to RY.

By Riemann-Lebesgue lemma it follows that v,, — tby 4 (1 — )b, in the weak topology of L(B,(x); R™).

Let us consider the open set A, := {y € B,(z) : x(ny) = 1}. Since v,, are piecewise constants and
F (-,:; B, (z)) is sequentially weak lower semicontinuous in W7 (;R?) x L7 (Q; R™) we obtain

F (ug,vp; B, () < liminf F (ug, v,; B, (x))

= lim inf (/ g(y,&bl)der/ g(y,fvbz)dy>
n—0o0 B,(z)NA, B, (z)\ Ay

— by)d 1— by)d
t/Bp(I)g(y,é 1) dy + ( t)/Bp(w)g(yé, 2) dy
=1 F (ug,b1; B, (2)) + (1 —t) F (ug, ba; B, (2)) -

So we conclude that g is separately convex.
By (3.1) and (3.2) one has

F (ug¢, v; B
9 (5,68 = imsup T B W) _ g
p—0F P p—0+ P

F(usﬁvbJ;VBp (2)) _(=6b).

Thus given (£,b) € RN x R™ we have that g (y,£,b0) = g (z,€,b) for any y,z € Q. Hence g is independent
of z. By Theorem 4.4 in [29] we conclude that g is quasiconvex-convex. m

3.2 Compactness

This subsection is devoted to prove that general families of integral functionals, essentially under hypotheses
(H;p) and (Hs) (for p,q > 1) admit a subsequence I'(LP x L4 )-converging to a functional which is still a
measure and that can admit an integral formulation.

In this subsection p,q > 1.

11



First we will establish a compactness result for general families of functionals
H. : LP(Q;RY) x LI(Q;R™) x A(2) — [0, 0] of the form

H.(u,v; A) := (3.10)

) /fe(x,Vu (z),v(z))dr  if (u,v) € WHP(A;RY) x LI(A;R?),
A
400 otherwise,

where f. : Q x RN x R™ — R is a family of Carathéodory functions satisfying uniform p — ¢ growth and
p — q coercivity conditions as in (Hj), namely

SR+ 7)< fula, £,8) < O+ [€l? + pl7) (3.11)

for some C' > 0, for a.e. x € Q and for every (£,b) € RN x R™.

This compactness result will ensure the existence of I'—convergent subsequences of H., whose I'—limit
admits an integral representation in WP (Q; Rd) x L9 (;R™).

Let H,  and H{ij} be defined in L? (;R?) x L7 (;R™) x A(Q) by

Hi (u,v; A) := inf {liminf H.,(uj,vj; A) tuj — win LP(A;RY),v; — v in Lq(A;Rm)} )

J—00

HEFEJ_} (u,v; A) := inf {limsup H., (uj,vj; A) :uj — uwin LP(A; R%),v; — v in Lq(A;Rm)} .

j—00
If H?‘gj} (u,v; A) = Hi (u,v; A) for each A € A(Q), for every u € WP (;R?) and v € L7 (Q;R™) then
we denote Hy. .y (u,v;A) :=T — lim H (u,v;A).

J—00 X

Theorem 3.2 Let f. : Q x R>*N x R™ — R be a family of Carathéodory functions satisfying (3.11). Let
H_ be the functional defined in (3.10). For every sequence {e,} converging to zero there exists a subsequence
{en,} = {&;} such that Hy.,y exists for allu € WP (Q;R?), v € L7 (4 R™) and A € A(Q).

Moreover, there exists a Carathéodory function gisit : Q x RN x R™ — R such that

Hie,y (w03 A) = /Ag{sj} (z,Vu(z),v(z))dz

for every w € WP (Q;R?), v € LT (;R™), A€ A(Q) and
| (2. 6,0)| < € (1+ 16l + pl)

for a.e. x € Q, and for every (£,b) € RN x R™,

Let C be a countable collection of open subsets of  such that for any 6 > 0 and any A € A(Q) there
exists a finite union Cy of disjoint elements of C satisfying

Ca C A,
LN (A) < LV (Cy) + 6.

We may take C as the set of open cubes with faces parallel to the axes, centered at x € QN Q" and with
rational edge length. We denote by R the countable collection of all finite unions of elements of C, i.e.,

k
R::{UCi:keN, ciec}.

i=1

We start by proving that the I'—limit exists for any element C' € R.

12



Lemma 3.3 For every sequence {e,} converging to zero there exists a subsequence {Enj} = {6j}
(depending on R) such that
Hiey (u,v;C) (3.12)

exists for all w € LP (Q;R?), v € L1(Q;R™) and C € RU{Q}.

Proof. Observing that the dual of LP(£;RY) x L(Q;R™) is a separable metric space, by virtue of Ku-
ratowski’s compactness theorem (see Theorem 8.5 and Corollary 8.12 in [22]) and via a diagonal argu-
ment, we may say that there exists a subsequence {¢;}, depending on R such that the I-limit of H.,
exists for every C € RU{Q}, and (u,v) € LP(;RY) x LI(Q;R™), and, moreover, this T-limit is 400 in
(LP(; R\ WEP(Q:RY)) x LI(;R™). m

In order to conclude the proof of Theorem 3.2, we prove that the I'-liminf is the trace of a Radon measure.
To this end we will invoke the following result (see [33]) which is based on De Giorgi-Letta’s criterion (see
[26]).

Lemma 3.4 (Fonseca-Maly) Let X be a locally compact Hausdorff space, let I1 : A(X) — [0,00] be a set
function and p be a finite Radon measure on X satisfying

i) (A) <I(B) +1I(A\C) for all A, B, C € A(X) such that C CC B CC 4;
it) given A € A(X), for alle > 0 there exists A. € A(X) such that A. CC A and I1 (A\A.) < ¢;
iii) TL(X) > o (X)
w) M(A) < p(A) forall Ac A(X).

Then, TT = p| 4(x)-

We are now in position to prove that the I' — liminf is the trace of a Radon measure.

Lemma 3.5 For each u € WP (;R?) and v € L1 (Q;R™), for every A € A(Q), let {¢;} be the sequence
given by Lemma 3.3. Then there exists a further subsequence {¢;,} = {ex} such that H{;k}(u,fu, -) is the
restriction to A () of a finite Radon measure.

Proof. The proof develops following by now standard techniques (see for instance [8]). We will see that we
are in conditions to apply Lemma 3.4 with II(-) := Hi (u,v,-) for some sequence {ex} to be chosen.

Let A, B, C € A(X) such that C cC B cC A, fix p > 0 and find {u;} C LP(Q;R?) and {v;} C
L9(;R™) such that u; — u in LP(A\ C;R%), v; — v in LY(A\ C;R™) and

lim inf fe, (@, Vu; (2),v5 (x))de < H,_(u,v; A\ C) +1n. (3.13)
j—00 A\é J {e;}

Moreover, up to a subsequence (not relabeled), we may assume that

lim fe; (2, Vu; (z),v; (z)) dz = lim inf fe; (@, Vuj (z),v; (x)) da. (3.14)
J—00 A\é J—00 A\a

Let By € R be such that C cC By CC B, in particular £ (9By) = 0. Then, by Lemma 3.3, H{_Ej}(u, v; Byp)
is a T-limit, and thus there exists a sequence {u/} C WP(;R?) and {v}} C LI(Q;R™) such that u} — u
in LP(By,R?), v, = v in LY(By; R™) and

lim / fe; (2, Vuj (), vj (2)) dz = H_ (u,v; Bo). (3.15)
i—oo Jp, J

For every u € L? (€;R?) and © € L7 (€; R™) consider the functional

G(a,m; A) = /A (1+[Va @) + 5 (@)]) da.
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By virtue of the coercivity condition (3.11), up to a subsequence, there exists a nonnegative Radon measure
v such that v;, = G(uj,vj,;-) + G(uj, v} ;) restricted to Bo\C' converges weakly star in the sense of
measures to v.

We claim that

Hi,

for all A, B,C € A () such that C CC B CC A, for every u € WP(£; R?) and for every v € L({; R™).

For every t > 0, let B, := {z € By : dist(z,0By) > t}. For 0 < 6 <’ < n such that v (0B,,) = 0, define
Ls := Byy_25 \ Byys and take a smooth cut-off function ps € C§°(B,,—s;[0,1]) such that ¢5(z) =1 on B,,.
As the thickness of the strip is of order J, we have an upper bound of the type ||Vs|[z~(B,_5) < %.

Define

} (u,v; A) < H{;k} (u,v; B) + H{;k} (u,v; A\é)

U = upps + (1 — @s)ur, Uy = v,0s + (1 — p5)vg.

Clearly {tu} and {v}} converge strongly to u in LP(A;R?) and weakly to v in LI(A; R™), respectively.
By (3.11) it follows that

/ fou (2, VI (2) Ty (2)) daz < / fou (2, Vit (2) 0 () d + / foo (2, Vg (2) vy (2)) d
A B, A

\ants
C

+ C(G i i L) + Gluns v L) + 5 [ I (@) = we () P
Ls

< [ folw Vi (2) 0} (@) de + / el Vg (2), v (2)) da
By A\C
+ C(G(u, vi; Ls) + G(ug, vk; Ls)) + 5%/L [u), () — ug, () |Pda.

Passing to the limit on k& and using (3.13), (3.14) and (3.15), we have

H{;k}(m v; A) < ’/‘-l{;k}(u7 v; By) + erk}(u, v; A\ C) +n+ Cv(Ls)
< H{_Ek}(u, v; B) + 'H{_Ek}(u, v; A\ C) +n+ Cv(Ls),

where it has been used the fact that the I'-liminf of a sequence is below the liminf on any subsequence.
Letting 6 — 0" we obtain

H{_Ek_}(u, v; A) < H{_Ek}(u, v; B) + H{_Ek}(u, v; A\ C) +n+ V(B,,/\E,,).

Letting n — 0" and since v(9B,;) = 0 we have proven the subadditivity of Hin (u,v; ).
To establish condition 4i) in Lemma 3.4 let A € A(Q), ¢ > 0 and consider A, € A(Q) such that A, C A
and

/ 1+ | Vu (@) + v (2)]?) de < %, (3.16)
AVAL

where C' is the constant given by condition (3.11).
Due to the growth conditions (3.11) and (3.16)

iy (o0 ) S limind [ g (@ Vo) 0 @) de

€

<C |  (1+|Vu(@)]+v(x)])ds <e.
A\AL

Hence condition %) holds.

Up to a subsequence, there exists {ex} such that up — u in WP(Q;R?), v, — v in LY(Q;R™) and
H{_Ek}(u,v;Q) = limp—oo [ for (@, Vg (2) , vk () dz. Let py, := fo, (@, Vg, vp) LV [Q and let p be defined,
up to a subsequence, as the limit of {p} in the sense of measures.
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By definition, it follows that

H{_Ek}(u, v; A) < lim inf/ fer (z, Vg (z) v () do < p(A)
A

k—oo

and we attained iv).
Finally, to establish éi7), take ' CC Q. Since {ur} converges weakly star in the sense of measures to u
then

k—o0

) < lim /fsk x, Vuy (z), vk, (z)) do =Hiy (u,v;92).
Therefore
1 (Q/) S H{_€k} (u7 U3 Q)
for all ' cC Q. Hence
As a consequence of Lemma 3.4 we conclude that
M, (0,05 4) = o (4)
foral Ac A(Q). m

Remark 3.6 Following the argument of Proposition 12.2 in [12] and assuming (3.11) we may conclude that
H. satisfies the LP x L1— fundamental estimate. Precisely, for every U, U', V € A(Q) with U’ CC U and
o > 0 there exist My > 0 and €, > 0 such that for all u, w € L? (Q;Rd), v, T € LI(Q;R™) and ¢ < e,
there exists a cut-off function ¢ € C§° (U;[0,1]) such that ¢ = 1 on U’ and there exists v > 0 such that
Ul :={zeU:dist(z,U’) <r} and

H. (pu+ (1 =) u,xurv+ (1= xu) ;U UV) < (1+0) (He (u,v;U) + He (u,5;V))
+ M, lu(z) —u(z)]P dz+ o
(UNV)\U’
where xu: stands for the characteristic function of U]. By Proposition 18.3 in [22] we conclude that for every
A,B CG.A( ) such that C CC BCC A

+
H{e} ( {e} (
Proof of Theorem 3.2. Since the dual of WP (Q;R?) x L4(2;R™) is separable, by virtue of the coercivity
condition (3.11), we may apply Theorem 16.9 in [22], which ensures that every sequence of increasing
functionals {H.,} admits a subsequence {e,, } = {¢;}, T-converging to a functional H, namely the inner
regular envelope of HE y and H{t;} coincide with H for every A € A(Q2). On the other hand, by virtue of

u,v; A) < H{t (u,v; B) +H{ . (u,v; A\ O). (3.17)

Lemma 3.5, we have that H ! is a measure hence coinciding with its inner regular envelope. Moreover,
arguing as in the proof of Proposmon 18.6 in [22], by virtue of (3.17) and the growth condition (3.11) we
may conclude that H coincides also with H (e, thus concluding the existence of the I'- limit.

To prove that Hy. ) admits an integral representation we will verify that the hypotheses of Theorem 3.1
hold.

Hypotheses i) and v) are consequence of the definition of the I'=limit. Hypothesis i) comes from (3.11)
and iv) is easily attained. Condition #3) follows from Lemma 3.5. m

Next we prove, using the same techniques as in [8], that H{;} is independent of the boundary data for v
constant. This result will be useful in order to achieve Theorem 1.1.

Lemma 3.7 Let H} : wlp (Q;Rd) x L9 (4 R™) x A(Q) — [0,00) be defined by
Hiy (u,v; A) := inf {liminfhﬁE (e, ve; A) s ue — w in LP (A;RY) | v, — v in L9 (A;R™)

e—0*t
Uus = u on a neighborhood of A, /v5 (x)dz = /v (x) dz} .
A

A
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Then, under the growth condition (3.11),
Hioy (u, 053 A) = Higy (u, 053 A)
for every A € A(Q), u e Whp (Q;Rd) , b e R™ where vy, = b.

Contrary to the case where there is no dependence on v, we emphasize that in general one cannot expect
to have ’H{_E} (u,v; A) = 'H?s} (u,v; A) for every v. However, the achievement of the lemma will be enough to
prove Theorem 1.1, since in the proof it will be sufficient to apply the fundamental theorem of I - convergence
just on constant functions v.

Proof. Clearly H{;} (u,v; A) < H’{‘E} (u,v; A) for every u € Whp (A; Rd) ,v€ LT (A;R™) and A € A(Q).
To prove the reverse inequality, let

Gp,q (u, 0,73 A) ¢:/A(1+IVU(Jf)Ilev(ﬂf)lJr?")q)dx

be defined for every v € Whp (A;Rd), v e LI(AR™), r e R" and A € A(Q). Given p > 0 consider
us € WhHp (A; Rd) , Ve € LT(A;R™) such that u, — w in LP (A;]Rd) , Ve = v in L7 (A;R™) and

Hiy (u,vp; A) + p > liminf H, (u,ve; A) .

e—0*t

Due to the coercivity of H., we may extract subsequences {u,, } and {v., } such that

liminfH, (ues,ve; A) = lim He, (ue,,ve,; A)
e—0Tt k—oo

and the sequence of measures vy = Gp 4 (Ue,,Ve,, 0;-) + Gp g (U, vp, 1;-) converges weakly star in the sense
of measures to some Radon measure v.
For every t > 0, let A; := {x € A: dist (z,04) > t}, fix n > 0 and for every 0 < 2§ < 7' < n such that
v (0A,) = 0 we define Ls := A,_25\A,+s. Consider a smooth cut-off function g5 € C§° (4,—s;[0,1]) such
that ¢5 = 1 on Ay and [[Vs]| o4y < g
Define
Uy, 1= Ueps +u (1 — @s), ey = Ve, XA, + ¢ (1—xa,)

where
_Ja (v () = vey (2) X4, (2)) da

S T, @) da

Clearly, w,, — w in L? (A; Rd) and %, = u on a neighborhood of JA. Moreover, ¢, — b, U, — v in

L7(A;R™) and
/Aﬁsk (z) doz = /Avb(x) dx.

Hsk (ﬂskvﬁsk;A) < Hsk (ﬂskvgsk;An) + Hsk (ﬂsk,@sk;A\anﬁ) + Hsk (ﬂskaﬁskal—@)

Ce

Thus

< Hep (Uey, Ve Ap) + He, (u, CSMA\Z?F(?) +C 1+ |V, ()" + Ve, (x)|*) da
Ls

< Hep (e, v 3A40) +C | (14 V(@) + (Jve(2)] + 1)) d
A\An—é

+C [ (14 |V, (z)” +[ve, (2)|7) dz.
Ls

Since
/ Ve, (@) dz < C / V@) + [V, @) + Vs (2) © (uey (2) — u ()] do
Ls Ls

1
SC [ Vu@) + Ve, (@) + 55 lue, (2) —u (@) do
Ls
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and

[ @it [ pa@des [ et [ e @des [ o)+t de
Ls L(sﬁAn Lé\A‘,] Ls Ls

we have

— C
H., (Te,,Uey; A) < Hep (Uey,, Vep; Ay) + Cug (A\An_g) + Cvi (Ls) + 577/ lue, () —u(z)P dz.
Ls

Letting kK — oo and § — 07 in this order one obtains

likm inf He, (Ue,,0e,; A) < Hig (u,vp; A) + p+ Cv (A\A,) + Cv (04,) .

Since v (0A,y) = 0 letting n — 0T one obtains

Hiey (usvp; A) < likniioréf He, (e, Ve, ; A) < Hiy (w06 4) + p.

Letting p go to zero we attain the claim. =

4 Applications

In this section we apply the integral representation results and the compactness theorem for the I'-convergence
of a family of general integral functionals obtained in the previous section to provide an explicit integral
representation result for the I'-limit of (1.2).

4.1 Relaxation in W' x L%
Let f be a Carathéodory function as in the statement of Theorem 1.2 and define F : WP (Q;Rd) X
LT(Q;R™) x A(Q) — R by
F(u,v;A) = /f(:r,Vu (z),v(z)) du.
A

Considering the relaxed functional defined as in (1.4), our goal is to find an integral representation for F.
The proof is based on blow-up techniques developed in [34]. We refer also to [32]. We also emphasize that
the relaxation theorem below holds for p > 1 and ¢ > 1. Moreover, the presence of two fields will require in
the proof below the use of the decomposition lemma (see [35] and [13]) in two times, first for the gradients
and then for the unconstrained fields.

Proof of Theorem 1.2. We start showing that, for every v € WP (A; Rd) ,v€ L1 (A;R™) and A € A(Q)

we have

F (u,v; A) > /AQCf (z,Vu(x),v(x)) dz.

Let u,, — u in WP(4;RY), v, — v in LI(A;R™), and assume, without loss of generality, that

lim inf/ f(x, Vuy, (z),v, (x))de = lim [ f(z,Vu, (z),v, (z))dr < co.
A A

n—oo n—oo
By the growth condition on f, up to a subsequence, there exists a nonnegative Radon measure y such that
f (@, Vg, (), v, () LY |[A 2 p

as n — 00, weakly star in the sense of measures.
We claim that

A (w0) > QCF (w0, Vu(w0) v (x0)) (w1)

for a.e. zg € A.
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If (4.1) holds then the desired inequality follows immediately. Indeed, by Proposition 1.203 ) in [31] we
have

liminf/Af(m,Vun (@) v, (z))dx > p(A) > /A CZCZ—MN(JC) dx > /AQCf (x, Vu(x),v(x))dz.

n—00

To show (4.1) we apply Lusin’s theorem (see Theorem 1.94 in [31]) to obtain a compact set K; C A with
|A\K;| < % such that f|g, : K; x RN x R™ — R is continuous. Let K7 C A be the set of Lebesgue points
of xr,; and set w:=J52, (K; N K;) . Then

1
|A\w| < JA\K,| < - —0as j — oo.
J

Fix zp € w a Lebesgue point of u such that

du 1 (Q (w0, €))
azv (m0) = Jim T <
1
1' — — — d = 42
lim /Q o e ) = Vo) (a0 do =0, (42)

e—0t €

1
lim —N/ |v(z) — v (z0)]|? dx = 0.
Q(zo.¢)

Choosing €, — 07 such that p (9Q (xg,er)) = 0 and applying Proposition 1.203 747) in [31] one has

= lim lim LN/ f(x, Vuy, (z),v, (x)) do
k—oon=00 7 JQ(x0,ex)
= lim lim . S (@0 +ery, Vwn ik (y) ; vk (y)) dy
where
Wy (y) = (zo +exy) —u (”30), Unk (y) 7= vn (20 + €Y) -

€k
Clearly w, € Wbt (Q;Rd) and, by (4.2), limg_ 0 limy, o0 ||wn & 7w0”L1(Q;Rd) = 0 where wo (y) :=
Vu (xo)y. Let {¢r} be a countable dense set of functions in L (Q;R™). Then by (4.2),
lim lim [ (v (y) = v (20)) ¢r (y) dy = 0.

k—o00 n—o0 Q
By a standard diagonalization argument, we may extract subsequences wy = wp,  and Uy = Up, k
such that {wy} converges to wo in L' (Q;R?) , sup [, [Vwy (y)[" dy < oo, {4} converges weakly to v (zo) in
keN
L7(Q;R™) and
dp

e 0= Jim [ o+ eu T ), 5 ) .

Notice that if p = 1 the sequence {Vwy} is already p—equi-integrable. If p > 1 by the decomposition lemma
(see Lemma 1.2 in [35]), and up to a subsequence, we may find {w;,} C W' (Q;R?) such that {|Vw|"} is
equi-integrable, Wy, = wy on 0Q, Wy — wg in WHP (Q; Rd) and

{y € Q 1wy (y) # Wi (y) or Vwy (y) # Vg, (y)} — 0.

Then, applying the decomposition lemma to {U;} in L? (see Proposition 2.3 in [13]) we may find, up to a
subsequence, {T;} C L?(Q;R™) g—equi-integrable in @ such that

H{yeQ:v,(y) #vk (y)} — 0as k — oo, /ka(y)dyv(mo), for every k € N
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and T — v (o) in L9 (Q; R™).
Hence
dEN k—oo

where we have used the fact that f > 0. Since zg € w there exists jo € N such that zy € K;, N K7 and using
the continuity of f there exists 0 < p; < 1 such that

d . _ _
K (zo) > liminf /{ e ) [ (zo +ery, Vi (y) , Uk (v)) dy
V=V and Wr=wWg

ﬂm@®§f@@w+%

for all (z,&,b) € Kj, x B?XN (0) x BY* (0) with |z — xo|, |u(z) —u(z0)| < pj-.
Set

By ={yeQ:wi(y) =wk (y), lexwr (y)| < pj, Vi ()| <34, v () =0k (v), [0k (y)| <5}

The sequence {wy} is bounded in W' (Q; R?), {v;} is bounded in L9 (Q; R™) and lim;_, o limy o0 |Q\ B j| =
0.
Thus

d
B (x0) > liminf liminf | f (20 + ery, Vi (3) , Bk () dy
dﬁ j—o0 k—oo B

1 - —
= liminf liminf—N/ f (iC,Vwk <x 3?0) Tk (CE :Eo)) o
j—o0 k—oo Ek Dy £k ck

where Dy, ; := x¢ + e By ;.
Hence

—— (z¢) > liminf liminf— x, Vw U dx
dLnN ( 0) = 50 koo Eiv Doy, f k cx k cr
1 — — 1
> liminf liminf—N/ f <x07Vwk <x 300) , Uk (x mO)) — —dx.
Jj—oo  k—oo g Dy, ;NKjq, €k Ek ]

Using the fact that |Vwy| < j and [vx]| < j in Ej ; and, by the growth conditions on f , we have that

1 _ _
Tv/ f <$07Vwk (a: xo) , Uk (x x0)> dx
€k JDi\Kj, Ek Ek

|Q (an 8]5) \KJO| =0
€k

< Ca(zo,u (0)) (1 + 42 + j7)

as k — oo, because z is a Lebesgue point of xk; .
Consequently

du L o1 _(xz—x0\ _ [x—20
— >1 fl f— ,V , — ) )d
dLN () = b by el /D,w. f (wo . ( £k ) Uk ( e v

= lim inf lim inf [ (@o, Vo, (y) , Uk (y)) dy

j—o0 k—o0 Ey

= lim inf /Q [ (o, Vwy (y) , T (v)) dy,

k—oo

where we have used the growth conditions on f, the equi-integrability of {|Vw|’} and {|vx|?} and the fact
that |Q\Ek7j| — 0.

Since Wy, = wg on 0Q, / Ty () dz = v (xp) and using (2.3) it follows that
Q

d%\’ (z0) > QCS (0, Vu (o) , v (20)) -
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To prove the reverse inequality, that is
F (u,v; A) < / QCf (xz,Vu(zx),v(x))dz,
A

we assume without loss of generality that f > 0. Arguing as in the proof of Theorem 3.2 it is easily seen
that (1.4) fullfills all the assumptions of Theorem 3.1 thus

F(u,v; A) = /Ag(x,Vu(z) 0 () de

for some Carathéodory function g, for every u € WP (Q; Rd) and every v € L9 (Q;R™) and A € A(Q).
By Scorza-Dragoni theorem (see Theorem 6.35 in [31]) since f is Carathéodory, for each j € N, there
exists a compact set K; C A, with [A\ K| < % such that the restriction of f to K; x RN xR™ is continuous.

Let K7 C A be the set of Lebesgue points of xk,; and set w := U72; (Kj N KJ*) Then
1 .
|[A\w| < |A\K;| < = —0 as  j — oo.
J

Moreover, since for a.e. g € A

g(xo EO bO) — lim f(ufoavbon(x(hg))

0t eN (4.3)

where ug, (x) := {x and vy = by, it is enough to prove that

g (x0,%0,b0) < QCf (x0,&0,b0)

for any zo € w satisfying (4.3), any & € R¥¥ and any b, € R™.
Let (xo, &0, bo) be such triple. Fix § > 0 and let w € Wol’oo (Q;Rd) andn € L™ (Q;R™) with fQ n(x)dr =
0 be such that

/Qf (20, €0 + Vau (), b + 1 (2)) dx < QCF (20, €0, bo) + 6.

Still denoting by w and 7 the extension of these functions to R by Q—periodicity, let

Wpe (z) = Ew <nz €x0> and e (2) =7 (nm — x0> .

n 3

Clearly, up to a subsequence, w, . — 0 in whp (Q (o0,€) ;Rd) as n — oo and by Riemann-Lebesgue
lemma (see Lemma 2.85 in [31]) 1, — 0 in L7 (Q (zo,¢) ; R™) as n — oo.
Therefore, by (4.3) and the definition of F,

e—0Tt n—oo g

1
g (zg, &0, bo) < liminf lim inf—N/ f(x,& + Vwye (), b0 + e (z)) de.
Q(wo,€)

Let L := 1+ [&] + [[Vw| o + |bo] + ||7]l - Since zo € w, there exists jo € N such that zy € K;, N
K3 and by the uniform cgr{cinuity of f on Kj, x BgXN (0) x B7*(0), one has the exis;cezlce of p >0
such that if (2,£,0), (7,£,b) € Kj, x BY*N (0) x B (0) such that if |(z,£,0) — (Z,&,b)| < p then
| f(z,&0)—f (T, £, B)| < §. Therefore for ¢ sufficiently small (¢ < p), and applying the growth condition
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assumed on f,

1
g (20,80, b0) < liminf liminf | —- / f(x,& + Vwne (2),bo + e (x)) dz
€ Q(z0,e)NKj,

—0t n—00 g

C
tx 1+ ([o| + [[Vwll L )" + (lbo] + ||77||Leo)qd$>
Q(x0,6)\Kj

1
< liminf liminf | — / f (0,0 + Vwne (x),b0 + e (x))dr + 6
Q(woﬁ‘:)ijo

e—0t+ n—o0 £
|Q (.230,6) \K7 |
—|—C—O

1
< liminf lim inf (N /Q T Ve @) o e (2) do 0
xo,&

e—0t n—oo e
|Q (1’(),6) Kj |
c €N °

:/ f(zo, & + Vw (2),bp +1(2))dz+ 0+ lim C’M
Q

e—0*t eN

< ch (Q:Oaé-(); bO) + 257

where we hfve used the periodicity of f and the fact that z( is a Lebesgue point of XK, to get w —
Oase— 0.

Letting § — 07 we obtain the desired inequality. m

4.2 Homogenization

In this section we prove Theorem 1.1. -
Let F, : LP (Q;R?) x L7 (Q;R™) x A(Q) — R be given by

Z Vu(z),v(z)) dz if (u,v) € WhP (A;R%) x LI (A;R™),
F | 7 E TG 0@) (1,0) € WP (A5RY) X I8 (AR),
+00 otherwise.
Our goal is to show that the I'—limit of {F.} admits an integral representation. Precisely,
Froy (uy 05 A) = /A From (Vu(2) 0 () da (4.5)

for all w € WP (A;]Rd), ve LT(A;R™) and A € A(Q), where Fry is the I'—limit of {FL} and fhom is
given by (1.3).

We start by showing that the limit in (1.3) is well defined. The proof is an adaptation of Proposition
14.4 in [12] and we present it here for convenience of the reader, since it contains more and accurate details.

Proposition 4.1 Let f : RN x RN x R™ — R be a Borel function satisfying (Hy) and (Hs) such that
sup f(z,&,b) < oo for every (€,b) € R>*N x R™. Then fuom is well defined and satisfies (Hs) .

z€RN

Proof. Let (£,b) € RN x R™ be fixed and for ¢ > 0 define

ge = pwinf / f@,§+Vo(z),b+n(z))ds:
0.0~

o € WEP((0,0)™ :R), n € L9((0,£)Y ; R™), /
(0,6)~

n(x)dsz}.
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Let ¢ € Wol’p ((O,t)N ;Rd) , e € LY ((O,t)N ;Rm) be such that

gt + < 1 fx, &+ Vo (), b+ n () de.

t - tN (O,t)N
Let s > tand I := {i = (i1,...,ix) € N : 0 < ([t] + 1) (i; + 1) < s} where we denote by [t] the integer part
of t.
Let Q, == Uiesi ([f] + 1) + (0,[t] + 1] and define on Q, the maps ¢, and 7, as the extension by
([t] + 1) —periodicity of ¢; and 7, respectively. Then extend by zero these functions to (0, S)N still denoting
. . N
them by ¢4 and 7, respectively. More precisely, on (0,s)" define

©s () {gt(l‘—i([ﬂﬂ)) ifx—i([]+1)€©[+1", iel,

elsewhere,

ns () :{ gt(az—i([t}—&—l)) itz —i([]+1)e0+1", iel,

elsewhere.

Notice that ¢, € Wy ((0,5)V;RY), 1y € LI((0,5)N; R™) and / ns(x) dz = 0.
(0,5)N

s N
|R| < sV — (t+1 —1) .

Moreover, denoting by #/ the number of elements of I,

ﬁf_{mil]Ng([t]LH)Ng(jﬂ)N. (4.6)

Using the periodicity of f, (4.6) and the growth conditions (Hz) we have

Let Ry := (0,5)" \Qs, then

1
05w [ ST bt ) de

1
G &+ Vs (@), 047 () d 6b)d
st (; /i([t]+1)+(07[t}+1]1vf(x £+ Vs (2),b+n5 (7)) m+/Rsf(x £,b) x)

1 s N S N
SN<(t+1) /(Oyt)Nf(w,€+V¢t(w),b+nt(w))dx+(t+1) /(MH]Nf(w,f,b)dar+Cle|>

tN s N 1 11\ t A\
< (241 = Z4= 1—(— = .
< (3+1) (gt+t>+c<t+s> +C( (t+1 s))

Taking the upper limit on s and then the lower limit on ¢ we get

IN

limsup gs; < lim bup gt
t—

§— 00

and thus the desired result.
It is easy to see that fom satisfies (Hs). Indeed, by taking ¢ = 0 and = 0 one has

lmm@w<mmw—ﬁ[m [ (@68 dz < C (1 + € + bf9). (47)

T—o00
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On the other hand, since |-|?, |-|? are convex and using Jensen’s inequality

1 1
TN/(OyT)Nf(x7£+V<P(x),b—|—77(x))dx>TN (o,T)N( (1€ + Vo (2)” + |b+n ()| )—C) e
p
11
=0 TN/(O,T)N (E+Vp(z))dx
1)1 a

+5 -c,

TN/(O,Tyv (b+7(2)) da

where we have used the coercivity of f. By taking the infimum over all ¢ € WO1 P ((0, T)N ;Rd> and over all
n e Ld ((0, T)N ;RM) such that f(o TN T () dz = 0, one obtains

1
From (§,0) = = (K€" + ) - C. (4.8)
From (4.7) and (4.8) one concludes that f,om satisfies (Hz). m

Lemma 4.2 Lety, z € Q, and p > 0 such that B, (y) U B, (z) C Q. Then, for any sequence {e} there is a
subsequence {€;} such that, under assumptions (Hy) and (Ha),

Fiey (ug, vv; By () =Fien (ug, vo; By (2)) (4.9)
holds, where ug (x) := &z and vy, = b with (€,b) € RN x R™,

Proof. Fix p > 0, (£,0) € RN x R™. By Proposition 11.7 in [12] there exist {uj} C Wy (B, (y);RY)
{ve} € L9 (B, (y) ;R™) such that uy — 0 in L? (B, (y);R?) and v; — 0 in L9 (B, (y) ;R™) and

i F - (ue g, vy + vk By (y) = Fry (ug, 003 By (y)) -

Following the argument of Proposition 14.3 in [12], we extend wy, and vy by 0 outside B, (y) . Let r > 1, let
71 € RY be given by
Zi —Yi
N

Ejk

and let

Tk () = vk (x — 7).

Uy () == u (x — 71) ,

Note that 7, — z — y and 73 is a period for x — f ( =&, b) for all (&,b) € RN x R™. Thus

F,

5, (e +Tn, vp +Tp, TE + By (y) = / f (x,f + Vay, () ,b+ Uk (m)) dx
k+Bp(y) Eik

T

/ f< JE+ Vug (x— 1), b—|—vk(x—7'k)>dx
Tk+B (y Ej

)
¢
— < +Tk,£+Vuk(t),b+vk(t)>dt
B(y)

-/ f<7§+VWQ%b+W@0dt
By(y)  \Eix
=F (u5+uk,vb+vk§Bp ()

Eip

where we have used the fact that % =t 4 {%} and the periodicity of f (-,&£,b).

€ip

23



Moreover, Uy, — 0 in LP (B, () ,R?) and 7, — 0 in L7 (B, (z);R™). In fact,

/ [ay, ()| dox = / lug, (x — )| dz = / lug ()7 dt < / lug, (t)|” dt — 0.
Bpr(2) B, (2) B, (2)+7% By (y)

And, for any measurable set £ C B, (2),

s/Bm‘(z)’Uk (z) xE (z) d:v:/RN Uk () XE () d:c:/RN o (z = 73,) & (%) da
:/ Uk (t) Xro+E (t)dt—>/ 0Xo—ytm (t) dt = 0.
RN RN

Since xg are dense in L7 we obtain the weak convergence in LY. Hence, assuming that without loss of
generality f > 0 and using the growth condition (Hs)

'7:{;“}(5%&317(5)) { }(u5,vb, r (2))
< hm mstj (we + Tp, vy + Ug; Bpr (2))
<11m1an . (ug +ug, vy + vi; By ()
+C|B,,r( )\B, ()| (L + (€7 + [pI%)
Fio, 3 (e By (9)) + C By (5)\B ()] (L4167 + 181,

Letting 7 — 1 then |B,, (y) \B, (y)| — 0. Thus we obtain (4.9). m

Proof of Theorem 1.1. To prove that the I'—limit expressed in the theorem exists, we will prove that for
any sequence {c,} \, 0 there is a subsequence {En].} = {Ej} for which the I'—limit is the functional Fjom,.
Therefore, since the I'—limit for the subsequence {¢;} is characterized, we get the existence of the I'—limit
for the sequence {¢,} and we achieve the result. Let then &, \, 0 and apply Theorem 3.2 to get, for some
subsequence {6,”} = {¢;},

Fiop twvid) = [ g5 (@, Vu(e) v (a) do
A
for some Carathéodory function gt&it : @ x RN x R™ — R and for every u € Wh? (Q;Rd) and v €
L7 (Q;R™). Moreover, by Lemma 3.5, Lemma 4.2 and by Theorem 3.1, g%t is independent of z and it is
quasiconvex-convex.

We claim that
g{gj} = fhom-

By (2.3) and Remark 2.10 i)

g{ﬁf}@,b):mm{/ g (64 Vo (2) bt n(2) de: o € WP (QiRY), 1€ L1 (Q:R™), /n(x)dw=0}
Q Q

:min{f{aj} (U,U,Q):U:U£+(p7 U:Ub+77, SDEWOLP (Q?Rd)v TIELq(Q;Rm),

/Qn(x)dz=0}7

where ug (z) := &z and v, = b, for every (£,b) € RN x R™,
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Thus by the fundamental theorem of I'—convergence (see Theorem 2.7) we have

gt (&,b) = lim inf {F (u,0,Q) :u=ug + ¢, v="uvy+1, ¢ € Wy (Q;R?), n € L1 (Q;R™),

. [r1ae o]

= lim inf{/f<E,Vu(y),fu(y)) dy:u=ues+¢, v=vy+1, goEWOlvP (Q;Rd)’
Q

e @rm), [

[ (@) = o},

where we have used Lemma 3.7.
Changing variables one obtains the desired identity. m
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