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Multiresolution Curve Editing
With Linear Constraints*
The use of multiresolution control toward the editing of freeform curves and surfaces
already been recognized as a valuable modeling tool [1–3]. Similarly, in contemporary
computer aided geometric design, the use of constraints to precisely prescribe fre
shape is considered an essential capability [4,5]. This paper presents a scheme
combines multiresolution control with linear constraints into one framework, allow
one to perform multiresolution manipulation of nonuniform B-spline curves, while sp
fying and satisfying various linear constraints on the curves. Positional, tangential,
orthogonality constraints are all linear and can be easily incorporated into a multire
lution freeform curve editing environment, as will be shown. Moreover, we also show
the symmetry as well as the area constraints can be reformulated as linear const
and similarly incorporated. The presented framework is extendible and we also po
this same framework in the context of freeform surfaces.@DOI: 10.1115/1.1430679#
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1 Introduction
Building intuitive interactive editing capabilities of freeform

curves and surfaces into contemporary CAD systems has bee
elusive task for the geometric design community, for a long per
of time. While freeform curves were introduced to the compu
graphics world almost three decades ago, the editing proces
freeform geometry continues to be considered a difficult task. F
thermore, direct~control point! manipulation has been recognize
as a powerful computer graphics tool, and yet its locality appe
to be an Achilles’ heel of the B-spline representation, the m
commonly used representation of freeform shapes in contem
rary geometric modeling systems. In a single direct manipula
operation, one is unable to apply a modification to the B-spl
shape that affects more than a local neighborhood.

The hidden capabilities in multiresolution control and editing
freeform geometry have been revealed in@1,2#, in the context of
uniform B-spline curves and surfaces@1,2# allow the user to di-
rectly and interchangeably affect the freeform shape globally
well as locally, in several resolution levels. In@3#, a similar solu-
tion has been presented that supports the multiresolution ed
of nonuniform B-spline curves and surfaces.

The work of @1–3# computes the orthogonal projections of th
freeform geometry into lower dimensional spaces, employin
wavelet decomposition of uniform and nonuniform B-spline re
resentations. While fairly simple to compute for the case of u
form knot sequences, this decomposition in the nonuniform c
is computationally intensive. Fortunately, one can recognize
the explicit orthogonal decomposition is not really necessary@6#,
alleviating these computational difficulties in the nonunifor
case.

In @7#, a multiresolution curve editor that is based on a no
orthogonal decomposition has been presented. The major
ciency of this non-orthogonal decomposition lays in the possi
ity of the user to conduct many high resolution, fine operatio
that can be represented as few low resolution operations. We
discuss this some more in Section 2.

In @5#, a surface editing system that satisfies zero dimensio
constraints such as positions, tangents, and normals, has bee
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sented. The constraints, being linear, are efficiently solved, all
ing for the interactive manipulation of the freeform geometry.@5#
also considerstransfinite constraintswhere the constraints migh
have a non zero dimensionality. While some cases might be
finite dimension, such as the containment of a polynomial curv
a polynomial surface when posed as a composition, other c
might necessitate an approximation.

The satisfaction of nonlinear constraints is more difficult th
the satisfaction of linear constraints due to the imposed comp
tional demands. Nonlinear constraints that are commonly con
ered are second order differential constraints such as conve
@8#, enclosed volume@9#, and first and second order fairing con
straint, typically in the form of strain and stress surface sha
optimization functionals@5#.

The exploitation of first and second differential order co
straints, in real time, is also highly intensive computationally.
@10#, an interactive surface editing system that supports real t
surface manipulation with convexity/developability constraints
reported, with the aid of a careful pre-computation of the cur
ture fields.

This work presents a two-fold. First, a special attention is giv
to the class of linear constraints that one can employ. Positio
tangential, and orthogonality constraints are already known to
part of this class. In addition, symmetry constraints are shown
be part of this class of linear constraints. Furthermore, we a
show that the enclosed area of a closed curve can be posed
linear constraint. Then, a synergetic view of the two methodo
gies of multiresolution control and linear constraints is cons
ered. We combine the revealed capabilities of multiresolution c
trol with the ability of linear constraints to prescribe preci
freeform geometry, all in the framework of interactive editing
nonuniform B-spline curves.

Our implementation as well as all the examples shown as
of this work were based on the IRIT solid modeling system@11#
that is developed at the Technion, Israel Institute of Technolo

This paper is organized as follows. Section 2 reviews the c
cepts of multiresolution control, following@1–3,7#, that we have
been exploiting. Section 3 considers the linear constraints that
be employed as part of this work, while in Section 4, we sh
how to fuse the two methodologies of multiresolution control a
linear constraints into a single synergetic framework. Some
amples that demonstrate the expected benefits of this synerg
presented in Section 5. We consider the extensions of this wor

t the

ct.
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3D curves on surface in Section 6, to freeform surfaces in Sec
7 and to higher order moments in Section 8. Finally, we concl
in Section 9.

2 Multiresolution Editing of Curves
Let

C~ t !5(
i 50

n21

PiBi ,t,k~ t !, (1)

be a planar nonuniform B-spline curve of orderk, with n control
points Pi5(xi , yi), that is defined over the knot sequencet5t0
of lengthn1k,

t5$t0 ,t1 ,•••,tk21 ,•••,tn ,•••,tn1k21%,

where the knotstk throughtn21 are denoted theinterior knots. Let
C0 be the piecewise polynomial function space that is induced
t5t0 . A piecewise polynomial function,f (t)PC0 , is potentially
discontinuous, only at the interior knots ofC0 .

Let ti be a knot sequence formed by the first and lastk knots of
t0 and a subset of the interior knots. Further, letti 11,ti . Such a
hierarchy of knot vectors,$ti%, presents the following properties

• The B-spline curves of orderk defined overti have the do-
main of @ tk21 ,tn), ; i .

• The piecewise polynomial function space,C i 11 , defined by
ti 11 , is strictly contained inC i .

In this work,ti 11 is selected to hold a half of the interior knots
ti , using every other interior knot ofti .

Clearly, the domain of all the curves in all the subspaces ofC i
is the same because we kept the first and lastk knots unmodified.
Considert jPti with multiplicity mj ,i such thatt j¹ti 11 . Then, a
piecewise polynomial functiong(t)PC i 11 is C` at t j whereas
h(t)PC i is at leastCk2mj ,i21 continuous att j . Alternatively,
consider the case oft jPti 11 but the multiplicity of t j in ti 11 ,
mj ,i 11 , is lower than the multiplicity oft j in ti , mj ,i . Then, the
continuity ofg(t)PC i 11 at t j is at leastCk2mj ,i 1121, whereas the
continuity of h(t)PC i at t j is at leastCk2mj ,i21.

We would like to consider a modification to curveC(t) that
starts fromts5t j 1

and ends atte5t j 2
, wheret j 1

, t j 2
Pt0 . In C0 ,

this entails the potential updates of all control pointsPi , i 5 j 1
2k11,•••, j 221. The possible need for an update of an arbitra
large number of control points exposes the Achilles’ heel of
B-spline representation; the locality property of the representa
hinders any attempt to control the shape of the curve at var
other resolutions.

Assume the existence of a subspaceC i such thatt j 1
andt j 2

are
adjacent to each other, or no other interior knot exists betw
them. InC i , the same modification of the curve fromts5t j 1

to
te5t j 2

entails the potential update of exactlyk control points,Pi ,
i 5 j 12k11,•••, j 1 . Let t j 1

,tu,t j 2
be the point onC(t) that is

selected by the user for the interactive modification and letVW m be
the modification vector ofC(tu). That is,C(tu) should be trans-
lated toC(tu)1VW m . Typically, VW m will be computed as the differ-
ence between the old and the new mouse positions, in a se
and-drag operation on the curve. LetDti(t)PC i , be a
polynomial function such that Dti(tu)51. Then, C(t)
1VW mDti(t) satisfies the modification requirement att5tu . Fur-
ther, due to the fact thatDti(t) is a single polynomial betweent j 1

and t j 2
, the effect of the modification will always spant j 1

to t j 2

and hence will be at the proper resolution.
Having only one constraint onDti(t), asDti(tu)51, there are

typically infinitely many solutions to the construction problem
Dti(t). Nonetheless, we also seek tominimize the changein C(t)
as the result of applyingDti(t). Having support at the prope
resolution ofC i that modifiesC(t) from ts to te , we would also
like to minimize the change outside of this domain. One sim
and direct approach at efficiently constructing such a minim
348 Õ Vol. 1, DECEMBER 2001
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change solution can use the values of the supporting B-sp
basis functions attu , in C i , normalized so thatDti(tu) is indeed
one,

Dti~ t !5
1

s (
i 50

m

Bi ,t,k~ tu!Bi ,t,k~ t !,

with,

s5(
i 50

m

~Bi ,t,k~ tu!!25 (
i 5J2k11

J

~Bi ,t,k~ tu!!2, tJ<tu,tJ11 ,

assuming any function inC i , including Dti(t), hasm11 coef-
ficients. Here, only thek basis functions that are non zero attu
contribute toDti(t).

Dti(t) could always be raised toDt0(t)PC0 by inserting the
knots @12# of $t0\ti%. Then, a simple addition ofDt0(t) to the
original curve,C(t)PC0 ,

C~ t !←C~ t !1VW mDt0~ t !, (2)

can be materialized as the addition of the respective coefficien
C(t) andDt0(t) ~timesVW m).

In general, however, the specified domain of influence will f
between knots. Havingts , te¹t0 , one is required to either inser
the new knots,ts and te , into t0 , or else to approximate the
domain of influence. Recognizing the obvious overhead of dra
cally increasing the number of knots in the modified curve, as
editing process of the curve progresses, an approximation is
ployed in this work. Lett j 121<ts,t j 1

and t j 2
<te,t j 211 be the

start and end parameters of the specified domain of influe
Moreover, letC i be a space such thatt j 1

and t j 2
are adjacent to

each other inti and similarly letC i 11 be a space such thatt j 121

and t j 211 are adjacent to each other inti 11 . The approximated
solution is formed by linearly blending between the reconstruc
Dti(t) andDti 11(t) functions. Moreover, and while this blende
solution continues to be inC i , one can independently solve fo
Dti(t) andDti 11(t).

3 Linear Constraints of Freeform Curves
Constraints are an important tool in design. When a curve m

interpolate a certain location or be perpendicular to another cu
at some other location, linear constraints can satisfy these
mands, all while the user is free to manipulate the curve as h
she see fits. In Section 3.1, we review the basic linear constra
that are traditionally employed. In Section 3.2, we consider
linear symmetry constraint whereas in Section 3.3, the enclo
area is formulated as a~bi!linear constraint.

3.1 Basic Linear Constraints. Recall curve,

C~ t !5(
i 50

n21

PiBi ,t,k~ t !,

from Eq. ~1!. A positional constraint,P, at some parameter valu
tp is linear in the control points of the curve,Pi , as it reduces to,

P5C~ tp!5(
i 50

n21

PiBi ,t,k~ tp!. (3)

Similarly, a tangential constraint,T, at some parameter valuet t ,
is reduced to the following linear equation in the control point

T5C8~ t t!5~k21!(
i 50

n22 S Pi 112Pi

t i 1k212t i
Bi ,t,k21~ t t! D . (4)

A normal or orthogonality constraint can be satisfied by constra
ing the normal field of the planar curveC(t)5(x(t),y(t)) as
N(t)5(2y8(t),x8(t)). Hence, an orthogonality constraint
equivalent to a tangential constraint, for planar curves, with mi
differences. Equation~4! completely constrainsC8(t t). In con-
trast, the tangency constraint could also be prescribed as,
Transactions of the ASME
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05^C8~ t t!,N&, (5)

whereN is the direction thatC(t) should be orthogonal to, att t .
In ~5!, only the direction ofC8(t t) is prescribed whereas in~4!,
the magnitude of the vector is fully constrained as well. Th
difference is similar to the difference betweenG1 and C1

continuity.
Unlike Constraints~3! and ~4!, the inner product constraint o

~5! necessitates the derivation of the solution of all axes, simu
neously. Hence, instead of independently solving two sets of c
straints~for planar curves!, one is forced to simultaneously solv
one set of twice as many constraints, satisfying both thex and the
y requirements.

To complete our discussion on the basic linear constraints,
should also consider higher order derivatives that are also linea
the control points of the curve and hence can be equally e
ployed. Nonetheless, second order, curvature, constraints
likely to be the only higher order constraints that one might e
ploit, in practice.

3.2 Symmetry Constraints. An additional linear yet useful
constraint we would like to consider as part of this work isX-, Y-,
or Circular-symmetry. Clearly, one can handle one half of t
shape only to be reflected to yield the symmetry. Neverthele
continuity along the joint of the two halves must be then p
served and knots must be unnecessarily introduced, along
symmetry line. Moreover, such a reflection of the curve induce
need to treat the symmetry joint location as a special case
excessive requirement from the curve editing tool which
would like to refrain from. Hence, we would rather express t
symmetry as a linear constraint. Assume the domain of curveC(t)
is tP@0, 1# and lett be a symmetric knot sequence. That is,t i
51.02tn1k2 i 21 , ; t iPt.

Consider the major axes. Then, we say thatC(t)5(x(t),y(t))
is ~See Fig. 1!,

X-sym. if x~ t !5x~12t ! and y~ t !52y~12t !,

Y-sym. if y~ t !5y~12t ! and x~ t !52x~12t !,

Circ.-sym if x~ t !52x~12t ! and y~ t !52y~12t !. (6)

These symmetry constraints reduce to similar constraints o
the control polygon. Having a symmetric knot sequence, we ha
Bi ,t,k(1.02t)5Bn212 i ,t,k(t). Then,

C~1.02t !5(
i 50

n21

PiBi ,t,k~1.02t !5(
i 50

n21

PiBn212 i ,t,k~ t !

5(
i 50

n21

Pn212 iBi ,t,k~ t !. (7)

Now, for example, consider theX-symmetry case. Ifx(t)
5x(12t), from Eq. ~7! we have,

Fig. 1 Symmetries of curves: „a… X-symmetry, „b… Y-symmetry,
„c… Circular-symmetry
Journal of Computing and Information Science in Engineering
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i 50

n21

xiBi ,t,k~ t !5(
i 50

n21

xn212 iBi ,t,k~ t !,

or

05(
i 50

n21

~xi2xn212 i !Bi ,t,k~ t !,

which immediately reduces to the set of linear constraints of
form,

05xi2xn212 i , i 50,•••, Un2 U21, (8)

due to the independence of the B-spline basis functions. Th
fore, the symmetry constraint ofx(t)5x(12t) as reduced to Eq.
~8! could be posed asbn/2c linear constraints in the coefficients o
the X axis,xi .

Similarly, a constraint of the formy(t)52y(12t) could be
reduced todn/2e linear constraints in the coefficients of theY axis,
yi , as,

05yi1yn212 i , i 50,•••, Un2U21. (9)

Obviously, the axes of symmetry need not be the major a
and, for example, a constraint ofX-symmetry around the horizon
tal line y5Y0 is reduced to a set ofdn/2e constraints of the form
2Y05yi1yn212 i .

3.3 Area Constraint of a Closed Planar Curve. We now
consider the area as a constraint on a closed freeform pl
curve. The enclosed area or volume of a closed curve or a clo
surface, respectively, were considered in the context of vision@13#
as well as geometric modeling@14#. Presented as a non linea
problem, approximation methods are typically employed tow
the computation of the enclosed property.

Let C(t)5(x(t),y(t)) be a regular closed planar parametr
curve. Employing Green’s theorem, the~signed! area,A, enclosed
by C(t) equals~See, for example@13,14#!,

A5
1

2 R 2x8~ t !y~ t !1x~ t !y8~ t !dt5
1

2 R uC~ t !3C8~ t !udt,

(10)

where uC(t)3C8(t)u denotes the cross product’s determina
Having thex and y components of this cross product vanish
zero because the curve is planar, this determinant is reduced t
z component only. Hereafter, we useC(t)3C8(t) to denote this
scalarz component.

A geometric interpretation of Eq.~10! can be found in Fig. 2.
Herein, we are interested in evaluating this equation as efficie
as possible whenC(t) is a B-spline curve. Moreover, we ar
pursuing this computation in the context of~linear! constraint sat-
isfaction, in real time interaction.

Fig. 2 The area of a closed parametric curve. The differential
area in gray equals to 1

2zC„t …ÃC8„t …zdt and the enclosed area
by the curve is the result of integrating this differential area
over the entire parametric domain of the curve. See Eq. „10…
DECEMBER 2001, Vol. 1 Õ 349
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Let C(t) be a B-spline curve,C(t)5( i 50
n21PiBi ,k(t), wherePi

5(xi ,yi) andBi ,k(t) is thei ’th B-spline basis function of orderk.
Then, the enclosed area can be rewritten as thebilinear form of,

2A5 R 2(
i

xiBi ,k8 ~ t !(
j

y jBj ,k~ t !

1(
i

xiBi ,k~ t !(
j

y jBj ,k8 ~ t !dt

5(
i

xi(
j

y j R 2Bi ,k8 ~ t !Bj ,k~ t !1Bi ,k~ t !Bj ,k8 ~ t !dt

5@x0 ,x1 ,•••,xn21#

F f0,0 f0,1 ••• f0,n21

f1,0 f1,1 ••• f1,n21

A A � A

fn21,0 fn21,1 ••• fn21,n21

GF y0

y1

A

yn21

G
5XFY, (11)

where

f i j 5 R 2Bi ,k8 ~ t !Bj ,k~ t !1Bi ,k~ t !Bj ,k8 ~ t !dt

5 R 2~k21!S Bi ,k21~ t !

t i 1k212t i
2

Bi 11,k21~ t !

t i 1k2t i 11
DBj ,k~ t !

1~k21!S Bj ,k21~ t !

t j 1k212t j
2

Bj 11,k21~ t !

t j 1k2t j 11
DBi ,k~ t !dt. (12)

Equation~11! sheds some light on our objectives. Assume
yi coefficients of the constrained curve are fixed. Then, the a
constraint is linear in thexi coefficients! Similarly, if thexi coef-
ficients of the constrained curve are fixed, the area constrain
linear in theyi coefficients.

This crucial view of the area equation allows us not only
enforce a prescribed area as a linear constraint, but also to
compute all the coefficients of theF matrix. A typical editing
session of a freeform shape starts with a prescription of the
cific function space,C0 , or knot sequences. Only then, the sha
is modified, for example via a direct or a control point select-a
drag operation. Once the function space,C0 , of the curve is pre-
scribed, theF matrix can be clearly computed. The computati
of integrals and products of nonuniform B-spline basis functio
is considered, for example, in@3#.

3.3.1 Area Constraint of Linear B-spline Curves.It is inter-
esting to examine this derived area constraint in the contex
linear B-spline curves. Then, the B-spline curve is reduced t
polygon and hence we expect the constraint to reduce to the e
tion of the area of a polygon withn vertices. For the linear
B-spline case wherek52, Eq. ~12! becomes,

f i j 5 R 2S Bi ,1~ t !

t i 112t i
2

Bi 11,1~ t !

t i 122t i 11
DBj ,2~ t !

1S Bj ,1~ t !

t j 112t j
2

Bj 11,1~ t !

t j 122t j 11
DBi ,2~ t !dt. (13)

Clearly if u i 2 j u>2 and due to the final support of the B-splin
basis functions, Eq.~13! is zero. Moreover, ifi 5 j and due to the
antisymmetry of the integrand in Eq.~13!, f i i is also zero. Hence
we only need to derivef i ,i 61:
350 Õ Vol. 1, DECEMBER 2001
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f i ,i 115 R 2S Bi ,1~ t !

t i 112t i
2

Bi 11,1~ t !

t i 122t i 11
DBi 11,2~ t !

1S Bi 11,1~ t !

t i 122t i 11
2

Bi 12,1~ t !

t i 132t i 12
DBi ,2~ t !dt

5 R Bi 11,1~ t !

t i 122t i 11
Bi 11,2~ t !1

Bi 11,1~ t !

t i 122t i 11
Bi ,2~ t !dt

5 R Bi 11,1~ t !

t i 122t i 11
~Bi 11,2~ t !1Bi ,2~ t !!dt

5E
t i 11

t i 12 1

t i 122t i 11
dt51. (14)

f i j 52f j i ~See Eq. ~12!! or F is an antisymmetric matrix.
Hence,f i ,i 21521, and we have shown that the area of a clos
polygonP5$Pi% i 50

n21, Pi5(xi ,yi) equals,

A5
1

2 @x0 ,x1 ,•••,xn21 ,x0#

3
0 1 0 0 ••• 0

21 0 1 0 ••• 0

0 21 0 1 ••• 0

0 0 21 0 ••• 0

A A A � A

0 0 ••• 21 0 1

0 0 0 ••• 21 0

4 F
y0

y1

A

yn21

y0

G ,

(15)

which is the same as,

A5
1

2 S Ux0 x1

y0 y1
U1Ux1 x2

y1 y2
U1•••1Uxn21 x0

yn21 y0
U D , (16)

as, for example, in@15#. This linear B-spline case allows one t
edit closed planar polygonal domains while coercing the enclo
area of the polygon to be the same throughout the editing proc
via a bilinear constraintover the vertices of the polygon.

3.3.2 Area Constraint in Interactive Multiresolution Editing
Unlike other linear constraints, the area contribution of modific
tion Dti(t) depends on the current shape of curveC(t) as well.
Let C(t)5(x(t),y(t))5((xiBi(t),(yiBi(t)) be the current
closed curve under editing with areaA. Let Dti(t)
5(dx(t),dy(t))5((dxi

Bi(t),(dyi
Bi(t)) be the modification one

would like to add toC(t) as,

D~ t !⇐C~ t !1Dti~ t !.

The area,Â, of the modified curve,D(t), equals,

2Â5 R D~ t !3D8~ t !dt

5 R ~C~ t !1Dti~ t !!3~C~ t !1Dti~ t !!8dt

52A1 R C~ t !3D8ti~ t !1Dti~ t !3C8~ t !

1Dti~ t !3D8ti~ t !dt.

In order to keep the total area ofD(t) the same asC(t), we
requireÂ5A, or,
Transactions of the ASME
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05 R C~ t !3D8ti~ t !1Dti~ t !3C8~ t !1Dti~ t !3D8ti~ t !dt

5 R x~ t !dy8~ t !2dx8~ t !y~ t !1dx~ t !y8~ t !2x8~ t !dy~ t !

1dx~ t !dy8~ t !2dx8~ t !dy~ t !dt

5 R dx~ t !ȳ8~ t !2dx8~ t !ȳ~ t !1x~ t !dy8~ t !2x8~ t !dy~ t !dt,

(17)

where

ȳ~ t !5y~ t !1dy~ t !.

Equation~17! can also be written as,

R dx~ t !ȳ8~ t !2dx8~ t !ȳ~ t !dt5 R x8~ t !dy~ t !2x~ t !dy8~ t !dt.

(18)

Assumedy(t) has already been derived. Then, the right hand s
of Eq. ~18! is completely known and so isȳ(t). In other words,
Eq. ~18! is linear in dx(t) that can, with the aid of Eq.~11!, be
rewritten as,

@dx0
,dx1

,•••,dxn21
#FF y01dy0

y11dy1

A

yn211dyn21

G
5@x0 ,x1 ,•••,xn21#FF dy0

dy1

A

dyn21

G . (19)

Therefore, and during interactive control point or curve sele
and-drag operations, they axis ofDti(t) can be solved for all the
dyi coefficients satisfying all constraints, excluding and ignori
the area constraint. Then, thex axis ofDti(t) is solved for all the
dxi coefficients satisfying all constraints, including the linear a
constraint of Eq.~19!. The right hand side of Eq.~19! is fully
known, having thedyi

coefficients, and hence Eq.~19! adds one
more linear~area! constraint indxi to the existing set of linear
constraints.

So far, theF matrix has been derived for curves in the origin
space,C0. Nevertheless, and during the multiresolution editi
process, the modification curve,Dti(t), might be in a different
space,C i . Let Amn be the refinement~alpha! matrix @12# of a
curve in C i to a curve inC0 . Amn is a matrix of sizem3n, n
.m, refining a B-spline curve inC i with m control points into an
identical B-spline curve inC0 with n control points. In essence
Amn inserts the knots of $t0\ti%. Then, for Dti(t)
5(dx(t),dy(t))PC i and C(t)5(x(t),y(t))PC0 , Eq. ~19!
becomes,
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@dx0
,dx1

,•••,dxm21
#AmnFF F y0

y1

A

yn21

G1Amn
T F dy0

dy1

A

dym21

G G
5@x0 ,x1 ,•••,xn21#FAmn

T F dy0

dy1

A

dym21

G . (20)

Needless to say, the role of thex andy axes could and should b
interchanged. In practice, and as the user is dragging the mod
point on the curve, numerous location-event are generated by
input device. We exchange the axis that is employed toward
satisfaction of the area constraint in each such location ev
resulting in a fair looking behavior that favors no special axis.

4 Constrained Multiresolution Freeform Curve
Editing

The combination of multiresolution control and linear co
straints could be accomplished once one realizes how to prop
construct a modification functionDti(t) ~See Eq.~2!! such that,

D~ tu!51, tu is a user specified modification location,

~see Eq.~2!!,

D~ tp!50, at each positional constraint,tp,

~see Eq.~3!!,

D8~ t t!50, at each tangential constraint,t t,

~see Eq.~4!!,

D~ t ! Is symmetric to following any symmetry

constraint,~see Eq.~6!!,

D~ t ! Has a zero area contribution toC~ t !,

~see Eq. 19!), (21)

Much like the unconstrained multiresolution curve editing ca
if one could construct such aDti(t) function that satisfies all
Constraints~21!, then if C(t) satisfies a positional constraint a
tp , so will C(t)1VW mDti(t) becauseC(tp)1VW mDti(tp)5C(tp).
Similarly, a tangential constraint will also be preserved under t
the modification of Dti(t) due to the fact that C8(t t)
1VW mDt8 i(t t)5C8(t t). Moreover, if C(t) and VW mDti(t) are both
symmetric, so is their sum, and finally the area that is contribu
by Dti(t) to C(t) is zero.

Hence, the construction of such aD(t) function is the key ques-
tion in the possible synergy of multiresolution editing control a
linear constraints’ control. Before we go ahead and attemp
satisfy all these constraints, we must realize that these set
constraints might be under-determined, exactly determined
over determined. Havingm constraints can result in an ove
determined system of equations inC i but an under-determined
system of equations inC j , j , i .

Clearly, an over-determined set of constraints can only be
proximated. However, having an under-determined system s
gests an infinite family of solutions, much like in the unco
strained multiresolution case. In order to minimize the glob
affect on the whole curve, we once again employ a solution for
under-determined linear system of equations that minimizes
global change. Herein, the derived solution is the one that m
mizes the change in the control points of theC(t) curve, in L2
sense. Two possible approaches that can be employed to ac
DECEMBER 2001, Vol. 1 Õ 351
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an L2 minimizing solution are either the singular valued deco
position ~SVD! or the QR factorization@16# of linear systems of
equations. Interestingly enough, the QR factorization is emplo
by @5#, an approach taken by this work as well, due to efficien
reasons.

The space ofC i might be incapable of satisfying all the exis
ing constraints. More degrees of freedom, in the form of m
knots, must be employed. Toward this end, we can constru
hierarchy of subspaces,$C i%, such thatC i 11,C i . Each knot
sequenceti 11 can employ, for example, half of the interior kno
of ti , skipping every second interior knot. Having this clear hi
archy, the user can interactively reduce the domain of influen
effectively going to more and more fine subspaces, until a s
space is found where a complete satisfaction of all the constra
can be achieved. Section 5 presents several examples of m
resolution editing and control with linear constraints that follo
the proposed synergetic methodology.

5 Examples
The presented synergy between multiresolution control and

ear constraints is equally applicable toperiodic B-spline curves.
The manipulated periodic curves necessitate a more careful
geting of indices of the linear constraints as the system of c
straints is now derived modulo the number of actual coefficie
in the curve. Nonetheless, nothing is conceptually different w
periodic curves are employed and in this section we mostly
ploy periodic curves.

All the examples presented in this section are the results
interactive sessions where the user attempted to directly man
late the nonuniform B-spline curves, at various resolutions,
with a whole variety of linear constraints. The current resolut
level and domain of influence is set by picking a point using
mouse at the center of the desired domain on the curve, and
rowing and/or expanding the domain of influence using the
and right keyboard keys.

The cross section in Fig. 3, possibly of a fuselage of a plane
constrained to present a constant area, and hence eventua
fixed volume of the plane. Furthermore, and for obvious reaso
the curve is also constrained to beY-symmetric. Shown in the
figure are several cross sections that were all derived from
original curve, in gray, in few seconds, while preserving both
fixed area and theY-symmetry constraints.

The shape of a hand in Fig. 4 is constrained to present a
stant area, while the five fingertips are anchored via positio
constraints. The hand’s outline is manipulated from below affe
ing the width of the fingers in the attempt to preserve the to
enclosed area. Both linear and cubic B-spline cases are consid
and displayed.

The closed cross sections in Fig. 5 are also constraine
present a constant area. A single point is selected and drag
resulting in the motion of the entire shape due to the preserva

Fig. 3 In thick gray, a periodic planar B-spline cross section is
shown that is constrained to be Y-symmetric as well as to
present a fixed area. All the other cross sections were derived
from it in few seconds via direct manipulation while the area as
well as the Y-symmetry are preserved. The curve is a cubic
periodic curve with twelve control points.
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of this area constraint. Furthermore, other linear constraints co
be simultaneously applied as is demonstrated in this Fig. 5.

A curve in the shape of a butterfly is directly manipulated
Fig. 6. This butterfly is a cubic B-spline curve with 49 contr
points. Shown in Fig. 6 are several samples of editing the curv
different resolutions, with and without constraints. AY-symmetry
constraint guarantees the general symmetry of the butterfly w
a positional and a tangential constraint are placed on one w
~affecting both wings due to the symmetry constraint!.

In Fig. 7, a curve is constrained to present a constant width
constraining the position as well as the tangent at the two extr
width locations. In addition, the curve is constrained to enclos
fixed area and beY-symmetric throughout the editing proces

Fig. 4 An outline of a hand is manipulated from below while
the finger-tips are anchored and the total area is preserved. As
a result, the width of the finger is adapted to the changes from
below while the fingertips are stationary. Both linear „a… and
cubic „b… curves are shown. Starting with the original curve that
is shown on the left, the modifications are shown in the middle
and in the right side in black with the original curve shown in
thick gray color.

Fig. 5 A periodic planar cubic B-spline curve in gray is di-
rectly manipulated and dragged at the selected point to the
right along the „solid curved … path while preserving the en-
closed area. Several snapshots are shown. In „a…, and in addi-
tion to the area constraint, a tangential constraint is preserved
at the bottom of the shape. In „b…, a third, additional, positional
constraint is added to the top left side of the curve anchoring
the shape to interpolate that location throughout this direct ma-
nipulation stage.
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Shown in the figure are four steps of direct manipulations of
curve via a select-and-drag operation, all while the constraints
completely satisfied.

The infamous illusion of two faces versus a vase has sev
examples in Fig. 8. These examples were created using a
dratic periodic B-spline curve in few minutes, with the aid of
Y-symmetry constraint.

6 Extensions to 3D Curves on Surfaces
Curves need not be planar. In many cases, curves are

structed in three-dimensional space or are the result of operat
between surfaces such as surface surface intersection~SSI!. The
work presented in the previous sections could be extended
curves on surfaces. A curveC could be defined on surface
S1(u,v) as the intersection curve with another surfaceS2(r ,t).
Alternatively, C could be created via asketching operation di-
rectly on S1. The ability to hand-draw a curve is appealing in th
preliminary stages of the design, when a rough yet fast const
tion of a prototype of the geometry is important. The curves co
be sketched on the plane, but also, they could be sketched o
arbitrary surface. In the planar case, the mouse location is c
puted in the drawing plane. Similarly, and given a surface

Fig. 6 A curve in the shape of a butterfly „in gray … is directly
manipulated. A point on the bottom right side of the shape is
moved in the bottom right direction, following the arrows. A
positional as well as a tangential constraint are both placed at
the top right of the butterfly, that is also constrained to be
Y-symmetric. The top row shows the result of multiresolution
editing in several resolutions without any constraints whereas
the bottom row shows the same sequence of multiresolution
operations with the constraints activated.

Fig. 7 A Y-symmetric curve with a constant area has a posi-
tional constraint on the left and a tangential constraint on the
right. Several direct manipulation operations are performed
while, effectively, these two constraints keep the curve at a
constant width , throughout. The previous operation is shown
in gray and the new one is shown in black, from left to right.
These examples were created in a few seconds.

Fig. 8 Several examples of the illusion of two faces versus a
vase. These examples were created in few minutes using a qua-
dratic B-spline curve with 32 control points that is constrained
to be Y-symmetric.
Journal of Computing and Information Science in Engineering
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sketch on,S, a ray from the mouse location is intersected agai
surfaceS, selecting the closest intersection point, if multiple in
tersection points are found.

Figure 9 shows a sketched curve in the shape of the letter ’S
the body of the Utah teapot. The same curve could also be use
trim out the interior region of the ’S’ shape from the surface of t
body, by serving as a trimming curve of the surface.

While the mouse is dragged over the surface, sample point
the parametric domain of the curve are computed and stored.
could attempt multiresolution computation with constraints in E
clidean space. Nonetheless, such a process would be difficu
control due to the need to continuously keep the curve on
surface. In contrast, constraining the curve to lay exactly on
surface is cost free if the same computation is conducted in
parametric space of the surface. Further, clipping the curve to
surface domain is also simple as it amounts to clipping the pa
metric curve to the parametric domain of the surface.

Let c(t)5(u(t),v(t)) be the curve in the parametric domain o
surfaceS that undergoes multiresolution editing. Its Euclidea
equivalent isC(t)5S(c(t))5S(u(t),v(t)). C(t) could be de-
rived from c(t) with the aid of composition computation ove
piecewise rational freeform surfaces@7,17#. While feasible, this
process was found to be too slow for the interaction stages
henceS(c(t)) is evaluated at fixed samples to provide an appro
mated drawing at interaction rates. The exact composition co
putation could be employed, as required, once the interactio
completed. Figures 10 and 11 present the results of this e
composition computation.

In Fig. 10, multiresolution editing operations with no con
straints are applied to the ’S’ curve on the body of the Utah teap
Three different levels of resolution are employed resulting in th

Fig. 9 Multiresolution with combination with constraints could
also be applied to non planar curves on surfaces. Here, two
views of a curve in the shape of the letter ‘‘S’’ are shown on the
body of the Utah teapot, potentially serving as a trimming curve
for the surface.

Fig. 10 Multiresolution editing without constraints is shown
for the curve on the body of the Utah teapot in Fig. 9. Three
resolution levels of a single select-and-drag operation and no
constraints are shown.

Fig. 11 Multiresolution editing with constraints is show for the
curve on the body of the Utah teapot in Fig. 9. Three resolution
levels of a single select-and-drag operation are shown along
with two tangent constraint „black points … and one positional
constraint „gray point ….
DECEMBER 2001, Vol. 1 Õ 353
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different domains that are affected by a similar select-and-d
operation. Note the way the dragged curve is wrapped around
body.

In Fig. 11, multiresolution editing operations with constraint a
applied to the ‘‘S’’ curve on the body of the Utah teapot. Tw
tangential constraints~black points! and one positional constraint
~gray points! are placed. Again, three different levels of resoluti
are employed resulting in three different domains of the curve
are affected by a similar select-and-drag operation. Note the
the dragged curve is wrapped around the body and compare
Fig. 10. While a curve is dragged on a general surface, the tan
of the curve must be contained in the tangent plane of the sur
at that location. A new surface position with new tangent pla
might no longer contained some prescribed tangential const
of the curve. One partial remedy could be the projection of
tangential constraint of the curve onto the tangent plane of
surface, seeking out the best possible approximation.

7 Extensions to Freeform Surfaces
The work presented here could also be extended to suppor

same synergetic view of multiresolution editing control and line
constraints for surfaces or even multivariate functions. Multire
lution control of surfaces has already been demonstrated@1–3#
and the power of linear constraints in shape design has also
recognized@5#. The extension of the basic linear constraints fro
Section 3.1 to surfaces is simple. The symmetry constraint co
also be considered in the context of surfaces along the same l
Given surface S(u,v)5( i( j Pi j Bi ,ku

(u)Bj ,kv
(v), where Pi j

5(xi j ,yi j ,zi j ), one can extend the notion of symmetry and defi
S(u,v)5(x(u,v),y(u,v),z(u,v)) to be ~Compare with Eq.~6!!,

XY2symmetric if x~u,v !5x~12u,v !

and y~u,v !5y~12u,v !

and z~u,v !52z~12u,v !,

XZ2symmetric if x~u,v !5x~12u,v !

and z~u,v !5z~12u,v !

and y~u,v !52y~12u,v !,

YZ2symmetric if y~u,v !5y~12u,v !

and z~u,v !5z~12u,v !

and x~u,v !52x~12u,v !, (22)

for all v and similarly forv for all u. This form of surface sym-
metry is clearly reducible to a set of linear constraints on
coefficients of the surface, extending the curves’ symmetry c
presented in Section 3.2.

The presented view of an enclosed area as a bilinear const
could also be extended to handle the enclosed volume of free
surfaces. The decomposition of the area constraint into a bilin
form is similarly extendible to the volume enclosed by a param
ric B-spline surface. Following@14#, the signed volumeV, en-
closed by parametric surfaceS(u,v) equals,

V5E
U
zS ]x

]u

]y

]v
2

]x

]v

]y

]uDdudv, (23)

whereU is the parametric domain of

S~u,v !5(
i

(
j

Pi j Bi ,ku
~u!Bj ,kv

~v !,

andPi j 5(xi j ,yi j ,zi j ). Then,
354 Õ Vol. 1, DECEMBER 2001

: https://computingengineering.asmedigitalcollection.asme.org on 06/30/2019 Te
rag
the

re
o

n
hat
ay

with
gent
ace
ne
aint
he
the

the
ar
o-

een
m
uld
nes.

ne

he
ase

raint
orm
ear
et-

V5E
U
(
l u

(
l v

zl u ,l v
Bl u ,ku

~u!Bl v ,kv
~v !

S (
i u

(
i v

xi u ,i v
Bi u ,ku

8 ~u!Bi v ,kv
~v !

(
j u

(
j v

yj u , j v
Bj u ,ku

~u!Bj v ,kv
8 ~v !

2(
i u

(
i v

xi u ,i v
Bi u ,ku

~u!Bi v ,kv
8 ~v !

(
j u

(
j v

yj u , j v
Bj u ,ku

8 ~u!Bj v ,kv
~v ! D dudv

5(
i u

(
i v

xi u ,i v(j u
(

j v

yj u , j v(l u
(
l v

zl u ,l v

E
U
Bl u ,ku

~u!Bl v ,kv
~v !

~Bi u ,ku
8 ~u!Bi v ,kv

~v !Bj u ,ku
~u!Bj v ,kv

8 ~v !

2Bi u ,ku
~u!Bi v ,kv

8 ~v !Bj u ,ku
8 ~u!Bj v ,kv

~v !)dudv. (24)

Hence, the volume enclosed by a parametric B-spline surface
Eq. ~23!, is reducible to a tri-linear form in thexi u ,i v

, yj u , j v
and

zl u ,l v
coefficients of the surfaceS. In a similar way to Eq.~11!,

one can a-priori compute the integral of the products of the b
functions in matrixF, with

f i u ,i v , j u , j v ,l u ,l v

5E
U
Bl u ,ku

~u!Bl v ,kv
~v !

(Bi u ,ku
8 ~u!Bi v ,kv

~v !Bj u ,ku
~u!Bj v ,kv

8 ~v !

2Bi u ,ku
~u!Bi v ,kv

8 ~v !Bj u ,ku
8 ~u!Bj v ,kv

~v !)dudv.

With the aid of this tri-linear form in the coefficient of th
surface, during the surface interactive manipulation, one is
quired to solve for the linear constraint of the volume in either
x, they, or thez coefficients of the surface, in alternating order

In @5#, transfinite constraints are defined as integral constrai
and the coercion of a curve to be contained in a surface is
sented as one example. These constraints are not always of in
dimension and, for example, this coercion of a curve on a surf
could be posed as the composition@7,17# constraint of a curve of
degreen in a surface of degreesm3m, resulting in an interpola-
tion problem of a polynomial function with degree 2mn. Hence,
such a constraint could be embedded into the paradigm prese
herein, while enforcing 2mn11 linear constraints, much like the
set of linear constraints in the case of imposing a symmetry c
straint, that was presented in this work.

8 Extensions to Higher Order Moments
The tri-linear volume computation in Section 7 is a special c

of an evaluation of a zero order moment. One can extend
scheme to a multi-linear evaluation of higher order momen
Here, we briefly present how first and second order moment
objects bound by freeform parametric B-spline surface could
efficiently evaluated.

Reconsider Eq.~23!. The moment,M, of orderi 1 j 1k equals
~See also@13#!,

M5E
U
kxiyjzkzS ]x

]u

]y

]v
2

]x

]v

]y

]uDdudv, (25)
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wherekPR depends onk and for example fork50, k51.
In a similar way to~24!, one can expand Eq.~25! for first order

moments. Consider the first orderx moment, i.e.i 51,j 5k50.
Then (y andz are similarly computed!,

Mx5E
U
xzS ]x

]u

]y

]v
2

]x

]v

]y

]uDdudv

5E
U
(
mu

(
mv

xmu ,mv
Bmu ,ku

~u!Bmv ,kv
~v !

(
l u

(
l v

zl u ,l v(i u
(
i v

xi u ,i v(j u
(

j v

yj u , j v
f i u ,i v , j u , j v ,l u ,l v

dudv

5(
mu

(
mv

xmu ,mv(l u
(
l v

zl u ,l v(i u
(
i v

xi u ,i v(j u
(

j v

yj u , j v

E
U
f i u ,i v , j u , j v ,l u ,l v ,mu ,mv

1 dudv (26)

where

f i u ,i v , j u , j v ,l u ,l v ,mu ,mv

1 ~u,v !

5f i u ,i v , j u , j v ,l u ,l v
~u,v !Bmu ,ku

~u!Bmv ,kv
~v !.

The second order moment assumes the following multi-lin
multiplicative form ~again forx only, i 52,j 5k50):

Mxx5E
U
(
nu

(
nv

xnu ,nv
Bnu ,ku

~u!Bnv ,kv
~v !

(
mu

(
mv

xmu ,mv(l u
(
l v

zl u ,l v(i u
(
i v

xi u ,i v

(
j u

(
j v

yj u , j v
f i u ,i v , j u , j v ,l u ,l v ,mu ,mv

1 dudv

5(
nu

(
nv

xnu ,nv(mu
(
mv

xmu ,mv(l u
(
l v

zl u ,l v

(
i u

(
i v

xi u ,i v(j u
(

j v

yj u , j v

E
U
f i u ,i v , j u , j v ,l u ,l v ,mu ,mv ,nu ,nv

2 dudv (27)

where

f i u ,i v , j u , j v ,l u ,l v ,mu ,mv ,nu ,nv

2 ~u,v !

5f i u ,i v , j u , j v ,l u ,l v ,mu ,mv

1 ~u,v !Bnu ,ku
~u!Bnv ,kv

~v !.

These high order moments are no longer linear in all degree
freedoms as in the volume or zero order moment case. Yet,
multiplicative nature of the final expressions of~26! and~27! and
the fact that some degrees of freedom remain linear, suggest
one might be able to benefit from this representation and em
them as constraints, much like the volume computation prese
in Section 7. This question is open for future research. For fur
details on this efficient moment evaluation scheme, see@18#.

9 Conclusions
A possible synergy between two important freeform curve

iting paradigms has been demonstrated. Multiresolution edi
control could be smoothly integrated with a large variety of line
constraints. Furthermore, we have introduced two additional
ear constraints, the symmetry constraint that is linear but in
duces a set ofn/2 linear constraints, and the area constraint tha
a bilinear form could be employed as an interchangeable lin
constraint as well.

Herein, we have presented the ability to apply one symme
constraints only. It might be desirable to apply several symme
constraints, simultaneously. Then, each additional symmetry c
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straint reduces by half the number of degrees of freedom of
shape. For example, a curve with anX- as well as aY-symmetry
constraint would end up withn/4 degrees of freedom left.

In Section 3.1, we have presented a relaxed set of simple lin
constraints that imposeG1 continuity instead ofC1 continuity.
The fact that theseG1 style constraints necessitate a simultaneo
solution of theX and Y axes, render them impossible to use
juxtaposition with the area~for curves! or volume~for surfaces!
constraints. This deficiency deserves some more considera
and hopefully could be resolved in a form of a two stage sim
taneous solution, relaxing one axes after the other.

Rational curves are typically supported by neither multireso
tion editing and control nor by linear constraints. While it is fe
sible for both paradigms to support the rational representation,
computational overheads are significant. The expected benefi
using rational forms instead of polynomial forms in free sty
shaping and modeling should be weighed against these anticip
overheads.

We are hopeful that the synergy presented in this work w
further alleviate the difficulties that the geometric design comm
nity is facing, in attempting to provide interactive as well as i
tuitive tools to manipulate freeform curves and surfaces.
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