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Abstract

In this paper, we develop a simplified formulation of the hydrocarbon sys-
tem used for the petroleum reservoirs simulation.This system is a simplified
model which describes a two-phase flow (oil and gas) with a mass transfer in
a porous medium, that leads to the fluid compressibility.this kind of flow is
modelled by a system of parabolic degenerated non linear convection-diffusion
equations.Under certrain hypothesis, such as validity of Darcy’s law, incom-
pressibility of the porous medium, compressibility of the fluids, mass transfer
between the oil and the gas and negligible gravity, the global pressure is for-
mulated.This formulation allows the establishment of theoretical results on the
existence and uniquness of the solution.
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1 Introduction

The mathematical study of the multiphasic flows in porous medium has at-
tracted attention to many researchers in oil industry for exploitation of oil or
gas field, in water resource management and many environment problems.
The hydrocarbon system is a simplified model which describes a two-phase
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flow (oil and gas) with a mass transfer in a porous medium, leading to the
fluid compressibility.The global pressure formulation of Guy Chavent [3] will
be introduced, this kind of flow (hydrocarbon system) is modeled by a system
of parabolic degenerated non linear convection-diffusion equations. This for-
mulation allows the establishment of theoretical results of the existence and
the uniquness of the solution.Based on different studies, for example, in [1]
the authors studied the case of two phase incompressible fluids without mass
transfer,[3] was devoted to analyze the one phase flow and [8] the black-oil
model.Furthermore a study of different numerical schemes have been consid-
ered by many authors; among others we can refer the reader to [4] who pur-
posed a finite element scheme, [5] who used a finite difference method while
[6] a higher order Godunov scheme and the authors in [9] have proposed a fi-
nite volume method.All these schemes seem to suffer from a lack of numerical
stability.It will be fruitfull if one can investigate numerical algorithms based
on stable methods, see for example [10] and |11].
Here, we are concerned by compressible fluids and our aim is to seek conditions
to prove the existence and uniqueness of the developed model’s solution..

2 Mathematical model

Let us consider a bounded connected open domain Ω of R
d with d = 2 or 3,

describing the porous medium (the reservoir), with a Lipchitz boundary Γ,
and let t be the time variable t ∈ [0, T [, T ≺ ∞.
We consider compressible flows, with constant dynamic viscosities and where
the gravity effect is neglected.Under these hypotheses, the Darcy’s law com-
bined with mass’s conservation equations for each of the component leads to
the following system of partial differential equations of parabolic convection-
diffusion type

φ(x)
∂

∂t
(ρoω

h
oSo) + div(ρoω

h
oUo) = 0 (1)

φ(x)
∂

∂t
(ρgSg + ρoω

l
oSo) + div(ρgUg + ρoω

l
oUo) = 0 (2)

Ui = −K(x)
kri

μi

∇Pi (3)

where Si, Ui, Pi, ρi, μi, kri represent, the saturation, the velocity,the pressure,
the density, the viscosity and the relative permeability, of the phase i = o, g,
respectively, the parameters φ and K are the porosity and the absolute per-
meability of the medium and ωc

o, c = h, l is the massic fraction of component
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c, denoted by h for the heavy component and by l for the light component in
the oil phase.
We suppose that it is a saturated regime and is expressed by

So + Sg = 1 (4)

The capillary pressure is given by

Pg − Po = Pc(So) = pc(So)pcM (5)

where

pcM = sup |Pc(So)| and 0 ≤ pc(So) ≤ 1 (6)

We define the mobility of each phase by

λi =
kri

μi

, i = o, g (7)

and the total mobility λ by

λ = λo + λg (8)

For simplicity convenience, we set

ρh
o = ρoω

h
o , ρ = ρg + ρo, b = ρgλg + ρoλo, and d = ρg − ρo (9)

2.1 Reduced Saturation

Let us define by Si,m , the residual saturation of the fluid, i = o, g,; we write

Si,m ≤ Si, i = o, g (10)

and by Si,M ,the maximum saturation of the fluid, i = o, g, such that

Sg,M = 1 − So,m and So,M = 1 − Sg,m (11)

Si,m ≤ Si ≤ Si,M , i = o, g (12)

This leads to the reduced saturation S set as

S =
So − So,m

1 − Sg,m − So,m
(13)

0 ≤ S ≤ 1 (14)
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2.2 Global pressure

If S = 0, equation (13) disappears.This is one of the main reasons for which
the terminology of the“global pressure” was introduced and written as

P =
1

2
(Pg + Po) + γ (S) (15)

with

γ (S) =
1

2

S∫
So,m

(
λg − λo

λ

)
p′c (ξ) pcMdξ (16)

The total velocity is given by the sum of the velocities of the two components

U = Ug + Uo (17)

and we write

γ(S) =
1

2

S∫
0

α (ξ) dξ (18)

where

α (S) =

(
λg (S) − λo (S)

λ (S)

)
p′c (S) pcM (19)

is the capillary diffusion.

2.3 Boundary and initial conditions

The system must be completed with boundary and initial conditions.We sup-
pose that the reservoir’s boundary is not permeable, we write

U.η = 0, on Γ × (0, T ) (20)

α(S)∇S = 0, on Γ × (0, T ) (21)

The parameter η denotes the normal vector.
The initial conditions for the saturation and the pressure are given by

S (x, 0) = S0 (x) in Ω (22)

P (x, 0) = P 0 (x) in Ω (23)
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Therefore, we write system (1 − 3) as

Φ(x)
∂

∂t

(
ρh

oS
) − div

(
K(x)ρh

oλo(S)∇P
)

+ div
(
K(x)ρh

oα(S)∇S
)

= f1 (24)

Φ(x)
∂

∂t
(ρS) − div(K(x)b(S, P )∇P ) + div (K(x)d (P )α(S)∇S) = f2 (25)

∇P.η = 0, α(S)∇S = 0, on Γ × (0, T ) (26)

S (x, 0) = S0 (x) , P (x, 0) = P 0 (x) in Ω (27)

Where

f1 = −φ(x)So,m
∂

∂t

(
ρh

o

)
and f2 = −φ(x)

∂

∂t

(
ρSo,m + ρg

)

3 Existence and uniqueness of the solution

Let Ω be a connected open set in R
d ( d = 2 or 3), with a Lipschiz boundary Γ,

to ensure the existence and the uniqueness of the weak solution, for our case,
we start by setting the following hypotheses:

1. K (x) ∈ L∞ (Ω) , such that

K− ≤ K (x) ≤ K+ a.e.in Ω

2. φ(x) ∈ L∞ (Ω) , such that:

0 ≺ φ− ≤ φ (x) ≤ φ+ a.e.in Ω

3. ρh
o(P ) ∈ L∞ (Ω, (0, T )) ∩ H1 (Ω, (0, T )) , such that:

ρh
o− ≤ ρh

o (P ) ≤ ρh
o+ a.e.in Ω × (0, T )

4. α(S) ∈ L∞ (Ω, (0, T )) , such that:

α− ≤ α (S) ≤ α+ a.e.in Ω × (0, T )

5. λo(S) ∈ L∞ (Ω, (0, T )) , such that:

λo− ≤ λo (S) ≤ λo+ a. e.in Ω × (0, T )
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6. d(P ) ∈ L∞ (Ω, (0, T )) , such that:

d− ≤ d (P ) ≤ d+ a.e.in Ω × (0, T )

7. b(S, P ) ∈ L∞ (Ω, (0, T )) , such that:

b− ≤ b (S, P ) ≤ b+ a.e.in Ω × (0, T )

8. So, P o ∈ L∞ (Ω, (0, T )) , such that:

0 ≤ S (x, t) ≤ 1 a.e.in Ω × (0, T )

9. ρg (P ) ∈ H1 (Ω, (0, T )) .

Note that a.e stands for almost everywhere.Then we introduce the following
functional spaces

H (div, Ω) =
{

v ∈ (
L2 (Ω, (0, T ))

)d
, div (v) ∈ L2 (Ω, (0, T )) , d = 2, 3

}
(28)

V (Ω) = {v ∈ H (div, Ω) , v.η = 0 on Γ} (29)

W (Ω) = {v ∈ V (Ω) , v (x, T ) = 0 in Ω}

The weak formulation of problem (24 − 27) is written as

(
Φ(x)ρh

oS,
∂v

∂t

)
Ω

− (
K(x)ρh

oλo(S)∇P,∇v
)
Ω

+

(
K(x)ρh

oα(S)∇S,∇v
)
Ω

= (f1, v) (30)

(
Φ(x)ρS,

∂v

∂t

)
Ω

− (K(x)b(S, P )∇P,∇v)Ω +

(K(x)d (P )α(S)∇S,∇v)Ω = (f2, v) (31)

where (., .)Ω is the inner product defined on W (Ω).

Proposition 3.1
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Under assumption (1.−9.), problem (24 − 27) has a unique solution (S, P ) ∈
(V (Ω))2.

Proof

To prove this result, we adapt results in [1] and [3] to our model so that
system (24 − 25) can be written in a simplified form as:

Φ(x)b(S,P )
∂

∂t

(
ρh

oS
) − b(S, P )∇.

(
K(x)ρh

oλo(S)∇P
)

+

+ b(S, P )∇.
(
K(x)ρh

oα(S)∇S
)

= b(S, P ).f1 (32)

Φ(x)ρh
oλo(S)

∂

∂t
(ρS) − ρh

oλo(S)∇.(K(x)b(S, P )∇P ) +

+ρh
oλo(S)∇. (K(x)d (P )α(S)∇S) = ρh

oλo(S).f2 (33)

If we multiply equations (33) by v1 and (34) by v2 and integrate over Ω we get
(

Φ(x)
∂

∂t

(
ρh

oS
)
, v1

)
− (

K(x)ρh
oλo(S)∇P,∇v1

)
+

+
(
K(x)ρh

oα(S)∇S,∇v1

)
= (f1, v1) (34)

(
Φ(x)

∂

∂t
(ρS) , v2

)
− (K(x)b(S, P )∇P,∇v2) +

+ (K(x)d (P )α(S)∇S,∇v2) = (f2, v2) (35)

where ∇v1 = b(S, P ) and ∇v2 = ρh
oλo(S). Therefore

∫
Ω

Φ(x)

(
∂

∂t

(
ρh

oS
)
.v1 − ∂

∂t
(ρS) .v2

)
+

+

∫
Ω

K (x) ρh
oα(S) (b(S, P ) − d (P )λo(S))∇S =

∫
Ω

f1v1 − f2v2 (36)



2062 S. Gasmi and F. Z. Nouri

We deduce that

Φ(x)

(
∂

∂t

(
ρh

oS
)
.v1 − ∂

∂t
(ρS) .v2

)
+

+K (x) ρh
oα(S) (b(S, P ) − d (P )λo(S))∇S = f1v1 − f2v2 a.e in Ω (37)

in the distribution’s sense.
Now, we introduce a new unknown V = K (x) ρh

oα(S) (b(S, P ) − d (P )λo(S))∇S
to get the following two equations:

Φ(x)

(
∂

∂t

(
ρh

oS
)
.v1 − ∂

∂t
(ρS) .v2

)
+ V = f1v1 − f2v2 (∗)

and

V = K (x) ρh
oα(S) (b(S, P ) − d (P )λo(S))∇S (∗∗)

We first assume that the unknown V ∈ L2 (Ω, (0, T )) is known and we try to
find S ∈ V (Ω, (0, T )) from equation (∗∗) . We multiply equation (∗∗) by a test
fonction v ∈ V (Ω, (0, T )) and we integrate over Ω to get

a (s, v) = (V, v)

∇S = 0 on Γ

where

a (s, v) =
(
K (x) ρh

oα(S) (b(S, P ) − d (P )λo(S))∇S, v
)

This problem has a unique solution s in V (Ω) So,if we define A ∈ £ (V, V ′) as

(AS, v) = a (s, v) (38)

we can write

AS = V a.e in (0, T ) (39)

A is an isomorphism from V into V ′ (according to the above conditions (1, 3 − 7)),
thus equation (∗∗) has a unique solution S (x, t) for t ∈ (0, T ) (from Lax-
Milgram theorem [7]).
Let us now study equation (∗): Φ(x)

(
∂
∂t

S1

)
+ V = f1v1 − f2v2 where S1 =(

ρh
oS

)
.v1 − ∂

∂t
(ρS) .v2; from (39) and (40) we get

S = A−1V
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where A is an isomorphism.Note that at t = 0: V0 = AS0.If we multiply
equation (∗) by a test fonction u ∈ H1 (Ω) and integrate over Ω we get∫

Ω

∂

∂t

(
A−1V

)
.u +

(
1

φ (x)
V, u

)
= (f1v1 − f2v2.v)

∫
Ω

∂

∂t
A−1V.u +

(
1

φ (x)
V, u

)
= (f1v1 − f2v2.v)

If we define the norm ((., .)) on Ω by ((u, v)) =
∫
Ω

A−1 (u) .v, we have the

relation

((V, u)) +

(
1

φ (x)
V, u

)
= 0, V (0) = V0

This problem has a unique solution V in L2 (Ω) ∩ L∞ (Ω).

4 Conclusion

In this paper, we have introduced a simplified formulation of the Hydrocarbon
system where the unknowns are the reduced saturation of one of the fluids
and the global pressure.This formulation transforms a coupled degenerate non
linear parabolic system to a familly of elliptic equations. Hence we prove
a theorecal result for the existence and the uniquness of the solution of the
resulting system.This is proved by decoupling the equations and using twice
Lax-Milgram’s theorem [7], first to determine the saturation S assuming that
V

(
V = K(x)ρh

oα(S) (b(S, P ) − d (P )λo(S))∇S
)

is known from equation (∗),
and then obtain V from equation (∗∗).
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les sciences et les techniques, masson, Paris 1987.

[8] G.Gagneux, A-M.Lefevere, M.Madaune-Tort, Analyse mathématique de
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