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Abstract

A model (consisting of rv-systems), a core programming language (for developing rv-programs), several
specification and analysis techniques appropriate for modeling, programming and reasoning about interac-
tive computing systems have been recently introduced by Stefanescu using register machines and space-time
duality, see [47]. After that, Dragoi and Stefanescu have developed structured programming techniques for
rv-systems and their verification, see, e.g., [14,15,16,17,18].

In the present paper a kernel programming language AGAPIA v0.1 for interactive systems is introduced. The
language contains definitions for complex spatial and temporal data, arithmetic and boolean expressions,
modules, and while-programming statements with their temporal, spatial, and spatio-temporal versions. In
AGAPIA v0.1 one can write programs for open processes located at various sites and having their temporal
windows of adequate reaction to the environment. The main technical part of the paper describes a typing
system for AGAPIA v0.1 programs.

Keywords: interactive systems, typing systems, AGAPIA programming, rv-programs, registers and
voices, distributed termination protocols

1 Introduction

Interactive computation has a long tradition and there are many successful ap-

proaches to deal with the intricate aspects of this type of computation, see

[1,2,3,7,9,19,28,49,50], to mention just a few references from a very rich literature.

However, a simple model for interactive computation extending the classical, pop-

ular imperative programming paradigm is still to be find.

In an attempt to reconciliate interactive and imperative computation styles, a

model based on register machines and space-time duality have been recently pro-

posed by Stefanescu, see [47]. Based on this model, a low level programming lan-

guage for writting interactive programs with registers and voices (rv-programs)

have been presented [47]. One of the key features of the model is the introduction
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of high-level temporal data structures. Actually, having high level temporal data

on interaction interfaces is of crucial importance in getting a compositional model

for interactive systems, a goal not always easy to achieve (recall the difficulties in

getting a compositional semantics for data-flow networks, [4,5,6,8,29]).

In a couple of papers Dragoi and Stefanescu have developed structured pro-

gramming techniques for rv-programs and for their verification, see [14,15,16,17,18].

Here, a kernel structured programming languages AGAPIA v0.1 for interactive

systems is introduced and its typing system is studied. 3

A first goal of the present paper is to introduce AGAPIA v0.1 language. An

example is P in Sec. 3, an AGAPIA v0.1 program implementing a termination

detection protocol. Here, we briefly touch on the key features of the language, with

explicit reference to P.

The starting basic blocks for developing AGAPIA programs are “modules” in-

herited from rv-programming. Such a module has two types of interfaces: one type

is for spatial data, the other is for temporal data. A spatial interface is specified

using registers, while a temporal interface is specified using voices, usually imple-

mented on streams. Complex spatial and temporal data are built up on top of

these primitive types. A module has explicit read/write and listen/speak state-

ments for its spatial and temporal data, respectively. An example of module is R in

program P.

The AGAPIA v0.1 structured programming operations extend the classical

structured programming operations to this context. Composition has extensions

to AGAPIA which exploit the multiple possibilities to compose blocks: (1) Verti-

cal (or “temporal”) composition via spatial interfaces; (2) Horizontal (or “spatial”)

composition via temporal interfaces; (3) Diagonal (or “spatio-temporal”) compo-

sition, where both, the spatial and the temporal output data of a block become

the spatial and the temporal input data of the next block, respectively. Tempo-

ral, spatial, and diagonal compositions are denoted by ‘%’, ‘#’, and ‘$’, respectively.

The iterated versions are introduced using the temporal, the spatial, and the diag-

onal while statements, denoted by while t, while s, and while st, respectively.

Occurrences of most of these statements may be found in program P.

While not subject of the present paper, notice that AGAPIA v0.1 language has

a natural scenario-based operational semantics, as well as a compositional relational

semantics based on spatio-temporal specifications (see [17,18] or Subsec. 2.3 for brief

presentations).

A second goal of the paper is to study the typing system of AGAPIA v0.1. Our

particular interest is to use the results for the design of AGAPIA v0.1 compilers.

While it is the programmer duty to ensure the correctness of his/her program, our

type checking procedure help him/her by checking the types of the programs and

returning a four-level answer: (1) ok (from the typing point of view the program is

correct); (2) war0 (at each composing interface the sets of types of the composing

programs are equal, but not reduced to a singleton, hence a running time miss-

typing is possible); (3) war1 (at each composing interface the sets of types of the

3 The current low level version number reflects the restricted format of the language, particularly a restricted
form of mixing structured rv-programming statements and module construction. (See [37] for the new
AGAPIA v0.2 version, including stronger modularization techniques.)
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composing programs have nonempty intersection, hence there is a chance to have a

well running program); and (4) err (at a composing interface the sets of types of

the composing programs have an empty intersection, hence each running using that

piece of code fails).

The paper is organized as follows. It starts with a brief presentation of rv-

systems, including: scenarios, operations on scenarios, finite interactive systems, rv-

systems and rv-programs. Then, structured rv-programs are introduced and their

scenario-based operational semantics is presented. Next, the syntax of AGAPIA

v0.1 is presented and an implementation of a termination detection protocol is

developed. A more technical section follows, describing the typing systems for

AGAPIA v0.1 programs. A few examples and final comments conclude the paper.

2 Preliminaries

2.1 Scenarios

In this subsection we briefly present temporal data, spatio-temporal specifications,

grids, scenarios, and operations on scenarios.

Spatio-temporal specifications

To handle spatial data, common data structures and their natural representa-

tions in memory are used. For the temporal data, we use streams: a stream is a

sequence of data ordered in time and is denoted as a0
_a1

_ . . ., where a0, a1, . . . are

its data at time 0, 1, . . ., respectively. Typically, a stream results by observing the

data transmitted along a channel: it exhibits a datum (corresponding to the channel

type) at each clock cycle. (See [7,8] for more on streams, temporal specifications,

and their algebraic representations.)

A voice is defined as the time-dual of a register: A voice is a temporal data

structure that holds a natural number. It can be used (“heard”) at various locations.

At each location it displays a particular value.

Voices may be implemented on top of a stream in a similar way registers are

implemented on top of a Turing tape, for instance specifying their starting time and

their length. Most of usual data structures have natural temporal representations.

Examples include timed booleans, timed integers, timed arrays of timed integers,

timed linked lists, etc.

When restricted to registers and voices only, a spatio-temporal specification S :

(m, p) → (n, q) is a relation S ⊆ (Nm × N
p) × (Nn × N

q), where m (resp. p) is the

number of input voices (resp. registers) and n (resp. q) is the number of output

voices (resp. registers). It may be defined as a relation between tuples, written as

〈v | r〉 7→ 〈v′ | r′〉, where v, v′ (resp. r, r′) are tuples of voices (resp. registers).

Specifications may be composed horizontally and vertically, as long as their

types agree. For instance, for two specifications S1 : (m1, p1) → (n1, q1) and S2 :

(m2, p2) → (n2, q2) the horizontal composition S1 . S2 is defined only if n1 = m2

and the type of S1 . S2 is (m1, p1 + p2) → (n2, q1 + q2).
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Fig. 1. A grid (a), an abstract scenario (b), and concrete scenarios (c,d).

Grids and scenarios

A grid is a rectangular two-dimensional area filled in with letters of a given

alphabet. An example of a grid is presented in Fig. 1(a). In our standard inter-

pretation, the columns correspond to processes, the top-to-bottom order describing

their progress in time. The left-to-right order corresponds to process interaction in

a nonblocking message passing discipline: a process sends a message to the right,

then it resumes its execution.

A scenario is a grid enriched with data around each letter. The data may

have various interpretation: they either represent control/interaction information,

or current data of the variables, or both. Fig. 1(b) illustrates the first case, Fig. 1(c)

the last case, and Fig. 1(d) the middle case. Notice that the scenario from Fig. 1(d)

is similar to that in (c), but the control/interaction labels A,B,C,1,2,3 are omitted.

The scenarios of a rv-program look like in (c), while those of structured rv-programs

as in (d) - there are no control/interaction labels in the latter case.

The type of a scenario interface is represented as t1; t2; . . . ; tk, where each tk is

a tuple of simple types used in the scenario cells. 4 An empty tuple is also written

0 or nil and can be freely inserted to or omitted form such descriptions. The type

of a scenario f is specified by the notation f : 〈w|n〉 → 〈e|s〉. For the example in

Fig. 1(d), the type is 〈nil;nil;nil|sn;nil;nil〉 → 〈nil;nil;nil|sn; sn; sn〉, where sn

denotes the spatial integer type.

Operations with scenarios

We say two scenario interfaces t = t1; t2; . . . ; tk and t′ = t′1; t
′
2; . . . ; t

′
k′ are equal

if k = k′ and the types and the values of each pair ti, t
′
i are equal. Two interfaces

are equal up to the insertion of nil elements, written t =n t′, if one can insert nil

elements into these interfaces such that the resulting interfaces are equal.

We denote by Idm,p : 〈m|p〉 → 〈m|p〉 the identity constant, i.e., the tempo-

ral/spatial output is equal to the temporal/spatial input, respectively.

Horizontal composition: Suppose we start with two scenarios fi : 〈wi|ni〉 →
〈ei|si〉, i = 1, 2. Their horizontal composition f1 . f2 is defined only if e1 =n

w2. For each inserted nil element in an interface, a dummy row is inserted in

the corresponding scenario, resulting a scenario fi. After these transformations,

the result is obtained putting f1 on left of f2. Notice that f1 : 〈w1|n1〉 → 〈t|s1〉

4 If only registers and voices are used, then one may simply replace each tuple by the number of its
components.
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Fig. 2. Operations on scenarios

and f2 : 〈t|n2〉 → 〈e2|s2〉, where t is the resulting common interface. The result,

f1 . f2 : 〈w1|n1;n2〉 → 〈e2|s1; s2〉, is unique up to insertion or deletion of dummy

rows. See Fig. 3 (and Fig. 2(b)). Its identities are Idm,0.
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Fig. 3. Horizontal composition of scenarios

Vertical composition: The definition of vertical composition f1 ·f2 is similar, but

now s1 =n n2. For each inserted nil element, a dummy column is inserted in the

corresponding scenario, resulting a scenario fi. The result, f1 · f2 : 〈w1;w2|n1〉 →
〈e1; e2|s2〉, is obtained putting f1 on top of f2. See Fig. 2(a). Its identities are Id0,m.

Constants: Except for the already defined identities I, additional constants may

be used. Some of them may be found in Fig. 2: A recorder R (2nd cell in the 1st

row of (c)), a speaker S (1st cell in the 2nd row of (c)), an empty cell Λ (3rd cell in

the 1st row of (c)), etc.

Diagonal composition: The diagonal composition f1 • f2 is defined only if e1 =n

w2 and s1 =n n2. It is a derived operation defined by

f1 • f2 = (f1 . R1 . Λ1) · (S2 . Id . R2) · (Λ2 . S1 . f2)

for appropriate constants R,S, Id,Λ. See Fig. 2(c). In this case R1 : 〈t| 〉 → 〈 |t〉,
S1 : 〈 |t〉 → 〈t| 〉, Id : 〈u|t〉 → 〈u|t〉, R2 : 〈u| 〉 → 〈 |u〉, S2 : 〈 |u〉 → 〈u| 〉, where

t (resp. u) is a common representation for e1 and w2 (resp. s1 and n2) obtained

inserting nil elements. Its identities are Idm,n.

2.2 Rv-systems

In this subsection we briefly describe rv-programs (interactive programs with reg-

isters and voices); see [47] for more details.

Finite interactive systems

A finite interactive system (shortly fis) is a finite hyper-graph with two types

of vertices and one type of (hyper) edges: the first type of vertices is for states

(labeled by numbers), the second is for classes (labeled by capital letters) and

the edges/transitions are labeled by letters denoting the atoms of the grids; each

transition has two incoming arrows (one from a class and the other from a state), and
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in: A,1; out: D,2

X::
(A,1) x : sInt

tx : tInt;
tx = x;
x = x/2;
goto [B,3];

Y::
(B,1) y : sInt

tx :
tInt

y = tx;
goto [C,2];

W::
(C,2) z : sInt

tx :
tInt

z = z - tx;
goto [D,2];

V::
(B,2) y : sInt

tx :
tInt

if(y%tx != 0)
tx = 0;

goto [C,2];

U::
(A,3) x : sInt

tx : tInt;
tx = x; x = x - 1;
if (x > 0) {goto [B,3]}
else {goto [B,2];}

Z::
(C,1) z : sInt

tx :
tInt

z = tx;
goto [D,2];

Fig. 4. The rv-program Perfect (for perfect numbers)

two outgoing arrows (one to a class and the other to a state). Some classes/states

may be initial (indicated by small incoming arrows) or final (indicated by double

circles); see, e.g., [46,47]. An example is shown below.

For the parsing procedure, given a fis F and a grid w, insert initial states/classes

at the north/west border of w and parse the grid completing the scenario according

to the fis transitions; if the grid is fully parsed and the south/east border contains

final states/classes only, then the grid w is recognized by F . The language of F is

the set of its recognized grids. A fis F1 and a parsing for abb
cab
cca

are shown below.
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Interactive programs with registers and voices

An rv-system (interactive system with registers and voices) is a fis enriched

with: (i) registers associated to its states and voices associated to its classes; and

(ii) appropriate spatio-temporal transformations for actions (that is, for the letters

labeling the edges).

We study programmable rv-systems specified using rv-programs. An example of

rv-program is presented in Fig. 4. A computation is described by a scenario like in

a fis, but with data around each cell (the data represent values of their spatial and

temporal variables); see Fig. 1(c) for an example.

Syntax of rv-programs

The syntax is based on the syntax used in imperative programming languages.

The basic block is a module. To explain the syntax, let us focus on the first module of

the program Perfect in Fig. 4. It has a name X and 4 areas: (1) In the top-left part

we have a pair of labels (A,1) which specifies the interaction and control coordinates

where this module has to be applied. (2) The top-right part declares the spatial

input variables. (3) The bottom-left part declares the temporal input variables. (4)

The body of a module is its bottom-right part, including type declarations and C-

like code. The exit from the module is specified by a goto statement. A statement

like goto [B,3] indicates that: (i) the data of the spatial variables in the current

module will be used in a next module with control state 3; (ii) the data of the
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temporal variables in the current module will be used for the interaction interface

of a new module with interaction label B.

Operational and denotational semantics of rv-programs

The operational semantics is given in terms of scenarios. Scenarios are built

up with the following procedure, described using the scenario in Fig. 1(c) for the

rv-program Perfect:

(1) Each cell has a module name as label.

(2) In the areas around a cell we show how variables are modified.

(3) In a current cell, the values of spatial variables are obtained going vertically

up and collecting the last updated values.

(4) Similarly, the full information on temporal variables in a current cell is obtained

collecting their last updated values going horizontally on left.

(5) The first column has an input class and particular values for its temporal

variables; the first row has an input state and particular values for its spatial

variables.

(6) The computation in a cell α is done as follows: (i) Take a module β of the

program bearing the class label of the left neighboring area of α and the state

label of the top neighboring area of α. (ii) Follow the code in β using the spatial

and the temporal variables of α with their current values. (iii) If the local

execution of β is finished with a goto [Γ, γ] statement, then the label of the

right neighboring area of α is set to Γ and the label of the bottom neighboring

area of α is set to γ. (iv) Insert the values of the temporal variables updated

by β in the right neighboring area of α and the values of the spatial variables

updated by β in the bottom neighboring area of α.

(7) A partial scenario (for an rv-program) is a scenario built up using the above

rules; it is a complete scenario if the bottom row has only final states and the

rightmost column has only final classes.

The scenario in Fig. 1(c) is a complete scenario for the rv-program Perfect.

The input-output denotation of an rv-program is the relation between the input

data on the north/west borders and output data on the south/east borders of the

program scenarios.

Notice that a global scoping rule is implicitly used here: once defined, a variable

is always available. It is also possible to introduce rv-programs obeying a stronger

typing discipline, where each module comes with an explicit type at each border.

This option is actually used for structured programs to be introduced in the next

subsection.

Space-Time Duality

Space-time duality interchanges information in space and information in time,

e.g., registers and voices. Then, it is naturally lifted to grids, scenarios, fis-es,

spatio-temporal specifications, rv-systems, and rv-programs, which are all space-

time invariant. The space-time operator ∨ is defined by:
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• On grids: transpose the grid; replace each letter by a dual letter;

• On fis-es: interchange states and classes; replace each letter by a dual letter;

• On scenarios: apply ∨ to the underlying grid; around each letter interchange

input registers with input voices and output registers with output voices ;

• On rv-programs, in each module: interchange class and state labels; interchange

temporal and spatial data; switch top-right and bottom-left corners; (notice that,

except for label and variable type change, no more modifications are needed in

the body of a module).

Theorem 2.1 For any rv-program R, its space-time dual R∨ is an rv-program and

(R∨)∨ = R. Moreover, space-time duality respects operational semantics and input-

output denotation of rv-programs.

2.3 Structured rv-programs

The rv-programs, presented in [47] (and briefly recalled in the previuos subsection),

resemble flowcharts and assembly languages: one freely uses goto statements, with

both temporal and spatial labels. The aim of this section is to introduce struc-

tured programming techniques on top of rv-programs. The resulting structured rv-

programs may be described directly, from scratch. The lower level of rv-programs

is used as a target language for compiling.

The syntax of structured rv-programs

The syntax is given by the BNF grammar

P ::= X | if(C)then{P}else{P}| P%P | P#P | P$P

| while t(C){P} | while s(C){P}| while st(C){P}

X ::= module{listen t vars}{read s vars}{code; }{speak t vars}{write s vars}

Structured rv-programs use modules X as their basic blocks. On top of them,

larger programs are built up by “if” and composition and iteration constructs for

the vertical, the horizontal, and the diagonal directions 5 . These statements aim to

capture at the program level the corresponding operations on scenarios.

On structured programming operations

Our choice of the above structured programming statements is determined by

practical considerations: to have a set of easy to understand and use statements.

Actually, these three types of composition and iterated composition statements are

instances of a unique more general and complex, but less “structured” form:

P1 comp{tv}{sv} P2 and while{tv}{sv}{C}{P}

In this case, at an identification border, only a part of the connecting interfaces is

to be matched, namely the tv part at a temporal interface and the sv part at a

spatial interface. (The operations are illustrated in Fig. 5; see [43] for translations

between “while” and “feedback” operations.)

5 The iteration operators are also called the temporal, the spatial, and the spatio-temporal while statements.
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Then, the horizontal form correspond to the choice tv = all, ts = ∅, the vertical

form to tv = ∅, ts = all, and the diagonal form to tv = all, ts = all. To state it

formally,

Proposition 2.2 Either {comp} or the pair {#,%} suffices to represent all com-

position operations in {#,%, $, comp}, provided constants as those in Fig. 2 may be

used. All particular iteration operators in {while t, while s, while st} are instances

of the general while operator.

a
b

c

d

p

qa’
c’

b’

d’

q

p

a
b

p p

d

c
q

q

Fig. 5. General “composition” and “feedback” (equivalent to “while”)

Currently, we do not know whether the general while may be simulated using

the particular forms in {while t, while s, while st}.

Examples

We include a simple, but rather general example of structured rv-program to

give a clue to the reader on the naturalness and the expressiveness of the language.

(See [14,17,18] for more examples.)

The structured rv-program for a termination detection protocol, to be presented

in full detail in a next section, has the following format

P :: [I1# for s(tid=0;tid<tn;tid++){I2}#] $

[while st(!(token.col==white && token.pos==0)){
for s(tid=0;tid<tn;tid++){R}}]

It starts with an initialization step where processes are created and inserted into

the ring. Next, an autonomuous “diagonal” iteration takes places where, in each

step, the processes do their jobs and interact horizontally by passing a message list

from one process to the next, in the order from process 0 to process tn-1. At the end

of an iteration, if the guard condition is fullfiled, a new iteration takes place where

the message list of process tn-1 is passed to process 0 and all processes continue

the execution from their last memory states.

Such a program is rather generic and it may be used for many other problems,

like n-player games, 8-queen problem, implementations of OO-systems based on

message passing communication, etc.

The dynamic case where processes may freely join or leave the ring is an easy

extension using the general while. By replacing in the above code while st by

while{all\k}{all}

we get a program where k is a temporal variables coming from the external temporal

interface, not from R; this k may be used to specify the number of new processes that
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have to be inserted into the ring, a procedure that is handled as in I2. (A slightly

different approach is presented in [37] using high-level structured rv-programs.)

2.4 Operational semantics of structured rv-programs

The operational semantics

| | : Structured rv-programs → Scenarios

associates to each program the set of its possible running scenarios.

The type of a program P , which is denoted by P : 〈w(P )|n(P )〉 → 〈e(P )|s(P )〉,
indicates the types at its west, north, east, and south border. On each side, the type

may be quite complex (see AGAPIA interface types in Sec. 3). In their specification,

the convention is to separate by “,” the data coming from within a module and by

“;” the data coming from different modules. This convention refer to both, spatial

data (coming from different processes) and temporal data (coming from different

transactions).

Two interface types match if they have a nonempty intersection.

Modules

The starting blocks for building structured rv-programs are the modules. The

listen (read) instruction is used to get the temporal (spatial) input and the speak

(write) instruction to return the temporal (spatial) output. The code consists in

simple instructions as in the C code. No distinction between temporal and spatial

variables is made within a module.

A scenario for a module consists of a unique cell, with particular data on the

borders, and such that the output data are obtained from the input data applying

the module code.

Composition

Due to their two dimensional structure, programs may be composed horizontally

and vertically, as long as their types on the connecting interfaces agree. They can

also be composed diagonally by mixing the horizontal and the vertical compositions.

Suppose two programs Pi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2 are given. We define the

following composition operators.

Horizontal composition: P1#P2 is defined if the interfaces e1 and w2 match.

The type of the composite is 〈w1|n1;n2〉 → 〈e2|s1; s2〉. A scenario for P1#P2 is a

horizontal composition of a scenario in P1 and a scenario in P2.

Vertical composition: P1%P2 is similarly defined.

Diagonal composition: P1$P2 connects the east border of P1 to the west border

of P2 and the south border of P1 to the north border of P2. It is defined if each pair of

interfaces e1, w2 and s1, n2 matches. The type of the composite is 〈w1|n1〉 → 〈e2|s2〉.
A scenario for P1$P2 is a diagonal composition of a scenario in P1 and a scenario

in P2.

10
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If

Given two programs Pi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2, a new program Q =

if (C) then P1 else P2 is constructed, for a condition C involving both, the tempo-

ral variables in w1 ∩ w2 and the spatial variables in n1 ∩ n2. The type of the result

is Q : 〈w1 ∪ w2|n1 ∪ n2〉 → 〈e1 ∪ e2|s1 ∪ s2〉.

A scenario for Q is a scenario of P1 if the data on west and north borders of the

scenario satisfy condition C, otherwise it is a scenario of P2.

While

We have introduced three while statements, each being the iteration of a corre-

sponding composition operation.

Temporal while: For a program P : 〈w|n〉 → 〈e|s〉, the statement while t (C){P}
is defined if the interfaces n and s match and C is a condition on the spatial variables

in n ∩ s. The type of the result is 〈(w; )∗|n ∪ s〉 → 〈(e; )∗|n ∪ s〉. A scenario for

while t (C){P} is either an identity (if C is false), or a repeated vertical composition

f1 · f2 · . . . · fk of scenarios for P , such that the north border of each fi satisfies C,

while the south border of fk does not satisfy C. 6

Spatial while: The spatial version while s (C){P} is similar.

Spatio-temporal while: If P : 〈w|n〉 → 〈e|s〉, the statement while st (C){P} is

defined if each pair of interfaces w, e and n, s matches and C is a condition on the

temporal variables in w∩ e and the spatial variables in n∩ s. The type of the result

is 〈w∪ e|n∪ s〉 → 〈w∪ e|n∪ s〉. A scenario for while st (C){P} is either an identity

(if C is false), or a repeated diagonal composition f1 • f2 • . . . • fk of scenarios for

P , such that the west and north border of each fi satisfies C, while the east and

south border of fk does not satisfy C.

3 The AGAPIA v0.1 language

The syntax of the AGAPIA v0.1 programs and an example are presented in this

section. Extended comments, a type checking procedure, more examples are all

deferred for the next section.

3.1 The syntax

The syntax of the AGAPIA v0.1 programming language is presented in Fig. 6. This

version of the language is intentionally kept simple to illustrate the key features of

our approach.

With respect to the scoping discipline, we depart here from the global “once de-

clared, always available” discipline used in rv-programs [47]. Here, via the module

construct, one is able to discards variables, as well. For instance, a newly declared

temporal variable which is not present in the speak statement of a module is dis-

carded from its temporal interface.

The types for spatial interfaces are built up starting with integers and booleans,

denoted sn, sb, and applying ∪, ‘,’, ( )∗ to get process interfaces, and then applying

6 When the body program P of a temporal while has dummy temporal interfaces, the temporal while is
the same as the usual while from imperative programming languages.
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Interfaces

SST ::= nil | sn | sb

| (SST ∪ SST ) | (SST, SST ) | (SST )∗

ST ::= (SST ) | (ST ∪ ST ) | (ST ;ST ) | (ST ; )∗

STT ::= nil | tn | tb

| (STT ∪ STT ) | (STT, STT ) | (STT )∗

TT ::= (STT ) | (TT ∪ TT ) | (TT ;TT ) | (TT ; )∗

Expressions

V ::= x : ST | x : TT | V (k)

| V.k | V.[k] | V @k | V @[k]

E ::= n | V | E + E | E ∗ E | E − E | E/E

B ::= b | V | B&&B | B||B | !B | E < E
Programs

W ::= nil | new x : SST | new x : STT

| x := E | if(B){W}else{W}
| W ;W | while(B){W}

M ::= module{listen x : STT}{read x : SST}
{W ; }{speak x : STT}{write x : SST}

P ::= nil | M | if(B){P}else{P}
| P%P | P#P | P$P

| while t(B){P} | while s(B){P} | while st(B){P}

Fig. 6. The syntax of AGAPIA v0.1 programs

∪, ’;’, ( ; )∗ to get system interfaces. They look slightly too complicate. An argu-

ment presented in Example 4.1 shows that whenever if and the temporal, spatial,

and spatio-temporal composition and while statements are legitimate program-

ming constructs, we have to allow such types. Similarly, the temporal types are

introduced. Examples are included in the next section.

In practical programs, the description of data types will follow a more conven-

tional approach: Star defines an array, hence the usual [ ] notation will be used.

For union types, the “or” keyword will be used. Finally, the “,” and “;” product

types are specified using the record notation, with items separated by “,” and “;”,

respectively.

Given a type V , the notations V (k), V.k, V.[k], V @k, V @[k] are used to refer to

its components. For instance, in the case of spatial interfaces, they refer to: V (k)-

a component of a choice; V.k - a component of a tuple within a process; V.[k] - a

component of an iterated tuple within a process; V @k - a component of a tuple of

processes; and V @[k] - a component of an iterated tuple of processes.

Expressions, usual while programs, modules, and structured rv-programs are

naturally introduced. This v0.1 version of AGAPIA has a strongly restricted for-

mat: the module and the rv-programming statements are not mixed (see [37] for a

new, more powerful release: AGAPIA v0.2.). The development starts with simple

while programs, then modules are defined, and finally AGAPIA v0.1 programs are

12
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obtained applying structured rv-programming statements on modules. 7

Finally, notice that the language is space-time invariant. This means, one can

formally define a space-time duality operator which maps an AGAPIA v0.1 program

P to an AGAPIA v0.1 program P ∨ such that P = P∨∨.

A useful derived statement, to be used in the sequel, is a simple form of a spatial

“for” statement

for s(i=a;i<b;i++){R}

This is a macro for the pure AGAPIA v0.1 program

i=a# while s(i<b){R# i++#}

where i=a or i++ denotes a module with such a code, with empty spatial interfaces,

and whose temporal interfaces are equal to the temporal interfaces of R (we suppose,

i is included in the temporal interfaces of R).

3.2 An example: Dual-pass termination detection protocol

We describe a slightly extended 8 AGAPIA v0.1 program P that implements a dual

pass termination detection protocol for a network of distributed processes logically

organized into a ring. This is a popular termination detection protocol, see, e.g.,

[13].

The protocol is used for termination detection of a ring of processes. It can

handle the case when processes may be reactivated after their local termination. To

this end, it uses colored (i.e., black or white) tokens. Processes are also colored: a

black color means global termination may have not occurred. Then, the algorithm

works as follows:

• The root process P0 becomes white when it has terminated and it generates a

white token that is passed to P1.

• The token is passed through the ring from one process Pi to the next when Pi has

terminated. However, the color of the token may changed. If a process Pi passes

a task to a process Pj with j < i, then it becomes a black process; otherwise it is

a white process. A black process will pass on a black token, while a white process

will pass on the token in its original color. After Pi has passed on a token, it

becomes a white process.

• When P0 receives a black token, it passes on a white token; if it receives a white

token, all processes have terminated.

Suppose there are m processes, denoted 0,...,m-1. Besides the input m, the

program uses the spatial variables id : sInt, c : {white, black}, active : sBool

and the temporal variables tm, tid : tInt, msg : tIntSet[ ]. (sInt, sBool, tInt,

and tIntSet stands for spatial integers, spatial booleans, temporal integers, and

temporal sets of integers, respectively.)

The program P is presented in Fig. 7. It is the diagonal composition P = I $ Q

of an initialization program I and a core program Q. The diagonal composition

7 Notice that the general while (presented in Subsec. 2.3) is not included in this version.
8 In this extension, except for simple and common programming conventions, we suppose to have an
implementation of sets with their basic operations.
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ensures the communication of the last process with the first, as well as a correct

continuation of each process execution from the former state. It is worthwhile to

mention that the sytem here is closed. By a small change, it is possible to model

an open version where processes may freely join or leave the ring.

The program is P = I $ Q where:

I = I1# for s(tid=0;tid<tm;tid++){I2}#

I1 = module{listen nil}{read m}{
tm=m; token.col=black; token.pos=0;

}{speak tm,tid,msg[ ],token(col,pos)}{write nil}

I2 = module{listen tm,tid,msg[ ],token(col,pos)}{read nil}{
id=tid; c=white; active=true; msg[id]=emptyset;

}{speak tm,tid,msg[ ],token(col,pos)}{write id,c,active}

Q = while st(!(token.col==white && token.pos==0)){
for s(tid=0;tid<tm;tid++){R}}

R = module{listen tm,tid,msg[ ],token(col,pos)}{read id,c,active}{
if(msg[id]!=emptyset){ //take my jobs

msg[id]=emptyset;

active=true;}
if(active){ //execute code, send jobs, update color

delay(random time);

r=random(tm-1);

for(i=0;i<r;i++){ k=random(tm-1);

if(k!=id){msg[k]=msg[k]∪{id}};
if(k<id){c=black};}

active=random(true,false);}
if(!active && token.pos==id){ //termination

if(id==0)token.col=white;

if(id!=0 && c==black){token.col=black;c=white};
token.pos=token.pos+1[mod tm];}

}{speak tm,tid,msg[ ],token(col,pos)}{write id,c,active}

Fig. 7. An AGAPIA v0.1 program for termination detection

The spatial variables id, c, active represent the process identity, its color, and

its active/passive status. The temporal variables used in this program are: (i)

tm,tid - temporal versions of m,id; (ii) msg[ ] - an array of sets, where msg[k]

contains the id of the source processes of the pending messages sent to process k;

(iii) token.col - an element of {white,black} representing the color of the token;

and (iv) token.pos - the number of the process that has the token.

The program starts with the initialization of the network (program I) by acti-

vating all the processes (and setting the fields id, c, active). Initially, msg[i] = ∅,
for all 0 ≤ i < m, because no jobs were sent and the default color/position of the

token is black/0.

After the initialization part and until the first process receives a white token

back, each process executes its code. If one process has the token and terminates, it
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passes the token to the next process (only the first process has the right to change

the color of the token into white once it terminates).

When a process executes the code R, whether active or passive, it checks if new

jobs were assigned to it; if the answer is positive, it collects its jobs from the jobs

list and stays/becomes active. When it is active, it executes some code, sends new

jobs to other processes, and randomly goes to an active or passive state. If it has

the token, it keeps it until it reaches termination and afterward it passes it. A

white process will pass the token with the same color as it was received and a black

process will pass a black token (after passing the token, the process becomes white).

4 Types for AGAPIA v0.1 programs

In this section we present a typing system for AGAPIA v0.1 programs. The starting

types are those used for the declared variables. The typing is naturally extended to

expressions, simple while-programs, modules, and full AGAPIA v0.1 programs.

4.1 Interface types

In the representation of the types for interfaces we use two special separators “,”

and “;”. On spatial interfaces, the role of “,” is to separate the types of the (spatial)

variables used within a specific process, while “;” is used to separate the types of

the variables from different processes. On temporal interfaces, the first separator

“,” is used to separate the types of the temporal variables used within the same

transaction, while the second separator “;” is a deliminator for the temporal vari-

ables which occur in different transactions. Finally, union of types, denoted by “∪”,

is allowed.

Simple spatial types

Simple spatial types are obtained with the following syntax:

SST ::= nil | sn | sb | (SST ∪ SST ) | (SST, SST ) | (SST )∗

where “,” and “nil” respect the monoid laws 9 and “∪” is associative. They are

intended to be used in a process.

An example is ((((sn)∗)∗, sb, (sn, sb, sn)∗)∗, (sb ∪ sn)). In a conventional repre-

sentation, the type represents two variables (x, y), where x an array of type struc1

and y is a boolean or an integer 10 . Next, struc1 is a structure with three fields

(a, b, c), where a is an array of arrays of integers, b is a boolean, and c is an array

of type struc2. Finally, struc2 is a structure with three fields (p, q, r), where p is

an integer, q a boolean, and r an integer. Inserting such variables, one may write

the type as

x: struc1[], where

struc1 = ( a: Int[][],

b: Bool,

c: struc2[], where

9 I.e., “,” is associative, and has nil as a neutral element.
10This is a simple instance of a polymorphic type.
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struc2 = (p:Int, q:Bool, r:Int)

),

y: Bool or Int

General spatial types

General spatial types specify system interfaces, i.e., the spatial type of a collec-

tion of processes running in different nodes. They are obtained with the following

syntax:

ST ::= nil | (SST ) | (ST ∪ ST ) | (ST ;ST ) | (ST ; )∗

where, as above, “;” and “nil” respect the monoid laws and “∪” is associative. 11

An example is ((sn)∗)∗;nil; sb; ((sn)∗; )∗. This represents the spatial type of a

collection of processes (A,B,C,D), where A is a process using an array of arrays

of integers, B is a process with no starting spatial data 12 , C is a proces using a

boolean variable, and D is an array of processes, each process using an array of

integers. Notice the difference between the first and the last subexpressions: In

((sn)∗)∗ both iterates are in the same place, while in ((sn)∗; )∗ the first iterate is

in a certain place (within a process), while the second is spread on different places,

hence generating an array of differently located processes. 13

Temporal types

They are similarly handled (use space-time duality).

Reshaping types

One may use transformed speakers and recorders 14 (i.e., space-to-time and time-

to-space converters mixed with identities [17]) to reshape the spatial interfaces. For

instance, there is a natural morphism from (sn; )∗ to (sn)∗, which may be imple-

mented as follows: (1) use generalized speakers to transform the spatial integers sn

into temporal integers tn and to propagate them along the processes; then, (2) use

a large recorder to transform the temporal integers received at the temporal output

interface of the last process into an array of spatial integers on a unique process.

Formally, the morphism is

TSε,a1
. TS(a1)∨,a2

. TS(a1,a2)∨,a3
. . . . . TS(a1,a2,...,an−1)∨,an

. R(a1,a2,...,an)∨

: 〈(a1; a2; . . . ; an)| 〉 → 〈(a1, a2, . . . , an)| 〉

where TSa,b is a generalized speaker of type 〈a|b〉 → 〈a, b∨| 〉 and Ra is a recorder

of type 〈a| 〉 → 〈 |a∨〉. 15

11As usual, redundant parentheses are often omitted. E.g. the syntactically different expressions nil and
(nil) or (a; (b; c)) and a; b; c are identified.
12A typical example is the creation of a process or an object where the starting data come from their
temporal interfaces (using a message, or a constructor).
13To be more consistent, we should perhaps include the delimiter “,” also in the definition of
SST using (SST, )∗. But the notation becomes a bit boring; e.g., the above type would become
((((sn, )∗, )∗, sb, (sn, sb, sn, )∗, )∗, (sb ∪ sn)). The case of “;” looks more natural as we are familiar with
the use of “;” as a specification of the termination of a statement in usual imperative programming lan-
guages.
14They are presented in Subsec. 2.1, Fig. 2(e)(g).
15Here, ∨ denotes the space-time duality operator, ‘,’ is a generic notation for the monoidal operation on
simple spatial or temporal interfaces, and . denoted horizontal composition.
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Types vs. formal languages

Ultimately, the types specify complex structures of occurrences of primitive

types. In a variable-free approach, two types may be considered equal if the formal

languages represented by their expressions are equal. A simple example involving

data structures from a single process is (sn, (sn)∗) = ((sn)∗, sn). It corresponds to

a list where the first (on left) and the last (on right) element is emphasized, respec-

tively. In a conventional representation, they are represented as (x : Int, y : Int[ ])

and (z : Int[ ], w : Int). They look different, but there is a matching function

which may be used to connect these interfaces 16 . Such an approach is common in

functional programming studies dedicated to abstract data type, see, for instance,

[38]. One can argue on the soundness of the equality (sn; (sn; )∗) = ((sn; )∗; sn)

in our setting, as well. We do not use this implicit matching from “variable-free

programming,” hence the interface matching below will be more restrictive. For

instance, the above identification is accepted provided one has specific constants to

reshape these interfaces.

4.2 Typing expressions

The typing here is relatively easy, provided one starts with proper types for V in

both, E and B.

Typing declarations

The syntax for type declarations is x : ST or x : TT . In order to handle such

complex data types, a mechanism for accessing their primitive integer or boolean

components is needed. We use the following notation:

(k) for acccessing the k-th element of an alternative choice (separated by “∪”)

.k for acccessing the k-th element of a structure (separated by “,”)

.[k] for acccessing the k-th element of an array (defined by (...)∗);

@k for acccessing the k-th proccess/transaction (separated by “;”)

@[k] for acccessing the k-th proccess/transaction of an array of procce-

ses/transactions (defined by “(...; )∗”)

With this convention, if w is a datum with the type presented in a previous para-

graph, i.e., ((((sn)∗)∗, sb, (sn, sb, sn)∗)∗, (sb∪sn)), then a component corresponding

to the 2nd sb, (i.e., the q component of the above conventional representation of this

type) may be specified by w.1.[i].3.[j].2, for appropriate i, j. For another example,

if w : ((sn)∗)∗;nil; sb; ((sn ∪ sb)∗; )∗ the integer data corresponding to the last sn

may be accessed by w@3@[i].[j](1). Notice that nil does not increase the counter.

Typing spatial variables

For a spatial variable V , the type σ(V ) represents its type, paired with a flag in

{ok, war0, err} indicating ok, a warning, or an error resulting from an attempt to

acces its components. A min function is defined on the set {ok,war0, war1, err},

16For instance, if y, z have equal nonzero length it maps x in z[0], then y[0..len− 1] in z[1..len], and finally,
y[len] in w; if both are empty, it maps x in w; if the lengths are different, an error is raised.
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thought of as an ordered set, deacreasing from left to right (it returns the minimum

of two elements). The typing is presented in Fig. 8.

σ(x : ST ) = (ok, ST )

σ(x(k)) =















(min(ok, β), α) if σ(x) = (β, γ), γ is a union “∪” type and α

is the type of its k-th component

(err, not defined) otherwise

σ(x.k) =















(min(ok, β), α) if σ(x) = (β, γ), γ is a product “,” type and

α is the type of its k-th component

(err, not defined) otherwise

σ(x[k]) =















(min(war0, β), α) if σ(x) = (β, γ), γ is an iteration type “∗” and

α is the type of its components

(err, not defined) otherwise

σ(x@k) =















(min(ok, β), α) if σ(x) = (β, γ), γ is a product “;” type and

α is the type of its k-th component

(err, not defined) otherwise

σ(x@[k]) =















(min(war0, β), α) if σ(x) = (β, γ), γ is an iteration type “ ;∗”

and α is the type of its components

(err, not defined) otherwise

Fig. 8. Typing spatial variables

Typing temporal variables

This case is similar to the case of spatial variables.

Typing arithmetic expressions

For an arithmetic expression, we collect in a set the variables occurring in the

expression, together with their types. The leafs of the expression should have an

integer sn or tn type, otherwise the error type err is associated. The typing of

the leafs is naturally extended to the full expression, collecting the types of the

components and propagating their ok, war0, err status flags.

Typing boolean expressions

For boolean expressions the typing is similar: The starting variables should have

a boolean sb or tb type, otherwise the error type err is associated. This starting

typing is extended to full expressions as above.
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4.3 Typing programs

The types of AGAPIA v0.1 programs may be specified using the following mapping

from programs to types

σ : P 7→ (stσ(P ), 〈wσ(P )|nσ(P )〉 → 〈eσ(P )|sσ(P )〉)

where:

• The status flag st is an element of {ok, war0, war1, err} specifying whether the

program is: (1) well-typed; (2-3) partially well-typed with two levels of warning: a

weak warning message war0 and a stronger warning message war1; or (4) wrongly

typed. 17 When st = err, the second component is meaningless.

• On each west, north, east, or south interface, the type wσ(P ), nσ(P ), eσ(P ), or

sσ(P ) consists of a set of variables paired with their associated types.

The comparison for the type matching on an interface proceeds along the fol-

lowing steps: (1) Check if the same set of variables is used; (2) For each variable

the comparison returns: ok - they are equal and singleton; war0 - they are equal

and not singleton; war1 - they are not equal, but have a nonempty intersection;

err - they are not equal and have an empty intersection; (3) Finally, the overall

status flag is the minimum of the status flags for each variable in the interface

set.

4.3.1 Typing simple while programs and modules

The typing of simple while programs and modules is a simple extension of the

classical typing used in sequential programs.

Simple while programs

These are simple, usual while programs. Once we have a typing for the basic

blocks (expressions and assignment statements), their typing may be defined as in

[36]. 18

For instance, in the case of an assignment, the type of the variable on left is com-

pared to the type of the expression on right. The status part {ok, war0, war1, err}
collects the information on the status part for the variable, the status part for the

expression, and the comparison result regarding the matching of these two types.

Modules

For a module, take the type of the body program and export on the interfaces the

variables occurring in the corresponding listen/speak and read/write statements.

4.3.2 Typing structured rv-programs

On programs, the typing morphism is inductivelly defined as follows.

17As said before, a min function is defined on the set {ok,war0, war1, err}, thought of as an ordered set,
deacreasing from left to right.
18Notice that a global scoping is used here, hence subtyping rules are to be used, as well.
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Vertical composition

σ(S1%S2) = (st, 〈wσ(S1);wσ(S2)|nσ(S1)〉 → 〈eσ(S1); eσ(S2)|sσ(S2)〉), where

st =































min(ok, stσ(S1), stσ(S2)) if sσ(S1) = nσ(S2) = singleton

min(war0, stσ(S1), stσ(S2)) if sσ(S1) = nσ(S2) = ¬singleton

min(war1, stσ(S1), stσ(S2)) if sσ(S1) ∩ nσ(S2) 6= ∅

err if sσ(S1) ∩ nσ(S2) = ∅

??

w1

w2

n1

e1

e2

s2

??

n1 n2

s1 s2

w1 e2

?? n’ n"

w’

w"

e’

e"

s"s’

Fig. 9. Typing vertical/horizontal composition and “if” statements

Horizontal composition

σ(S1#S2) = (st, 〈wσ(S1)|nσ(S1);nσ(S2)〉 → 〈eσ(S2)|sσ(S1); sσ(S2)〉), where

st =































min(ok, stσ(S1), stσ(S2)) if eσ(S1) = wσ(S2) = singleton

min(war0, stσ(S1), stσ(S2)) if eσ(S1) = wσ(S2) = ¬singleton

min(war1, stσ(S1), stσ(S2)) if eσ(S1) ∩ wσ(S2) 6= ∅

err if eσ(S1) ∩ wσ(S2) = ∅

Diagonal composition

σ(S1$S2) = (st, 〈wσ(S1)|nσ(S1)〉 → 〈eσ(S2)|sσ(S2)〉), where denoting

P1 := sσ(S1) = nσ(S2) = singleton, Q1 := eσ(S1) = wσ(S2) = singleton,

P2 := sσ(S1) = nσ(S2) = ¬singleton, Q2 := eσ(S1) = wσ(S2) = ¬singleton,

P3 := sσ(S1) ∩ nσ(S2) 6= ∅, Q3 := eσ(S1) ∩ wσ(S2) 6= ∅,
P4 := sσ(S1) ∩ nσ(S1) = ∅, Q4 := eσ(S1) ∩ wσ(S2) = ∅

we have

st =































min(ok, stσ(S1), stσ(S2)) if P1 ∧ Q1

min(war0, stσ(S1), stσ(S2)) if P2 ∧ (Q1 ∨ Q2) ∨ (P1 ∨ P2) ∧ Q2

min(war1, stσ(S1), stσ(S2)) if P3 ∧ (Q1 ∨ Q2 ∨ Q3) ∨ (P1 ∨ P2 ∨ P3) ∧ Q3

err if P4 ∨ Q4
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If

σ(if(B){S1}else{S2}) = (st, 〈wσ(S1) ∪ wσ(S2)|nσ(S1) ∪ nσ(S1)〉 → 〈eσ(S1) ∪
eσ(S2)|sσ(S1) ∪ sσ(S2)〉) where

st =



















































































min(ok, stB , stσ(S1), stσ(S2))

if σ(B) ⊆ (wσ(S1) ∪ nσ(S1)) ∩ (wσ(S2) ∪ nσ(S2)) = singleton

min(war0, stB, stσ(S1), stσ(S2))

if σ(B) ⊆ (wσ(S1) ∪ nσ(S1)) ∩ (wσ(S2) ∪ nσ(S2)) = ¬singleton

min(war1, stB, stσ(S1), stσ(S2))

if σ(B) ∩ ((wσ(S1) ∪ nσ(S1)) ∩ (wσ(S2) ∪ nσ(S2))) 6= ∅

err

if σ(B) ∩ ((wσ(S1) ∪ nσ(S1)) ∩ (wσ(S2) ∪ nσ(S2))) = ∅

Temporal while

σ(while t(B){S}) = (st, 〈(wσ(S); )
∗|nσ(S) ∪ sσ(S)〉 → 〈(eσ(S); )

∗|nσ(S) ∪ sσ(S)〉)
where denoting

P1 := σB ⊆ wσ(S) ∪ nσ(S) = singleton, Q1 := sσ(S) = nσ(S) = singleton,

P2 := σB ⊆ wσ(S) ∪ nσ(S) = ¬singleton, Q2 := sσ(S) = nσ(S) = ¬singleton,

P3 := σB ∩ (wσ(S) ∪ nσ(S)) 6= ∅, Q3 := sσ(S) ∩ nσ(S) 6= ∅,
P4 := σB ∩ (wσ(S) ∪ nσ(S)) = ∅, Q4 := sσ(S) ∩ nσ(S) = ∅

we have

st =































min(ok, stB , stσ(S)) if P1 ∧ Q1

min(war0, stB, stσ(S)) if P2 ∧ (Q1 ∨ Q2) ∨ (P1 ∨ P2) ∧ Q2

min(war1, stB, stσ(S)) if P3 ∧ (Q1 ∨ Q2 ∨ Q3) ∨ (P1 ∨ P2 ∨ P3) ∧ Q3

err if P4 ∨ Q4

Spatial while

The spatial version σ(while s(B){S}) is similar to the temporal one.

Spatio-temporal while

The spatio-temporal while σ(while st(B){S}) is similar to the temporal while,

but slightly more complicate to write down as we have 3 pairs of interfaces to

compare now: first, σB vs. wσ(S) ∪ nσ(S); then, nσ(S) vs. sσ(S); and, finally, wσ(S)

vs. eσ(S).

4.4 Examples

Example 4.1 This example shows that the presence of regular-like expressions on

interface type specifications is a natural consequences of the presence of “composi-

tion/if/while” statements in AGAPIA v0.1 programs. Consider the program

21



Dragoi and Stefanescu

P1 = while t(x>0){R}, where

R = module{listen nil}{read x}
{new y:tn; y = x; x--;}{speak y}{write x}

and its equivalent one-step unfolding

P2 = if(x>0) {R % while t(x>0){R}} else {nil}

where x is a spatial integer of type sn and y a temporal integer of type tn. Except

for the flag, the type of P1 is 〈nil|sn〉 → 〈(tn; )∗|sn〉, while the type of P2 is

〈nil|sn〉 → 〈nil ∪ (tn; (tn; )∗)|sn〉. If the programs are to be identified, then (tn; )∗

and nil ∪ (tn; (tn; )∗) are to be valid interface specifications and equal. 19

Consequently, we have to allow for union “∪”, composition “;”, and star “(..; )∗”

on temporal interfaces. A similar argument apply to spatial interfaces. Using

space-to-time and time-to-space constants, one may reshape such an interface to

have the operations in the same process or transaction (as in a previous example of

reshaping interfaces, presented in Subsec. 4.1). To conclude, if one agrees to use “if”

and the temporal, the spatial, and the spatio-temporal “composition” and “while”

statements in programs, as well as reshaping of interfaces, than one has to allow for

the interface types included in AGAPIA v0.1 programs, too.

Example 4.2 In this example we compute the type of the AGAPIA v0.1 termina-

tion detection program presented in Sec. 3.

To start with, let us use the notation: a = (tm, tid, msg[ ], token), b =

(id, c, active), c = (m). The corresponding interface type declarations are not for-

mally specified and we simply refer to the types via these variables. Then:

Init:

I1 7→ (ok, 〈nil|c〉 → 〈a|nil〉)
I2 7→ (ok, 〈a|nil〉 → 〈a|b〉)
for s( ){I2} 7→ (ok, 〈a|(nil; )∗〉 → 〈a|(b; )∗〉) = (ok, 〈a|nil〉 → 〈a|(b; )∗〉)
I1#for s( ){I2} 7→ (ok, 〈nil|c;nil〉 → 〈a|nil; (b; )∗〉) = (ok, 〈nil|c〉 → 〈a|(b; )∗〉)

Repeat:

R 7→ (ok, 〈a|b〉 → 〈a|b〉)
for s( ){R} 7→ (ok, 〈a|(b; )∗〉 → 〈a|(b; )∗〉)
while st( ){for s( ){R}} 7→ (war0, 〈a|(b; )∗〉 → 〈a|(b; )∗〉)

Full program:

P 7→ (war0, 〈nil|c〉 → 〈a|(b; )∗〉)

While we know the program is correctly typed, the typing procedure rises a weak

warring war0 as it doesn’t check whether the number tm of iterates in the inner for

does not change from one loop of the while st to the next.

Example 4.3 The typing procedure described in this section may reject correct

programs, as it happens with many other similar type checkers. For instance, if a

program has the structure

if (B) then { if (!B) then {X} else {Y} } else {Z}

19By a well-known regular expression identity 1 ∪ aa∗ = a∗, the above types are equal, if formal language
equivalence is used.
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then the X component is unrechable (provided there are no side-effects to change

a variable value during a test). If a wrongly typed component is put on the place

of X, then the program is rejected by the typing procedure, but it may be correct

(provided the remaining part is correct).

To conclude, the typing procedure just presented has to be complemented with

other program analysis techniques to get a friendly and powerful compiler.

5 Conclusions and future work

In this paper we have presented AGAPIA v0.1, a kernel progrmming language for

interactive systems. A typing system for this language has been developed. A few

lines for future work are presented below.

A first line of research is to develop the mathematics and the logics behind

(structured) rv-systems. If one makes abstraction of both spatial and temporal

data, one gets a mechanism equivalent to tile systems, existential monadic sec-

ond order logics, etc. used for recognizable two-dimensional languages. There is

a large literature dedicated to two-dimensional (or picture) languages (see, e.g.,

[20,21,27,31,32,33,34]) and it may be worthwhile to try to lift some results to the

level of rv-systems. Particularly useful may be to find language preserving trans-

formations which may be useful for developing efficient compilers for structured

rv-programs.

In the last 20 years, a rich and succesful algebraic approach to cyclic struc-

tures has been developed, see, e.g., [10,11,12,30,25,26,39,40,43], either for control

or for reactive models. There are attempts to mixt these two models, see, e.g.,

[23,24,42,41,45,44] or the last chapter of [43]. The model of rv-systems, presented

in this paper, falls into this class. A difficult, but worthwhile, research topics is to

extend such algebraic techniques to rv-programs.

Finally, a general topics is to develop an efficient and fully flagged compiler for

AGAPIA programs. Our current approach is to translate structured rv-programs

to rv-programs, then we use a running machine for rv-programs to get the program

output. Currently, we have an automatic procedure for the translation (see [18]),

but it is not fully implemented as we still look for the possible optimizations to

improve the compiler.
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