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Identification of Certain Polynomial 
Nonlinear Structures by Adaptive 
Selectively-Sensitive Excitation 
This paper presents a method for identification of certain polynomial nonlinear 
dynamic systems by adaptive vibrational excitation. The identification is based on 
the concept of selective sensitivity and is implemented by an adaptive multihypothesis 
estimation algorithm. The central problem addressed by this method is reduction 
of the dimensionality of the space in which the model identification is performed. 
The method of selective sensitivity allows one to design an excitation which causes 
the response to be selectively sensitive to a small set of model parameters and 
insensitive to all the remaining model parameters. The identification of the entire 
system thus becomes a sequence of low-dimensional estimation problems. The dy
namical system is modelled as containing both a linear and a nonlinear part. The 
estimation procedure presumes precise knowledge of the linear model and knowledge 
of the structure, though not the parameter values, of the nonlinear part of the model. 
The theory is developed for three different polynomial forms of the nonlinear model: 
quadratic, cubic and hybrid polynomial nonlinearities. The estimation procedure is 
illustrated through simulated identification of quadratic nonlinearities in the small-
angle vibrations of a uniform elastic beam. 

1 Introduction 

In complaining about undue adherence to linear theories, 
Erwin Schrodinger once wrote to Max Born about the plethora 
of models in which "[a]ll is linear, linear—linear in the nth 
power I would say, if that was not a contradiction." [1, p. 
381]. While much modern engineering is rooted in linear 
models, today's scientific engineer is intensely aware of the 
nonlinearities which abound in nature as well as in technology. 
Identification of mechanical damage in civil structures, for 
example, is just one of many fields in which the multiplicity 
of nonlinear phenomena is recognized [2]. 

Two classes of identification problems can be defined [3]: 
(7) the structure of the model (for linear mechanical systems 
this refers to the number of degrees of freedom and trie type 
of damping), and (2) values of the model parameters (stiff
nesses, inertias and so on). 

The identification of linear elastic structures has traditionally 
exploited modal properties which are characteristic of such 
systems. The complexities inherent in modal analysis of a non
linear system occur for several reasons [4]. Nonlinear systems 
do not obey the superposition principle of inputs and outputs, 
so the technique of orthogonal decomposition of inputs and 
outputs fails in nonlinear applications. Second, the reciprocity 
theorem of linear systems does not hold, so the system response 
is intrinsically and significantly dependent on the location of 
the excitation. Finally, the frequency response function of a 
nonlinear system depends on the form of the input signal, so 
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global modal properties cannot be established which are in
dependent of the input. The analytical rectification of these 
difficulties has led to the development and application of math
ematical tools which are foreign to linear-system analysis, such 
as limit cycles and attractors [5] and Hilbert transforms [6]. 

While the traditional tools for identification of linear systems 
are in need of substantial revision when directed to nonlinear 
applications, the difficulties which characterize linear identi
fication remain in force. In particular, a central problem is 
the "ill-conditioning" which often arises in high-dimensional 
inverse problems such as linear-system identification [7]. In 
practical terms, ill-conditioning appears as large variation of 
the identified quantities resulting from small variations of the 
measurements. This is a widespread property of large systems, 
for which the "curse of dimensionality" has long been rec
ognized [8, p. 197]. Nonlinearities cannot be expected to di
minish the intensity of these phenomena. 

Various approaches have been studied for identifying non
linear systems. Generalized transform methods based on Vol-
terra integrals have been widely used [9,10], estimation methods 
motivated by ARMA representations have been studied [11], 
and orthogonal decompositions of measurements have been 
exploited [12]. The latter approach is especially interesting since 
the orthogonal decomposition separately estimates each model 
parameter for the discrete-time nonlinear systems which were 
studied. 

The present paper also concentrates on the question of sep
arately estimating distinct model parameters. Our approach, 
however, stresses the design of the input to achieve independent 
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estimation of a sequence of model parameters. The estimation 
is based on the idea of selective sensitivity [13-15] which enables 
one to design an excitation which causes the response to be 
selectivity sensitive to a small set of model parameters and 
insensitive to the remaining model parameters. The identifi
cation of the entire system thus becomes a sequence of low-
dimensional estimation problems, which alleviates the ill-con
ditioning of the estimation. 

While selective sensitivity motivates the adaptive identifi
cation to be presented, on a more fundamental level the present 
analysis of nonlinear systems is grounded on the idea of sub
structure parameterization [16, 17]. Even if the dynamics of 
a system are nonlinear, one can often model the behavior in 
such a way that the mathematical operators which define the 
dynamics are linear in the unknown model parameters. This 
of course does not remove the nonlinear dependence of the 
output on these parameters, but it does assure an important 
linearity in the sensitivity of the model to uncertainty in the 
unknown model parameters. This linear sensitivity is central 
to our analysis, as will become evident in section 3. 

From among the wide selection of commonly studied non
linear model structures, we concentrate on polynomial non-
linearities. The motivation is two-fold. First, such models are 
important and have been the subject of investigation [18]. 
Second, the continuity of polynomial functions, as opposed 
to discontinuous nonlinearities, makes the polynomial a suit
able starting point for investigating a new method of analysis. 
We will consider specific forms of quadratic, cubic, and com
bined quadratic-cubic polynomial operators in sections 4, 5, 
and 6. In section 7 we will discuss an adaptive multihypothesis 
algorithm which is based on the selectively-sensitive excitations 
derived in earlier sections. In section 8 we present a simulated 
application to detection of quadratic stiffness nonlinearities in 
a uniform vibrating beam. 

2 System Formulation 
Consider the finite-dimensional nonlinear system whose state 

vector is A^-dimensional and denoted x(t). The dynamics of 
the system are represented by: 

£(x) + Vl(x)=Hf(t) (1) 

where £(x) is a linear differential operator, 91 (x) is a non
linear TV/j-dimensional vector function, f(t) is an TVs-dimen
sional input vector and H is an ND x NR constant real matrix. 

The aim of this study is to design the excitation, f(t), so as 
to identify the nonlinear part of the model, 91(x), employing 
knowledge of the linear operator £(x). The analysis will be 
based on the concept of selective sensitivity. Results will be 
developed for several polynomial forms of the nonlinear func
tion 31 (x). 

The structure of £ (x) is: 

£(x) = J]An 
d"x(t) 

dt" 
(2) 

where each A„ is a real, constant ND x ND matrix. For a linear 
elastic system the linear part of the model may take the form: 

£(x)=Mx{t) + Cx(t)+Kx(t) (3) 

where M, C, and A" are inertia, damping, and stiffness matrices, 
respectively. 

Now consider a measurement equation which expresses the 
fact that only NM measurements are made. The output y(t) 
is related to the state vector x(t) by: 

y(t) = Gx(t) (4) 

where G is a real constant NM x ND real matrix. 
The linear part of the model, £ (x), depends on an /^-di

mensional vector p of linear-model parameters. Similarly, 
91 (x) depends on an re-dimensional vector q of nonlinear 

model parameters as well as, possibly, on p. Let us define an 
(/> + rQ)-dimensional parameter vector pT = (pT, qT), where 
the superscript Timplies matrix transposition. We will assume 
that G and H are independent of the model parameters p and 
q-

We will denote the Laplace transforms of x(t), y(t),f(t), 
and 91 (x), by %(s), \[/(s), 4>(s), and 6(s), respectively. 

Now define a "dynamic stiffness matrix" of the linear part 
of the model, r (s), in terms of the Laplace transform of £ (x), 
for zero initial conditions: 

3[£(x)l = r ( j ) $ ( j ) (5) 

where 3[»] is the Laplace transform operator. V (s) is a complex 
ND x ND matrix and, we assume, nonsingular for at least one 
value of s. For example, if £(x) is given by Eq. (3) then T(s) 
becomes: 

T(s)=s2M+sC+K (6) 

In this case r (s) is invertible provided that 5 is not an eigenvalue 
of r ( s ) . 

Now the Laplace transformation of Eq. (1) can be expressed: 

^(s)=V-]{s)H(l>(s)~T-,(s)e(s) (7) 

Employing Eq. (4) one obtains the Laplace transform of the 
output as: 

i£(s) = GT"1 {s)H<t>(s) - GT-'(s)d(s) (8) 

This is not strictly an input-output relation, since the input is 
4> but the state, x(t), appears in both the output \j/(s) and in 
8(s). 

3 Sensitivity to Model Parameters 
In this section we investigate the variation of the frequency-

domain output, \p(s), with the model parameters. This pre
pares the ground for designing the excitation function, based 
on the concept of selective sensitivity [13-15]. 

Evaluation of the sensitivity is obtained by differentiating 
\p(s) with respect to a model parameter, assuming that G, H, 
and 4>(s) are independent of the model parameters but that 
T(s), yp(s), and 8(s) depend on p. Employing the relation: 

ar~ 
dp,, -=-r_ dT 

OPm 
(9) 

one finds from Eq. (8): 

dPn 
••GWm(d-H<$>)-GT-

dO 

dp,n 

where we define: 

ar 

m=\, 

m—\,. 

rP + rQ (10) 

rP+rg (11) 

Now define the sensitivity of the response to model param
eter pm as the inner product of this vector with itself: 

t 
S(pm) = at) (M. 

dpm/ \dp„ 

{e~H^WlGTGWm(d-H4>) 
-(e-H<j>)iWl,GTGT~ 

•^-) T-ltGTGWm(d-m) 
op,,,/ 

' dd_ 

dp,, 
r - i t G r G r - 30 

dp„ 

(12) 

d8_ 

dPn 

(13) 

where the superscript t implies matrix conjugate transposition. 
S(pm) is non-negative. A large value for S(pm) implies that 

the output varies strongly with variation of the mth model 
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parameter. Conversely, if S(p,„) is small, then the response is 
comparatively insensitive to p,„. We seek an excitation which 
causes the sensitivity to be non-zero for only a single model 
parameter. The system response to this excitation is used for 
estimating the single corresponding model parameter. This 
estimation is insensitive to inaccuracy in knowledge of the 
remaining model parameters. This is of course differential 
insensitivity: the response is strictly invariant only for small 
fluctuations of the remaining model parameters. 

We are particularly interested in the sensitivity to the non
linear model parameters, q. The argument will center on the 
fact that T(s), the linear dynamic stiffness matrix, is inde
pendent of q. This implies that Wm vanishes for nonlinear 
model parameters pm, m>rP: 

W„, = 0, m>rP (14) 

Consequently, the sensitivity to a nonlinear model parameter 
q,„ is simply: 

(15) S(g„,)=0j„r- 'TG'Gr- '0„ 

where we define: 

dd 
m=\, rQ (16) 

We will henceforth be interested only in the sensitivity to 
nonlinear model parameters. In denoting the sensitivity we will 
adopt the abbreviated notation of referring only to the index 
of the parameter as a subscript: S,„ = S(qm). Furthermore, 
let us define: 

V(s)=T[tGTGT' (17) 

We note the following points. (1) S(qm) is real and non-
negative. In particular, S(q,„) is positive semi-definite in 6m. 
(2) V(s) is hermitian and positive semi-definite. (5) V(s) is 
independent of the nonlinear part of the model, q. (4) The 
derivation of Eqs. (13) and (15) is independent of the structure 
of the nonlinear part of the model. 

4 Selective Sensitivity for a Quadratic Non-Linearity 
In this section we consider a quadratic nonlinearity and we 

design the excitation so that the output is sensitive to a single 
nonlinear model parameter and insensitive to infinitesimal var
iations of all the remaining nonlinear model parameters. The 
derivation of this excitation will require specification of the 
nonlinear part of the model. In section 5 a cubic nonlinear 
term will be examined, and in section 6 we will study a hybrid 
quadratic-cubic nonlinearity. 

4.1 The Quadratic Non-Linear Term. Let us consider a 
particular choice of the nonlinear model: 

91 (x) = (xqT)x= {qTx)x= (xxT)q (18) 

Thus the ith element of the vector function 9X(x) is: 

31; (*)=*; ^1jXJ (19) 
y'=i 

For this model, the derivatives with respect to nonlinear pa
rameters are: 

d9t 
dqa 

~-XcJC (20) 

Consequently, recalling the definition in Eq. (16), one finds: 

Ba = Z(xaK),a=\, . . . , rQ (21) 

4.2 The State Vector. We wish to find an excitation/(t) 
which causes the sensitivity to the ath nonlinear model pa
rameter to be non-zero, and the sensitivities to the remaining 
nonlinear model parameters to vanish. This form of "selec
tively sensitive'' excitation will provide the basis for an adaptive 
multi-hypothesis estimation of the nonlinear model parame

ters, to be discussed in section 7 and illustrated in section 8. 
The approach will be, first, to find the state vector which this 
excitation must induce, and then (in the next subsection) to 
find the excitation itself. 

Let v (s) be a complex vector which is the Laplace transform 
of a real vector z(t): 

v(s) = 3[z(t)] (22) 

Our approach will be as follows. First find the excitation which 
causes da to equal v(s): 

6a=v(s) (23) 

We will find this excitation by noting that condition (23) 
uniquely determines the state vector x(t). Once we derive an 
expression for this state vector, the excitation is calculated 
from Eq. (1). 

Having found the state vector which is consistent with Eq. 
(23), the second step of the argument is to choose the vector 
v(s) so that Sa is non-zero and so that S$ vanishes, for all (3 
^ a. This will be based on observing, in Eq. (15), that the 
sensitivity S(qa) is a quadratic function of 8a. 

To begin, we let v(s) be an arbitrary complex A^-vector 
which is Laplace-invertible to a vector z(t), where za{t) is 
positive. Recall that we seek selective sensitivity to qa. 

To find the state vector determined by v(s), we note that 
Eqs. (21) and (23) imply: 

3[xax] = v(s) (24) 

Inverting this to the time domain, one can readily demonstrate 
that this relation is satisfied by the following state vector: 

x(t)--
1 

'4zjJ) 
z{t) (25) 

The excitation, / ( / ) , which produces this state vector is ob
tained by substituting this x(t) into Eq. (1). This is discussed 
further in subsection 4.3. 

Recall that the sensitivity to qa is, from Eq. (15), simply 
dl,V6a. Consequently, if the excitation causes the state to be
have as Eq. (25), then Eq. (23) holds and the sensitivity to qa 

is: 

Sa=viVu (26) 

To assure that the sensitivity Sa is positive, we must ascertain 
that v(s) is not an eigenvector of V(s) whose associated ei
genvalue is zero. 

What will be the sensitivity to a different nonlinear model 
parameter, q&1 In other words, what is the value of: 

S^OlVBp (27) 

when Eq. (25) describes the behavior of the system? Employing 
Eq. (21) (replacing a by /3) and Eq. (25) one finds: 

0/3 = 3[X/jX] = 3 ze (28) 

Now, suppose we choose v(s) or, more directly, z(t), so that: 

z(t) = W)r (29) 

where r is a real positive jVB-vector with ra > 0 and f (/) is a 
real positive scalar function. Then 

777 — —, p - i JVD 

Za(t) ra 

Combining Eqs. (27)-(30), the sensitivity to q& becomes: 

(30) 

r2 r2 

Sl3 = -§vtVu = -§Sa 
(31) 

The numbers r$, /3 ^ a, may be freely chosen, so the relative 
sensitivity, Sp/Sa, may be made arbitrarily small for each /3 ?± 
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For example, we may choose: 

1 , /3 = a re = (32) 

where e is a small positive number. Then the sensitivity to q$ 
is much less than the sensitivity to qa: 

J ^ a (33) 

In fact, we are free to chose e = 0, which causes the response 
to be sensitive to qa and differentially insensitive to all other 
nonlinear model parameters. 

Choosing e = 0, the vector function z(t) which determines 
the state vector becomes, in light of Eq. (29): 

z(t) = ttt)ea (34) 

where f ( 0 is an arbitrary positive real scalar function and ea 

is a standard unit vector: unity in the crth position and zero 
elsewhere. The sensitivity to qa can be made arbitrarily large 
by proper choice of f ( 0 -

Combining Eqs. (25) and (34) yields the following expression 
for the state vector: 

x(t)=±^/W)ea (35) 

where f (/) is an arbitrary real positive scalar function. 
Returning to the most general choice of z(t), Eq. (29), the 

state vector, Eq. (25), becomes: 

* ( 0 = J — ' (36) 

4.3 The Excitation Function. The choice of Eq. (32) with 
e = 0 seems clearly preferable over other possibilities for r, 
since it yields complete differential insensitivity to all nonlinear 
model parameters other than qa. However, this choice of r, 
and the resulting state vector x(t) [Eq. (35)] are acceptable 
only if an excitation function / ( / ) exists which is consistent 
with Eq. (1) at each instant in time. At each instant, Eq. (1) 
can be thought of as a linear equation in the unknown vector 
f(t). It is well known [19, p. 906], that a necessary and suf
ficient condition for the existence of a solution of such an 
equation can be expressed in terms of the ranks of the matrices 
involved. In our case, a necessary and sufficient condition for 
the existence of a vector f(t) is that the input matrix H and 
the augmented matrix {H, £[x(t)] + dl[x(t)]} have the same 
rank at each value of V. 

rank[//] = rank[# , £[x(t)] + <3l[x(t)]} (37) 

The flexibility in choosing r and f (t) enables one considerable 
freedom in seeking to satisfy this condition. Nevertheless, when 
H is not in vertible, the general problem of selecting f (t) and 
r to satisfy Eq. (37) and to provide adequate selective sensitivity 
is rather difficult. 

We will consider an approximate method for selecting the 
excitation, rather than addressing this general problem. Choose 
a positive function f (t) and a real vector r (with ra > 0) yielding 
adequate selective sensitivity according to Eq. (31). Now cal
culate x(t) from Eq. (36). Let g(t) be the vector function 
obtained by substituting this state vector into the lefthand side 
of Eq. (1): 

g(t) = £[x(t)] + Vl[x(t)] (38) 

If H is square and nonsingular then the excitation is found 
exactly from Eq. (1) as: 

f(t)=H-}g(t) (39) 

If His not in vertible, we construct an excitation in a specified 
time interval [0, 7] which approximately produces the state 
response of Eq. (36). Represent the excitation vector by a 
truncated Fourier cosine series: 

f(t) = YJf" cos nwt/T (40) 

where/" is a vector of Fourier coefficients of the «th harmonic. 
Expand g{t) similarly: 

g(t) = J]g"cosmrt/T (41) 

We will choose/" so that Hf" approximates g", by minimizing 
the quadratic form: 

J„=(Hf"-g")T(Hf"-g") (42) 

Furthermore, the magnitude of/" is constrained by: 

f"Tf"=wl (43) 

The values of w„, n = 0, . . , NF, determine the relative 
contribution of the NF + 1 harmonics to the total synthesized 
excitation, Eq. (40). 

Adjoining the constraint, Eq. (43), to J„ with a Lagrange 
multiplier X and then differentiating with respect to / " one 
obtains the optimal choice of the «th vector of Fourier coef
ficients: 

/ " = (HTH+ A/)" iHTg" (44) 

The unknown multiplier X is chosen to satisfy the constraint, 
Eq. (43), which becomes: 

g"TH(HTH+ X7) -2HTg" = wl (45) 

5 Selective Sensitivity for a Cubic Non-Linearity 

5.1 The Cubic Nonlinear Term. The method of the pre
vious section can be applied to a cubic nonlinearity of anal
ogous form. Let the nonlinear model parameters be stored in 
a square ND X ND matrix Q. Let the nonlinear vector function 
91 (x) be: 

91 (x) = [xTQx]x= [xxT]Qx (46) 

We lose no generality by assuming Q to be a symmetric matrix. 
The fth element of the vector function 31 (x) is: 

ND 

Vli(x) = [xTQx]xi = xi J ] QjkXjXk (47) 

For this model, the derivatives with respect to the nonlinear 
parameters are: 

- — l = xaxeXj (48) 

In analogy to Eq. (16) we define: 

"a/3— ^ 
°QaP 

For this cubic model the fth element of dap is: 

_ 30; 
(fiaff), = ~ — 3{XaXpXj) 

0<7a(3 

(49) 

(50) 

5.2 The State Vector. As in section 4, we wish to find an 
excitation / ( t ) which causes the sensitivity to the a/3th non
linear model parameter to be non-zero, and the sensitivities to 
the remaining non-linear model parameters to vanish. The 
procedure is much the same.1 First we find the state vector 
which the excitation must induce; then we find excitation. 

Let v(s) be a complex vector which is the Laplace transform 
of z(t). Choose z(t) so that neither za(t) nor z$(t) vanish 

'it will be noted that extension to higher orders of nonlinearity is also possible. 
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and so that v(s) is not an eigenvector of V(s) with zero as 
associated eigenvalue. Then the state vector is completely2 de
termined by the condition: 

dal3=v(s) (51) 

To find the state vector consistent with this relation, note that 
Eq. (51) is equivalent to: 

3[xaX/3xi\ = vl(s), i=l, . . . ,ND (52) 

or, inverting to the time domain: 

xaXpXi = Zi(t) (53) 

This relation is satisfied by: 

od^zU) (54) x(t) = 

Now we wish to choose z(t) to obtain selective sensitivity 
to qap and differential insensitivity to other nonlinear model 
parameters. Employing a method analogous to that of section 
4, we note that, based on Eq. (54): 

\Pmn)i ~ ^ [XmXnXil ~ ^ 
ZnjZr, 

Zi (55) 

Choose z(t) as: 

z(t) = L{t)ea+{0(t)e? (56) 

where fa(f) and fy(t) are nonvanishing real scalar functions 
which we are free to choose. Then (0„,„); vanishes for every / 
if either morn differ from both a and /3. Thus 6,m is identically 
zero if {m, n) £ {a, /3j. But the sensitivity to q„,„ is Smn = 
dl,„Vd„m. As a result, the sensitivities to nonlinear model pa
rameters other than qa$ vanish: 

S,„„ = 0if [m,n]%{a,&) 

Furthermore, the sensitivity to qa$ can be made arbitrarily 
large by appropriate choice of la(t) and £p(t). We have thus 
obtained selective sensitivity to qa0, qaa and qw. 

Substituting Eq. (56) into Eq. (54) results in the following 
expression for x(t): 

(58) x(t)=d/3u)^m(t)ea+ra , / 3 (0#W 
where $a(t) and £$(t) are arbitrarily positive functions. 

5.3 The Excitation. The method of subsection 4.3 can be 
used here without modification to select an excitation which 
causes the state to approximate Eq. (58). In Eq. (38), g(t) is 
evaluated with x(t) from Eq. (58), and then Eqs. (40), (44), 
and (45) determine the desired excitation. 

6 Selective Sensitivity for a Hybrid Nonlinearity 
In this section we derive an excitation which provides nearly 

complete selective sensitivity to parameters of a nonlinear model 
formed as a combination of the quadratic and cubic terms 
studied in sections 4 and 5. 

6.1 The Hybrid Nonlinear Function. The nonlinear com
ponent of the model is formed by adding together Eqs. (18) 
and (46): 

SUMO] = (qTx)x+ (xTQx)x (59) 

Thus the nonlinear model parameters are stored in the vector 
q and in the matrix Q. Derivatives of 91 with respect to these 
parameters are: 

ddl 
tx (60) dq, 

dqaa 
— xax@x (61) 

The Laplace transforms of these quantities are: 

da = 3(xax) (62) 

ea0 = 3(xaXfix) (63) 

6.2 Selectivity for qa. We will now indicate the state vec
tor which must be elicited in order to yield sensitivity to the 
nonlinear model parameter qa. It will be seen that the response 
is insensitive to all other elements of q, and insensitive to all 
elements of Q except qaa. 

Let the state behave as in Eq. (35): 

x(t)=^f{t)ea (64) 

where f(f) is a positive real function. The excitation which 
(approximately) induces this state response is derived in sub
section 4.3. We already know from subsection 4.2 that the 
sensitivity to qp vanishes for all /3 ^ a. 

What is the sensitivity to qmn when the excitation causes the 
state to follow Eq. (64)? In other words, what is the value of 
d}„„Vdmnl Employing Eq. (64) in Eq. (63) shows that dnm van
ishes if either m or n differs from a. But S{q,„„) = 8l,„V6m„. 
From this we conclude that the sensitivity vanishes to all the 
model parameters in Q other than qaa: 

S{qm„)=0iflm,n)i[a) (65) 

and 

S(qaa)*0 (66) 

6.3 Selectivity for qa/3. We will now indicate the state 
vector which must be induced in order to yield sensitivity to 
the nonlinear model parameter qa$. It will be seen that the 
response is insensitive to all elements of Q other than qaa and 

(57) to- a n d insensitive to all elements of q except qa and qe. 
Let the state behave as in Eq. (58): 

x(t) = tl/i(t)^m(t)ea + ^W3(t)^/3(t)ee (67) 

where t;a(t) and ^(t) are arbitrary positive functions. The 
excitation which (approximately) induces this state response is 
derived in subsection 5.3. We already know from subsection 
5.2 that the sensitivity to q,„„ vanishes for all {/M,«)£(a, /3}. 

What is the sensitivity to q,„ when the excitation causes the 
state to follow Eq. (67)? In other words, what is the value of 
dl,Vd,„l Employing Eq. (67) in Eq. (62) shows that 9m vanishes 
if m differs from both a and /3. Thus the sensitivity to all the 
model parameters in q other than qa and q$ vanishes: 

S(qm) =0 if m£ {a, 0} (68) 

and 

S(qa)*0, S(q0)*O (69) 

7 Identification 
To summarize our discussion up to now of the three different 

polynomial nonlinearities, we have found a state vector which, 
if induced by an excitation, causes zero differential sensitivity 
to (usually) only one3 non-linear model parameter. We have 
also shown how to calculate the excitation for achieving this 
state vector. It now remains to formulate a method for iden
tifying the value of the nonlinear model parameter to which 
the response is sensitive. 

We will not attempt to estimate qa directly. Rather, an adap
tive, multihypothesis decision method will be employed. 

7.1 Motivation. To motivate this approach let us point 
out that calculation of the excitation function needed for ob
taining selective sensitivity to qa requires knowledge of qa itself, 

2Some sign variations ( ± ) are possible as in Eq. (25), but we will ignore them. 

3Sensitivity to 2 or 3 non-linear model parameters occurs in the cubic and 
hybrid non-linear models. 
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as well as of the other non-linear model parameters, in order 
to calculate g(t) in Eq. (38). To emphasize that the excitation 
is a function of the current estimate q of the nonlinear model 
parameters, let us denote the excitation as / ( t\q). The response 
that is elicited by / ( r ; q) is then dependent on both q and on 
the actual value of q. We will indicate this as x(t; q, q). 

When the current estimate is completely correct (q = q), 
the state response will be precisely as anticipated in subsection 
4.2, either Eq. (35) or (36) (depending on the choice of z(t) )• 
Let us denote this anticipated state as x(f). However, if the 
model-estimate is erroneous (q & q) then the state response 
will differ from x(t). 

The difference between x(t) and x(t) is a measure of the 
accuracy of the estimate, q. In a moment we will define specific 
measures of accuracy and illustrate how they are used to es
timate model parameters. Before doing so, let us point out the 
role played by selective sensitivity. By definition, if the response 
is selectively insensitive to a given model parameter, qp, then 
the response is invariant to infinitesimal changes in q0. When 
the estimate of the model is correct (q = q) an excitation can 
be found which causes complete insensitivity to any particular 
set of model parameters. Conversely, as an erroneous estimate 
improves, the insensitivity also improves. So, while the mag
nitude of the discrepancy between x(t) and x(t) represents 
the accuracy of the model-estimate, it in fact will tend to be 
sensitive only to the accuracy of <fa, and insensitive to the other 
model-parameter estimates. Complete insensitivity to all qp, /3 
?* a, will occur only when the estimate is fully correct. How
ever, as q approaches q, the effect of inaccuracy in estimates 
of model parameters other than qa will diminish. In this way 
we see that, by choosing an excitation which induces selectively 
insensitive response, we are able to partially "immunize" the 
estimation of qa from imprecise knowledge of the remaining 
model parameters. This then allows us to separate the esti
mation of qa from estimation of the remaining model param
eters. In other words, the task of estimating the /^-dimensional 
vector q simplifies to rQ nearly independent 1-dimensional es
timations. 

7.2 Adaptive Multihypothesis Estimation. We now for
mulate the multihypothesis algorithm for estimating the ath 
nonlinear model parameter. The system will be excited for a 
duration [0, 7] and the response, y(t), will be sampled at Ns 

instants, tu . . . , tNg. Let x(t) be the anticipated state vector, 
based on the model-estimate q used to generate the excitation. 
The performance of this estimate can be evaluated by: 

, Ns 
Mq)=^J\\\y{tn)-Gx(tn)\\ (70) 

where II • II is the Euclidean vector norm. Jx (q) is a non-negative 
function which, in the absence of noise, vanishes when the 
estimate, q, is correct. In subsection 7.3 we will define addi
tional useful measures of performance. These performance 
measures are called "decision functions." 

If we were to repeat these measurements, each time with a 
different value of the estimate of qa (the other estimates being 
held constant) and with the corresponding excitation, the de
cision function J\{q) would vary, somewhat as in Fig. 1. Our 
earlier discussion leads us to expect that the correct value of 
qa is near the value which minimizes J[(q). 

The adaptive multihypothesis search for the correct qa is 
performed as follows. Before beginning the nth stage of the 
adaptation the estimated nonlinear model is <?("_1). Likewise, 
at the outset of the nth stage, knowledge of the value of qa 

constrains it to a domain 33". N^ different values are chosen 
from this domain. Now NH "hypothesized" models are con
structed by replacing the ath element of q("~'' by each of these 
NH selections from 33". Let us denote these hypothesized models 

J<(q> 

Fig. 1 Schematic portrayal of the variation of the decision function 
versus the estimate of the ath nonlinear model parameter 

Fig. 2 Schematic representation of the measured decision function, 
illustrating up-dating of the estimated domain of q„ 

by h\ . . . , hN". That is, tin equals ql" ° except in its ath 
element, where h'" equals the mth selection from 33". 

Now NH excitation functions are constructed, one for each 
hypothesis: f(t, h1), . . . , f(t, hN"). These excitations are 
chosen to induce responses which are selectively sensitive to 
qa and insensitive to the other model parameters. The corre
sponding anticipated responses are x(t; hl), . . . , x(t; h H). 

We now apply each of these excitations to the system, from 
the same initial conditions, and sample the output Ns times 
on each run. The decision function is evaluated for each of 
these periods of excitation: Jt(h

l), . . . , J\{hNH). These NH 

numbers are a sample from the graph shown schematically in 
Fig. 1. 

The nth stage of the excitation is completed by updating the 
domain containing qa. For example consider Fig. 2, which 
schematically shows the values of Ji(q) based on 12 hy
potheses. The domain of <?„-values at the outset of the «th 
stage was the interval 33" = [A, B]. After these measurements 
it is reasonable to reduce the domain to two intervals: 33"+1 

= [[c,d\, [e,f\\. 
We have now completed the specification of a hierarchical, 

adaptive, multihypothesis procedure for estimating qa. The 
sequence of domains, 2D1, 332, . . . , and the sequence of 
collections of hypothesized models [h\ . . . , hNli} chosen at 
each stage from these domains, form a hierarchy of hypoth
esized models. The viability of each of these modes is evaluated 
by the decision function J\(q). 

The hierarchical structure is important as a means for ef
ficiently resolving the value of qa to desired accuracy. For 
example, suppose qa is initially supposed to fall in the interval 
S31 = [0, 1], and suppose it is desired to estimate qa to an 
accuracy of 0.0001. One need not test the ten-thousand hy
potheses which 331 offers. A few score hypotheses will most 
likely suffice: about 20 hypotheses from 33• will resolve the 
value of qa to an accuracy of about 1/20 = 0.05; 20 hypotheses 
from the sub-intervals defining 332 will achieve a resolution of 
about 1/202 = 0.0025; finally 20 hypotheses from 333 will 
narrow the range of(7a to an interval of about 1/203 = 0.000125. 

The adaptivity of the identification procedure is manifested 
in the selection of the model hypotheses at each stage. This 
selection is contingent upon the updated domain 33" which is 
defined from the results of the previous stage. These model 
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hypotheses then generate the excitations which are applied to 
the system at each stage. 

The selective sensitivity plays a crucial role, as discussed in 
subsection 7.1, by reducing the dimension of the search pro
cedure. While the number rQ of nonlinear model parameters 
may be large, the estimation is performed for each parameter 
separately. Repeating a hierarchically-adaptive 1-dimensional 
search rQ times is simpler than a single /-^-dimensional search. 
The advantage in this reduction of dimensionality is not only 
in decreasing the number of hypotheses to be tested, but also 
in ameliorating the problems of ill-conditioning which often 
arise in high-dimensional model-estimation inverse problems. 
It must be recalled however that, while the output is selectively 
sensitivity to only a single model parameter, formulation of 
the excitation is based on the entire model. 

7.3 Decision Functions. In the numerical example to fol
low we will demonstrate the use of six different decision func
tions. In addition to J\(q), we will employ the following 
functions: 

•^)=^E Ns 

JM)- y(t„)-
\\y(t„)\\ 

(71) 

HGx(/„)ll 
Gx{tn)\\\\y(t„)\\ (72) 

1 NS 

/ t ( 9 ) = — Y, \yaUn)-[Gx(tn)]a\ 

° n~ 1 

,,^ ' v« Wy(t„)-Gx(tn)\\ 

« = i Wy(t„)l 

(73) 

(74) 

(75) 

8 Example: Nonlinear Beam Stiffness 

8.1 The Beam Model. We will study the forced vibration 
of a clamped-free beam whose length, width, and height are 
L = 1, w = 0.01 and h = 0.0025 [m], respectively. The 
modulus of elasticity is E = 2 x 1011 [N/m2] and the density 
is p = 8.1 x 103 [kg/m3]. The first three natural frequencies 
for linear flexural vibration in the vertical plane of this beam 
are 12.6, 78.9 and 221 [Hz]. 

The linear component of the beam vibration will be modelled 
with a simple finite-element method described by Gladwell [20]. 
The beam is divided into ,/VD mass points connected by weight
less rigid arms. Flexure at each node is approximated by a 
torsional spring with stiffness &[Nm]. The value of k is chosen 
so that the end deflection under concentrated load at the free 
end equals the value obtained with a small-deflection contin
uous-beam model. Thus k is [13]: 

k = 
(ND+l)(2ND+l)Ewh3 

2ANnL 
(76) 

The linear operator £ (x) for the discrete deflection model 
is: 

£,(x)=Mx\t)+Kx(t) (77) 

where M is a diagonal mass matrix and K is a pentadiagonal 
stiffness matrix. Each diagonal element of Mequals \/ND times 
the mass of the beam. The elements of K depend on the tor
sional stiffness k and the length of the rigid arms, L/ND, as 
described by Gladwell. In our calculations A^ = 20. 

The nonlinear part of the model will be quadratic, so 91 (x) 
is given by Eq. (18). 

We will suppose that lateral forces can be applied at each 
of the ND nodes, so the input matrix H equals the identify 
matrix a n d / ( 0 is an A^-vector of forces. Deflection meas

urements will be performed at some or all of the nodes, and 
the input matrix G will be chosen accordingly. The excitation 
will be applied during an interval [0, 7] where T = 0.93 sec. 

Uncertainty in the measured displacement vector x(t) is 
simulated as additive white noise. If xe„ is the exact value of 
the nth element of x, then the simulated noisy measurement 
of this displacement is: 

x„ = xe„(l+yr) (78) 
where r is a uniform random variable on the interval [— 1, 1] 
and 7 is a noise-amplitude parameter. The relative error of the 
measurement of*,, is a„/xe„ = 7/V3", where a„ is the standard 
deviation of x„. 

We will employ the method of selective sensitivity to define 
hierarchical adaptive excitations of the beam for identifying 
the nonlinear part of the model, assuming the linear part is 
known. This means that the parameter vector q, or part of it, 
will be identified. Several different examples will be performed. 
In all examples q contains only one non-zero element. In sub
section 8.2 we consider the problem of determining the value 
of the non-zero element when its index is known. In subsection 
8.3 we illustrate the determination of the index of the non
zero element of q when neither the index nor the amplitude 
are known. In subsection 8.4 we briefly consider the effect of 
measuring only some of the nodal deflections. 

In all our examples the vector x(t) is chosen to have the 
form of Eq. (34). The real positive function f (t) is: 

f ( 0 = 10 4[1 + 10~8-cos(13.50] (79) 

8.2 Example 1. In this example we consider identification 
of the nonlinear part of the model when the true nonlinear 
model is: 

q = qae
a (80) 

We presume that it is known that the nonlinear model is quad
ratic and that q has only one non-zero term. The amplitude 
qa is unknown but the index of the non-zero term is known 
to be a = 5. Deflections are measured at all 20 nodes. 

The magnitude of qa determines the relative contribution of 
the linear and nonlinear stiffness terms. The excitations applied 
to the beam produce deflection vectors which display small 
localized deflection. The linear stiffness term, for the param
eters of our model, is of the order 105x„, where x„ = 0.001 [m] 
is a typical value for the local deflection. Similarly the nonlinear 
stiffness is approximately q^c\. Thus the ratio of the nonlinear 
to the linear restoring forces is approximately (for x„ = 0.001): 

q^n i r .- (81) 

If qa = 108 then the nonlinear and the linear terms are roughly 
equal. We will show that much smaller nonlinear perturbations 
to the nominal linear model can be identified. In the examples 
to follow we consider qa = 104 and qa = 105. 

The adaptive multihypothesis procedure is as follows. A set 
of hypothesized ^-vectors is postulated and an excitation vector 
for each hypothesis is applied, separately, to the beam. The 
deflections resulting from each excitation vector are measured 
and the 6 decision functions Ju . . . , J6 are calculated. 

In this subsection we suppose that we know the index of the 
non-zero element of q but not its amplitude. Consider 10 hy
potheses q„ea where a = 5 (which is correct) and qa varies 
between 10 and 3 x 10s. The true value is qa = 105, indicating 
that the nonlinear contribution to the restoring force is on the 
order of one-thousandth of the linear term. 

The resulting decision functions are plotted versus qa in Fig. 
3, based on simulated noise-free measurements. (The noise 
parameter 7 is zero). The decision functions show a very clear 
minimum near the true value qa = 10 X 104. Figure 4 shows 
further confirmation of this based on a second set of excita
tions, in which the magnitude of the hypothesized parameter 
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q hypothesis x 10 
Fig. 3 Decision functions versus hypothesized value of qa. a = 5 (cor
rect) and without noise (7 = 0). J,: solid, J2: dash-dash, J3: dash-dot, J,: 
dot-dot, Js: dash-dot-dot-dot, Je: solid line with circles 

~Z> 

q hypothesis x 10 
Fig. 5 Decision functions versus hypothesized value of <j„. « = 5 (cor
rect) and with 0.2 percent noise (7 = 0.002). Legend as in Fig. 3 

~) ~3 

q hypothesis x 10 
Fig. 4 Decision functions versus hypothesized value of q„. a 
rect) and without noise (7 = 0). Legend as in Fig. 3 

5 (cor-

q hypothesis 10" 
Fig. 6 Decision functions versus hypothesized value of <j„. a = 5 (cor
rect) and with 0.2 percent noise (7 = 0.002). Legend as in Fig. 3 

vector varies over the more restricted range from 5 x 104 to 
15 x 104. Again, all six decision functions point clearly to the 
correct value of qa. 

Figures 5 and 6 show the same sequence of multihypothesis 
tests, this time with about 0.2 percent additive measurement 
noise (7 = 0.002). The difference between these figures and 
Figs. 3 and 4 is marked. The noise substantially reduces the 
sharpness in the resolution of qa. Furthermore we see that not 
all the decision functions perform with the same resolution. 
i5 , for example, (dash-dot-dot-dot) has a significantly blunter 
minimum than the other decision functions. Nevertheless, the 
correct value of qa is very nearly achieved. 

If, as in Fig. 7, the noise is increased to 0.5 percent (7 = 
0.005) the resolution is further degraded, though a reasonable 
decision is still possible. 

8.3 Example 2. Now consider a more difficult estimation 
problem. We know that the structure of the nonlinear term is 
q = qae

a. That is, q has only one non-zero term. However 
we know neither the value of qa nor of a. The true index is 
a = 5 and the true amplitude is qa = 1 x 104, an order of 
magnitude lower than the previous example. We will perform 
a sequence of excitations for evaluating the index a of the non
zero element of q. Once the index has been identified, then 
the multihypothesis sequence employed in subsection 8.2 can 

be invoked here as well to estimate qa. Deflections are measured 
at all 20 nodes. 

The hypothesized q-vector is, as before, qae
a. The hypoth

esized value of the amplitude, qa, assumes five different values 
between 7.444 x 103 and 20.333 x 103. Furthermore, five 
hypothesized indices are examined: a = 3, . . . , 7. For each 
of these hypotheses an excitation function is constructed and 
applied to the beam, the deflections are measured and the 
decision functions are evaluated. The measurement noise is 
about 1 percent of the signal (7 = 0.01). 

Figures 8-12 display the results. In each figure the hypoth
esized amplitude is constant and the six decision functions are 
plotted on a logarithmic scale against the hypothesized index 
of the non-zero element of q. One sees that hypothesis a = 5 
(which is correct) is preferred in almost all the figures and by 
nearly all the decision functions. 

8.4 Example 3. Let us briefly consider the effect of meas
uring deflections in fewer than all 20 nodes. Figure 13 shows 
decision function / , versus the hypothesized amplitude qa, for 
hypothesized ^-vectors with a = 5. The true vector is q = 
lOV. The noise is about 0.5 percent (7 = 0.005). 

The solid line is based on measured deflections in all 20 
nodes of the discrete beam model. The circles employ meas
urements at nodes 6, 12, and 18, while the x s are obtained 
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element of q. Hypothesized amplitude is qa = 7.444 x 103. 1 percent element of <j. Hypothesized amplitude is qa = 17.111 x 103.1 percent 
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Fig. 9 Decision functions versus hypothesized index of the non-zero 
element of q. Hypothesized amplitude is q„ = 10.667 x 103. 1 percent 
noise (7 = 0.01). Legend as in Fig. 3 

from measurements at nodes 8 and 16. The results in all cases 
are basically the same. This result, while encouraging, must 
be viewed with caution. The selective excitations are designed 
to produce substantially larger displacements at node 5 than 
at the other nodes. In our simulations, the noise is additive 
and proportional to the the size of the displacement. Nonpro-
portional noise, whose standard deviation is independent of 
the magnitude of the displacement, would corrupt the meas
urements at nodes other than the 5th more severely than meas
urements at node 5. This would cause preferential degradation 
of decision functions which are based on partial measurements 
not including the 5th node. 

9 Conclusions 
We have developed a technique for identifying polynomial 

nonlinearities in dynamic systems, employing active vibration 
measurements. The identification is based on the method of 
selective sensitivity and involves an adaptive multihypothesis 
estimation procedure. The primary advantage of this method 
is the reduction of the ill-conditioning which often arises in 
high-dimensional inverse problems associated with system 
identification. Selective sensitivity enables the design of an 
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Fig. 12 Decision functions versus hypothesized index of the non-zero 
element of q. Hypothesized amplitude is q„ = 20.333 x 103. 1 percent 
noise (7 = 0.01). Legend as in Fig. 3 
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Fig. 13 Decision function J, versus hypothesized value of q„ between 
1 x 10' and 30 x 103. a = 5 (correct) and with 0.5 percent noise (y = 
0.005). Deflection measurement of all 20 nodes: solid line; only nodes 
6, 12, 18: circles; only nodes 8 and 16: x 

excitation which causes the system-response to be selectively 
sensitive to a small set of model parameters and insensitive to 
all the remaining model parameters. The design of the input 
depends on the entire model. Consequently, the identification 
of the entire nonlinear model evolves as a sequence of low-
dimensional estimation problems for which ill-conditioning is 
rarely an issue. 

We have shown, for specific forms of quadratic, cubic and 
hybrid quadratic-cubic polynomial nonlinearities, how to de
sign selectively sensitive excitations. 

We have simulated the identification of quadratic stiffness 
nonlinearity in a uniform beam. Our examples suggest that 
the adaptive multihypothesis estimation seems to perform suc
cessfully even in the presence of low additive noise and with 
partial measurement. 
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