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The vertex PI index is a distance-based molecular structure descriptor, that recently found nu-
merous chemical applications. Lower and upper bounds for PI are obtained, as well as results of
Nordhaus-Gaddum type. Also a relation between the Szeged and vertex PI indices is established.
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1. Introduction

In theoretical chemistry molecular-graph based
structure descriptors – also called topological indices –
are used for modelling physico-chemical, pharmaco-
logic, toxicologic, etc. properties of chemical com-
pounds [1, 2]. There exist several types of such in-
dices, reflecting different aspects of the molecular
structure. Arguably the best known of these indices is
the Wiener index W = W (G), equal to the sum of dis-
tances between all pairs of vertices of the molecular
graph G [1, 3 – 5]. The Szeged index [6 – 8] is closely
related to the Wiener index and coincides with it in
the case of trees. In the notation explained below, the
Szeged index is defined as

Sz = Sz(G) = ∑
e∈E(G)

n1(e|G)n2(e|G). (1)

In view of the considerable success of the Szeged
index in chemical graph theory (for details see the re-
view [8] and the book [9]), an additive version of it
has recently been put forward, called the vertex PI in-
dex [10, 11]:

PI = PI(G) = ∑
e∈E(G)

[n1(e|G)+ n2(e|G)]. (2)

Earlier, a similar quantity, referred here as the edge
PI index and denoted by PIe, was considered [12, 13]:

PIe = PIe(G) = ∑
e∈E(G)

[m1(e|G)+ m2(e|G)]. (3)

The notation used in (1) – (3) is explained below.
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Numerous applications of PIe were re-
ported [9, 14, 15]. It was shown that the edge
PI index correlates well with the Wiener and Szeged
indices and these all correlate with a variety of
physico-chemical properties and biological activities
of a large number of diverse and complex compounds
[9, 14, 16]. Recently, several mathematical proper-
ties of the two PI indices were established [11, 12,
17 – 22]. The present paper is aimed at contributing
more results along the same lines.

Let G = (V,E) be a simple graph with vertex set
V (G) = {v1,v2, . . . ,vn} and edge set E(G), |E(G)| =
m. Let t(G) be the number of triangles in G. For
vi ∈V (G), the degree (= number of first neighbours) of
the vertex vi is denoted by deg(vi). For vi,v j ∈ V (G),
the length of the shortest path between the vertices vi
and v j is their distance d(vi,v j|G). Then

W = W (G) = ∑
1≤i< j≤n

d(vi,v j|G).

The maximum distance in the graph G is its diame-
ter, denoted by d.

Let e be an edge of the graph G, connecting the ver-
tices vi and v j. Define two sets N1(e|G) and N2(e|G) as

N1(e|G) = {vk ∈V (G)|d(vk,vi|G) < d(vk,v j|G)},
N2(e|G) = {vk ∈V (G)|d(vk,v j|G) < d(vk,vi|G)}.

The number of elements of N1(e|G) and N2(e|G) are
denoted by n1(e|G) and n2(e|G), respectively. Thus,
n1(e|G) counts the vertices of G lying closer to the ver-
tex vi than to the vertex v j. The meaning of n2(e|G) is
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analogous. Vertices equidistant from both ends of the
edge viv j belong neither to N1(e|G) nor to N2(e|G).
Note that for any edge e of G, n1(e|G) ≥ 1 and
n2(e|G) ≥ 1, because vi ∈ N1(e|G) and v j ∈ N2(e|G).

The Szeged and the vertex PI indices are then de-
fined via (1) and (2), respectively. In (3), by m1(e|G) is
denoted the number of edges of G lying closer to the
vertex vi than to the vertex v j; the meaning of m2(e|G)
is analogous.

Recall that for any tree T ,

W (T ) = ∑
e∈E(T )

n1(e|T )n2(e|T ) ≡ Sz(T ),

a result recognized already by Wiener in his seminal
paper [23]. Interestingly, the equality W = Sz holds
also for the complete graph Kn.

For any n-vertex tree T and for the complete graph
Kn it is

PI(T ) = PI(Kn) = n(n−1). (4)

The rest of the paper is structured as follows. In
Section 2 we give lower and upper bounds for PI. In
Section 3 we obtain a Nordhaus-Gaddum type result
for PI. In Section 4 we discuss the relation between
the Szeged and the vertex PI indices.

2. Lower and Upper Bounds on Vertex PI Index

Theorem 2.1 Let G be a connected graph on n ver-
tices, m edges, and diameter d. Then

PI(G) ≥ 2m+ d2−d (5)

with equality holding if and only if G ∼= Kn or G ∼= Pn
(where by Pn is denoted the n-vertex path [1]).

Proof. For each edge e ∈ E(G), we have

n2(e|G)+ n1(e|G) ≥ 2.

Since G has diameter d, the path Pd+1 is contained
in G. Thus we have

PI(G) ≥ PI(Pd+1)

+ ∑
e∈E(G)\E(Pd+1)

[n1(e|G)+ n2(e|G)] (6)

≥ d(d + 1)+ 2(m−d). (7)

The vertex PI indices of Pn and Kn are given by (4).
From these one can easily check that equality in (5)
holds for these two graphs.

Suppose now that equality holds in (5). Then
equality must hold in (6) and (7). We need to consider
two cases: (a) m = d, (b) m > d.

Case (a): m = d. From equality in (6), we must have
n = m+ 1 and hence G ∼= Pn.

Case (b): m > d. From equality in (7) follows that for
any e ∈ E(G)\E(Pd+1),

n1(e|G) = n2(e|G) = 1. (8)

Since G is connected, by equality in (6) and (8), we
conclude that there exists a vertex vi ∈V (G)\V (Pd+1),
such that d(vi,v j|G) = 1 for any v j ∈V (Pd+1). There-
fore the diameter of G is at most 2. Suppose that
Pd+1 = v1v2 . . .vd+1. Since viv1 = e ∈ E(G)\E(Pd+1),
and vivd+1 ∈ E(G), by (8) we must have v1vd+1 ∈
E(G). Thus the diameter of G is 1 and hence G ∼= Kn.

�

Lemma 2.2 Let G be a simple graph of order n, pos-
sessing t(G) triangles. Then

∑
viv j∈E(G)

|Ni ∩Nj| = 3t(G),

where |Ni ∩Nj| is the number of common neighbours
of vi and v j.

We now give an upper bound on the vertex PI index
in terms number of vertices n, number of edges m, and
number of triangles t(G) in G.

Theorem 2.3 Let G be a connected graph with n > 2
vertices and m edges. Also let t(G) be the number of
triangles of G. Then

PI(G) ≤ nm−3t(G). (9)

Moreover, the equality holds in (9) if and only if G is a
bipartite graph or G ∼= K3.

Proof. We have

PI(G) = ∑
e∈E(G)

[n1(e|G)+ n2(e|G)]

≤ ∑
e∈E(G)

(n−|Ni∩Nj|) = nm−3t(G),
(10)

which completes the first part of the proof.
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Now we have to show that the equality holds in (9)
if and only if G is a bipartite graph or G ∼= K3. For a bi-
partite graph G, we have n1(e|G)+n2(e|G) = n for any
edge e ∈ E(G) as well as t(G) = 0 and hence PI(G) =
nm holds. For G ∼= K3, we have n1(e|G)+n2(e|G) = 2
for any edge e ∈ E(G) and t(G) = 1. Hence PI(G) =
6 = nm− t(G) holds. Thus the equality holds in (9) if
G is a bipartite graph or G ∼= K3.

Suppose now that the equality holds in (9). Then the
equality holds also in (10). From equality in (10) fol-
lows that for any edge e = viv j ∈ E(G),

n1(e|G)+ n2(e|G) = n−|Ni ∩Nj|. (11)

By contradiction, we show that G is a bipartite graph
or G ∼= K3. For this we suppose that G is neither bi-
partite nor G ∼= K3. If so, then G contains an odd-
membered cycle C2p+1 and has at least 4 vertices.
Since G is connected, there exists an edge e = viv j ∈
E(C2p+1), such that n1(e|G)+n2(e|G) < n−|Ni∩Nj|,
a contradiction, by (11). �

3. Nordhaus-Gaddum Type Results for the Vertex
PI Index

For a graph G, the chromatic number χ(G) is the
minimum number of colors needed to color the vertices
of G in such a way that no two adjacent vertices are
assigned the same color. In 1956, Nordhaus and Gad-
dum [24] gave bounds involving the chromatic num-
ber χ(G) of a graph G and its complement G:

2
√

n ≤ χ(G)+ χ(G) ≤ n + 1.

Motivated by the above results, we now obtain analo-
gous conclusions for the vertex PI index.

We first observe that for n ≥ 5,

2PI(Pn) = 2(3 + 4 + 5 + 5+ · · ·+ 5︸ ︷︷ ︸
n−4

)

+ 2(4 + 5 + 6 +6+ · · ·+ 6︸ ︷︷ ︸
n−5

)

+ 2(3 + 4 + 5 +6+6+ · · ·+ 6︸ ︷︷ ︸
n−6

)

+ (n−6)(4 + 4 + 5+5+6+6+ · · ·+ 6︸ ︷︷ ︸
n−7

)

= 2(5n−13)+ 2(6n−21)

+ 2(6n−24)+ (6n−24)(n−6)

that is,

PI(Pn) = (n−2)(3n−7).

Theorem 3.1 Let G be a connected graph on n ≥ 5
vertices, diameter d, and with a connected comple-
ment G. Then

PI(G)+PI(G) ≥ n(n−1)+(d−1)(3d−4) (12)

with equality holding if and only if G ∼= Pn.

Proof. Since G has diameter d, then Pd+1 is a sub-
graph of G. Thus

PI(G) ≥ PI(Pd+1)

+ ∑
e∈E(G)\E(Pd+1)

[n1(e|G)+ n2(e|G)] (13)

≥ (d −1)(3d−4)+ 2
[
m− 1

2
d(d−1)

]
(14)

= 2(d −1)(d−2)+ n(n−1)−2m. (15)

From (5) and (15) we get

PI(G)+PI(G)≥ 2(d−1)(d−2)+n(n−1)+d2−d
(16)

and inequality (12) follows.
Suppose now that equality holds in (12). Then

equality holds in (13), (14), and (16). Using the same
way of reasoning as in the proof of Theorem 2.1, we
conclude that G ∼= Pn.

Conversely, one can easily check that (12) holds for
G ∼= Pn. �

It was first observed by Goodman [25] that t(G)+
t(G) is determined by the vertex degree sequence:

Lemma 3.2 [25] Let t(G) and t(G) be, respectively,
the number of triangles in G and G. Then

t(G)+ t(G) =
1
2

n

∑
i=1

deg(vi)2 − (n−1)m

+
1
6

n(n−1)(n−2).

A molecular structure-descriptor introduced long
time ago [2, 26] is the so-called first Zagreb index
(M1) equal to the sum of squares of the degrees of
all vertices. Some basic properties of M1 can be found
in [27, 28]. Now we are ready to give upper bound for
PI(G)+ PI(G):
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Theorem 3.3 Let G be a connected graph on n > 2
vertices, m edges, diameter d, t(G) triangles, and with
a connected complement G. Then

PI(G)+PI(G)≤ (n−1)(3m+n)− 3
2

M1(G). (17)

Moreover, the equality holds in (17) if and only if
G ∼= P4.

Proof. Let m be the number of edges of G. By (9), we
get

PI(G)+PI(G) ≤ n(m+m)−3[t(G)+ t(G)] (18)

=
1
2

n2(n−1)− 3
2

n

∑
i=1

deg(vi)2

+ 3(n−1)m− 1
2

n(n−1)(n−2).
(19)

Since m+ m = n(n−1)/2, inequality (17) is obtained
from (19).

Suppose now that equality holds in (17). Then
equality holds in (18). From (9) we conclude that
both G and G are bipartite graphs. So we may assume
that V (G) = A∪B and A∩B = /0. Since G is also bipar-
tite, we must have |A| ≤ 2 and |B| ≤ 2. Further, since
both G and G are connected, it must be G ∼= P4.

Conversely, one can easily check that (17) holds for
G ∼= P4. �

4. Relation Between Szeged Index and Vertex
PI Index

In this section we obtain a relation between Szeged
and vertex PI indices. For this we need the following:

Lemma 4.1 [29] Let (a1,a2, . . . ,ap) and
(b1,b2, . . . ,bp) be two positive n-tuples such that
there exist positive numbers x1, X1, x2, X2 satisfying:

0 < x1 ≤ ai ≤ X1 and 0 < x2 ≤ bi ≤ X2

for i = 1,2, . . . , p.

Then

p

∑
i=1

a2
i

p

∑
i=1

b2
i −
(

p

∑
i=1

aibi

)2

≤ 1
4

p2(X1X2 − x1x2)2.

Theorem 4.2 Let G be a simple graph with n ver-
tices and m edges. Also let Sz and PI be the Szeged
and vertex PI indices, respectively, of G. Then

16mSz−4PI2 ≤ m2(n−3)2. (20)

Equality in (20) holds if and only if G ∼= Kn or G ∼= K3
or G ∼= P3.
Proof. For each edge e ∈ E(G),

n1(e|G)+ n2(e|G)
2

≥
√

n1(e|G)n2(e|G) (21)

from which follows

∑
e∈E(G)

(n1(e|G)+n2(e|G))2 ≥ 4 ∑
e∈E(G)

n1(e|G)n2(e|G).

(22)

Setting into Lemma 4.1 p = m, ai = n1(ei|G) +
n2(ei|G), i = 1,2, . . . ,m, x1 = mini ai, X1 = maxi ai, and
b1 = b2 = · · · = bm = 1, x2 = X2 = 1, we get

m ∑
e∈E(G)

[n1(e|G)+ n2(G)]2

≤
[

∑
e∈E(G)

(n1(e|G)+ n2(G))
]2

+
1
4

m2(X1 − x1)2.
(23)

We have X1 ≤ n and x1 ≥ 2. If X1 ≤ n − 1, then
X1 − x1 ≤ n− 3. Otherwise, X1 = n. In that case we
must have x1 ≥ 3. Thus for both cases X1 − x1 ≤ n−3.
Using this as well as (22) and (23), we get the required
result (20).

Suppose that the equality holds in (20). Then all in-
equalities in the above argument must be equalities.
Thus from equality in (21) and (22), we get that for
each edge e ∈ E(G),

n1(e|G) = n2(e|G).

From equality in (23) and using above result, we get

m2(n−3)2 = 0.

Thus either m = 0 or n = 3, that is, either G ∼= Kn or
G ∼= K3 or G ∼= P3.

Conversely, one can easily verify that (20) holds for
G ∼= Kn, G ∼= K3, and G ∼= P3. �
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