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Chemotactic cytokines (chemokines) are small signaling
proteins that are released by a variety of cells and are
involved in the pathophysiology of inflammatory processes,
through the process of attracting and stimulating specific
subsets of leukocytes, adhesion of cells, and penetration
across the endothelial cells. Chemokines, such as regulated
upon activation, normally T cell expressed and secreted

(RANTES) and monocyte chemoattractant protein-1 (MCP-
1), are responsible for the recruitment of monocytes and T
lymphocytes in both the acute and chronic phases of inflam-
mation1. The RANTES and MCP-1 genes are located on
human chromosome 172,3. RANTES is associated with Th1
cytokine-related immune response in vitro and MCP-1
contributes more to the Th2 than Th1 cytokine-mediated
inflammation in vivo4,5.

RANTES is produced from various cell types, including
CD8+ T cells, CD4+ T cells, monocyte/macrophages, and
renal tubular epithelium after cellular activation by stimuli
and cytokines such as tumor necrosis factor-α (TNF-α) and
interleukin 1ß (IL-1ß) stimulation6-8. Although RANTES
has some attractive effect on neutrophils9 and eosinophils10,
its action largely causes the selective migration of mono-
cytes and memory T lymphocytes11. There are 2 functional
polymorphisms in the proximal promoter region of the
RANTES gene (–28 C to G and –403 G to A) that increase
transcriptional activity and subsequent RANTES expression
in human cell lines12,13. Yao, et al14 showed that the
RANTES –28G allele is associated with asthma severity in
Chinese children, while Liu, et al12 reported that the
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ABSTRACT. Objective. Chemokines play an important role in the physiology and pathophysiology of acute and
chronic inflammatory processes. We investigated whether chemokines such as RANTES (regulated
upon activation, normally T cell expressed and secreted) promoter and monocyte chemoattractant
protein-1 (MCP-1) regulatory polymorphisms were associated with systemic lupus erythematosus
(SLE) in Chinese children.
Methods. Forty-six patients with SLE and 107 healthy children of comparable ages were studied for
genotypes with polymerase chain reaction-based assays.
Results. The frequency and distribution of genotypes of the –28(C/G) RANTES gene polymorphism
were significantly different between the 2 groups (p < 0.001), and the RANTES –28G allele was
significantly more frequent in patients with SLE than in healthy controls (23.9% vs 11%; p = 0.006,
OR 2.37, 95% CI 1.25–4.28). There was no significant difference in the frequency or in the distrib-
ution of genotypes of the –2518(A/G) MCP-1 and the –403(G/A) RANTES gene polymorphisms
between patients and controls (p = 0.32 and p = 0.19, respectively). The RANTES –28G allele was
also significantly associated with higher initial levels of antinuclear antibody, lower levels of C3, and
higher incidences of central nervous system lupus.
Conclusion. In the Chinese population, children with RANTES –28C/G polymorphisms have
increased risk of developing SLE. Healthy controls with the C/G or G/G genotype were 2.37 times
more likely to have SLE compared to those with the C/C genotype. (J Rheumatol 2004;31:2062–7)
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RANTES –28G allele increases RANTES expression in
individuals with human immunodeficiency virus (HIV-1),
thus delaying the progression of HIV-1 disease. Nickel, et
al13 have reported that the RANTES –403A allele is associ-
ated with increased susceptibility to atopic dermatitis in
German children. These studies imply that the polymor-
phisms in the promoter of RANTES play an important role
on the pathogenesis of inflammatory disease.

The MCP-1 –2518G allele in the regulatory region
increases transcriptional activity15. MCP-1 is suggested to
be responsible for tissue inflammation in autoimmune
diseases because of its tissue expression in human and
experimental autoimmune models16-19.

Development of systemic lupus erythematosus (SLE) is
influenced by multiple genetic and environmental factors. It
is a disorder of immune regulation manifested by polyclonal
B cell activation, leading to the production of autoanti-
bodies, activation of the complement system, and generation
and deposition of immune complexes. These stimuli also
induce the infiltration of mononuclear leukocytes. The
migration of mononuclear leukocytes through vessels and
tissues is dependent in part on chemokines in the inflamma-
tory response20-22.

Given the importance of MCP-1 and RANTES in inflam-
mation, we hypothesized that RANTES promoter and MCP-
1 regulatory polymorphisms that influence the expression of
these chemokines are risk factors for SLE. We investigated
the frequency of the RANTES –28C/G and –403G/A and
MCP-1 –2518A/G polymorphisms in a cohort of Chinese
children.

MATERIALS AND METHODS
Subjects. From 1994 to 2002, 46 children with SLE were enrolled for study:
40 girls and 6 boys with a mean age of 14.8 years (range 9–18 yrs).
Diagnosis was made according to the revised American College of
Rheumatology criteria for the classification of SLE23. As well, 107 healthy
children of comparable ages were also enrolled as controls. There were no
blood relations among the 46 patients with SLE and the 107 healthy chil-
dren. Disease activity was determined using the SLE Disease Activity
Index (SLEDAI)24.

Our patients were divided into 2 groups: patients who showed a score
≥ 6 in the SLEDAI were defined as having active disease; patients who had
a SLEDAI score < 6 were defined as inactive disease. Twenty-six patients
had active disease and 20 had inactive disease. Among all patients, 21 had
hypertension, defined when the average of 3 separate systolic blood pres-
sures was > 95% for age and sex. Eight patients with SLE initially
presented with neurologic involvement, with cerebral hypoperfusion
confirmed by cranial single photon emission computed tomography25.
Lupus nephritis in 26 patients was proven when one of the following
criteria was observed: positive renal biopsy or persistent proteinuria > 0.5
g per day. The disease duration ranged from 12 months to 9 years (mean 50
± 28.5 mo).

ELISA for RANTES chemokines. Blood samples from patients with SLE
were centrifuged and serum was frozen at –80°C until testing. The serum
concentrations of RANTES chemokines in patients with SLE were deter-
mined by a sandwich ELISA method (R&D Systems, Minneapolis, MN,
USA)26. Optical density at 450 nm was measured on an automated plate
reader (Model 35550-UV Microplate Reader; Bio-Rad, Hercules, CA,

USA), and chemokine levels were determined by comparison to the stan-
dard curve obtained using commercial recombinant chemokines.

Genotyping. Total genomic DNA was extracted from white blood cells of
SLE patients and healthy controls using the Easy Pure Genomic DNA
Purification Kit (Bioman Scientific Co., Taipei, Taiwan).

The polymerase chain reaction-restriction fragment length polymor-
phism (PCR-RFLP) assay was used to genotype SLE patients and controls
for RANTES and MCP-114,27. The RANTES –28 genotype was determined
using a HincII site introduced with a mismatch into the PCR primer next to
the C/G transition. Amplification with the primers RANTES-50S: 5’-ACT
CCC CTT AGG GGA TGC CCG T-3’, which has a guanine instead of a
cytosine (underlined), and RANTES124AS: 5’-GCG CAG AGG GCA
GTA GCA AT-3’ generated a 175 bp product. Digestion with HincII yields
152 and 23 bp fragments when C is at position –28.

The –403 genotype was determined using an RsaI site introduced with
a mismatch into the PCR primer next to the G/A transition. Amplification
with the primers RANTES-581S: 5’-CAC AAG AGG ACT CAT TCC AAC
TCA-3’ and RANTES-376AS: 5’-GTT CCT GCT TAT TCA TTA CAG
ATC GTA-3’, which has a guanine instead of a thymine (underlined),
generated a 206 bp product. Digestion with RsaI yields 180 and 26 bp frag-
ments when G is at position –403.

PCR amplification was carried out under the following cycling condi-
tions: 94°C for 5 min followed by 35 cycles of 94°C for 1 min, 55°C for 1
min, and 72°C for 55 s, and a final extension at 72°C for 10 min. PCR prod-
ucts were digested, respectively, with HincII and RsaI (Roche Diagnostics,
Mannheim, Germany) at 37°C overnight. The products of each PCR and
restriction enzyme digestion were examined following electrophoresis on a
3% agarose gel stained with ethidium bromide. The MCP-1 –2518 geno-
type was determined using a PvuII site affected by the G/A polymorphism.
Amplification with the primers MCP417S: 5’-TCT CTC ACG CCA GC
ACT GAC C-3’ and MCP650AS: 5’-GAG TGT TCA CAT AGG CTT
CTG-3’ generated a 234 bp product. Digestion with PvuII yields 159 and
75 bp fragments when G is at position –2518.

PCR amplification was carried out under the following cycling condi-
tions: 94°C for 5 min followed by 40 cycles of 94°C for 1 min, 52°C for 1
min, and 72°C for 45 s, and a final extension at 72°C for 10 min. PCR prod-
ucts were digested with PvuII at 37°C overnight. The products were sepa-
rated in 3% agarose gel and stained with ethidium bromide.

Statistical analysis. The genotypic and allelic frequencies for the different
groups were calculated by direct counting. Statistical comparisons were by
chi-square test for categorical data on 2 × 3 or 2 × 2 contingency tables, and
by the Wilcoxon rank-sum test for continuous data using the SPSS statis-
tical package (SPSS 10.0 for Windows; SPSS, Chicago, IL, USA). Odds
ratios (OR) with 95% confidence intervals (CI) were measured for the risk
of each genotype in SLE. A p value < 0.05 was considered statistically
significant.

RESULTS
Table 1 shows the distribution of gene polymorphisms in the
2 groups of children. Significant difference was observed in
the frequencies of the –28G polymorphism in the gene
promoter region of the RANTES between SLE cases and
controls (23.9% vs 11.7%; p = 0.006, OR 2.37, 95% CI
1.25–4.28), and the distribution of the genotype frequencies
of –28(C/G) RANTES gene polymorphism were signifi-
cantly different in the cases and in the controls (p < 0.001).
Healthy controls with C/G or G/G genotype were 2.37 times
more likely to have SLE compared to those with C/C geno-
type. There was no other significant difference in the
frequency of genotypes of the –2518(A/G) MCP-1 and the
–403(G/A) RANTES gene polymorphisms between SLE
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patients and controls. Although the difference in the allelic
frequency of the RANTES –403A polymorphism was near
the significant level (p = 0.073, OR 1.62, 95% CI
0.95–2.75), there was no difference in the distribution of
genotype frequencies between cases and controls.

Clinical characteristics were compared between the SLE
patients with –28 C/C RANTES gene and patients with –28
C/G or G/G gene polymorphisms (Table 2). Patients with
the C/G or G/G genotype at RANTES –28 had significantly
higher initial mean levels of antinuclear antibody (ANA)
and lower initial mean levels of C3 (28.5 vs 43 mg/dl; p =
0.044) than patients with the C/C genotype. There was no
significant difference in the levels of initial anti-dsDNA (p
= 0.10), C4 (p = 0.093), and SLEDAI score (p = 0.37)
between the 2 groups. The SLE patients with –28 C/G or
G/G gene polymorphisms had a significantly higher rate of
central nervous system (CNS) lupus, although there was no
significant difference in the distribution of the different
genotypic frequencies of –2518 MCP-1, –28 RANTES, and
–403 RANTES in SLE patients with or without hyperten-
sion, lupus nephritis, arthritis, and rashes.

Serum levels of RANTES in patients with SLE were also
measured. There was no significant difference in the serum

levels of RANTES between the SLE patients with the –28
C/C RANTES gene and patients with –28 C/G or G/G gene
polymorphisms (16.01 ± 12.74 vs 16.67 ± 10.57 ng/ml; p =
0.87). Moreover, these patients with various genotypes of
RANTES –403 had similar serum RANTES levels. The
serum RANTES levels in patients with active SLE were also
not significantly higher than in those with inactive SLE
(17.62 ± 13.83 vs 14.40 ± 9.43 ng/ml; p = 0.37).

DISCUSSION
The genetic basis of SLE is currently unclear. Gaffney, et
al28 reported that one of the multiple genes, such as
6p11–p21, 16q13, 14q21–23, and 20p12, in the HLA region
may influence susceptibility to SLE. To our knowledge, this
is the first study to describe a genetic association between
RANTES –28 promoter region polymorphisms and the risk
of susceptibility to SLE.

The prevalence of RANTES –28G varies among
different ethnic groups. The frequency of the RANTES
–28G allele for our Chinese children was 11.7%, lower than
that described for a Japanese population (16.6%)12.
McDermott, et al29 reported that the RANTES –28G allele
was relatively uncommon in Caucasians (4%). In this study,

The Journal of Rheumatology 2004; 31:102064

Table 1. Genotype and allele frequencies for MCP-1 –2518, RANTES –28, and RANTES –403 in children with SLE and healthy controls.

Polymorphism N Genotype p Allele Difference Between 
Frequencies Allele Frequencies

p OR (95% CI)*

MCP-1 –2518 A/G (%) A/A A/G G/G G
SLE 46 10 (22) 25 (54) 11 (24) 0.321 51% 0.96 0.99 (0.61–1.61)
Control 107 30 (28) 44 (41) 33 (31) 51.4% 1.0 —

RANTES –28 C/G (%) C/C C/G G/G G
SLE 46 34 (74) 2 (4) 10 (22) < 0.001 23.9% 0.006 2.37 (1.25–4.28)
Control 107 83 (77.6) 23 (21.5) 1 (0.9) 11.7% 1.0 —

RANTES –403 G/A (%) G/G G/A A/A A
SLE 46 19 (41) 22 (48) 5 (11) 0.192 35% 0.073 1.62 (0.95–2.75)
Control 107 60 (56) 41 (38) 6 (6) 24.8% 1.0 —

* OR (odds ratio) for the C/G or G/G genotype indicates that persons who have either of these genotypes are 2.37 times more likely to have SLE; reference
group (controls) designated with an OR of 1.0. MCP-1: Monocyte chemoattractant protein-1; RANTES: regulated upon activation normal T cell expressed
and secreted.

Table 2. Comparison of initial laboratory examination and clinical severity in genotype of RANTES –28 for chil-
dren with SLE.

RANTES –28 Genotype
Clinical Characteristics CC, n = 34 CG/GG, n = 12 p

Anti-dsDNA Ab (< 35 IU/ml) 699 ± 732 1057 ± 723 0.103
ANA (homogeneous) 630 ± 510 1056 ± 371 0.011
ANA (speckled) 831 ± 501 1184 ± 303 0.019
C3 (73–134 mg/dl) 43 ± 22 28.5 ± 17 0.044
C4 (18.2–45.5 mg/dl) 7.3 ± 3.2 5.6 ± 2 0.093
SLEDAI 15 ± 6.8 17 ± 6.2 0.375

ANA: antinuclear antibody, anti-dsDNA Ab: anti-double-stranded DNA antibody, SLEDAI: SLE Disease
Activity Index.
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the frequency of the RANTES –28G allele was significantly
higher in patients with SLE than in healthy controls (23.9%
vs 11.7%; p = 0.006) and the distribution of genotype
frequencies of –28(C/G) RANTES gene polymorphism was
also significantly different between the 2 groups (p < 0.001).
The mutation of RANTES –28 C to G increased the risk of
SLE by 2.37 times. This mutation might therefore be
strongly associated with susceptibility to SLE.

The promoter of the RANTES –28 (C/G) gene is close to
the nuclear factor-κB (NF-κB) binding site, which is located
at position –32 and plays a critical role in the upregulation
of RANTES promoter activity30. The NF-κB induction may
be the most important mechanism for RANTES expression
in CD8+ T cells or CD4+ T cells and monocytes/
macrophages31. In the functional analysis, it is shown that
the RANTES –28G allele elevates promoter activity and
increases RANTES expression12. The RANTES increases
the expression of the other chemokine genes macrophage
inflammatory protein-2 (MIP-2), interferon-induced
protein-10 (IP-10), and MCP-132. While the observations in
this study may reflect the influence of the RANTES –28G
allele, there are differences in initial clinical manifestations
and laboratory findings between patients with RANTES
–28G allele and –28C allele. The –28G allele was associated
with decreased blood concentrations of C3 (p = 0.04) and
C4 (p = 0.09), with an elevation of anti-dsDNA (p = 0.10),
homogeneous ANA (p = 0.01), and speckled ANA (p = 0.02)
in our SLE children. Decreasing complement and increasing
anti-dsDNA have been associated with an increase in SLE
activity33,34. SLE patients with RANTES –28G allele also
have significant higher incidence of CNS lupus.

We also studied serum levels of RANTES in patients
with SLE and tried to correlate RANTES levels and SLE
disease activity. In the cross-sectional analysis, there was no
significant difference in the serum levels of RANTES
between the SLE patients with the RANTES –28C allele
and patients with RANTES –28G allele (16.01 ± 12.74 vs
16.67 ± 10.57 ng/ml; p = 0.87). The serum RANTES levels
were similar in these patients with various genotypes of
RANTES –403. Liu, et al12 also reported that there was no
significant difference in serum RANTES levels between
individuals with RANTES –28G and those without
RANTES –28G. However, the activated CD4+ lymphocytes
from individuals with RANTES –28G secreted significantly
more RANTES than those without RANTES –28G.

Moreover, in the individuals infected with HIV-1 the
RANTES –28G allele increases RANTES expression and
thus delays the progression of HIV-1 disease. The
chemokine receptor CCR5 is a coreceptor for the cellular
entry of R5 strains of HIV-135. The RANTES is one of the 3
natural CC5 ligands and it can suppress in vitro replication
of R5 strains of HIV-136. This means that the levels of
RANTES were correlated inversely with the rates of HIV-1
disease progression. We speculate that the SLE patients with

RANTES –28G allele also secreted more RANTES, and
thus could be more resistant to HIV-1 disease progression.
The serum RANTES levels in patients with active SLE were
also not significantly higher than in those with inactive SLE
(17.62 ± 13.83 vs 14.40 ± 9.43 ng/ml; p = 0.37). A precise
association between serum RANTES levels and SLE
disease activity was difficult to confirm in our study because
SLE is a chronic disease characterized by exacerbations and
remissions; thus, measures of disease activity and laboratory
assays (e.g., serum RANTES) vary with time. Further inves-
tigation requires a longitudinal analysis.

We also compared the polymorphisms of MCP-1 –2518
gene in SLE patients and healthy controls. There was no
significant difference in the frequency of genotypes of the
–2518(A/G) MCP-1 gene polymorphisms between SLE
patients and controls. The results were similar to those
reported by Aguilar, et al37, and this polymorphism does
not seem to be related to susceptibility to SLE. The preva-
lence of the MCP-1 –2518G allele in a Chinese population
was higher than that in Spaniards (51.4% vs 42%, respec-
tively). This discrepancy might be caused by racial
heterogeneity, because there is a high frequency of the
MCP-1 –2518 genotypes bearing G in the Asian popula-
tion38.

MCP-1 is also controlled at the transcriptional level by
NF-κB39. MCP-1 expression is inducible by proinflamma-
tory cytokines (TNF-α, IL-1ß) through NF-κB induction in
various cell types40. Monocytes from individuals carrying a
G allele at –2518 produce more MCP-1 after treatment with
IL-1ß15. However, Kim, et al41 reported that patients with
SLE had significantly greater serum MCP-1 levels. The
MCP-1 –2518A was associated with more production of
MCP-1. But the MCP-1 polymorphism also does not relate
to the susceptibility to SLE among Koreans. Aguilar, et al37

reported that MCP-1 –2518G allele is associated with the
presence of cutaneous vasculitis, but does not increase the
susceptibility to SLE in Spaniards. Our study showed
similar results, that the polymorphisms of –2518(A/G)
MCP-1 were not associated with susceptibility to SLE.

The prevalence of RANTES –403A allele was almost
significantly higher in our SLE group (35%) than in healthy
controls (p = 0.07). The 2 polymorphisms of RANTES –28
(C/G) and –403 (G/A) genes were located on the same
chromosome 17, and the –403A allele may be linked to the
–28G allele, since the 2 are adjacent. We found that the
frequency of RANTES –28G allele carriers in our cohort of
SLE patients and controls that also bore the –403A allele
were 100% and 91%, respectively. This strong linkage dis-
equilibrium between the –28G and –403A was also reported
by McDermott, et al29. Some reports describe a reduction in
the rate of decline of CD4+ T cells in individuals who
possessed a RANTES –403A, –28G-containing haplo-
type12,29. It means that the survival of CD4+ T cells becomes
more prolonged by RANTES and the effect on polyclonal B
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Personal, non-commercial use only.  The Journal of Rheumatology.  Copyright © 2004. All rights reserved.



Per
so

na
l n

on
-c

om
m

er
ci

al
 u

se
 o

nl
y.

 T
he

 J
ou

rn
al

 o
f R

he
um

at
ol

og
y.

 C
op

yr
ig

ht
 ©

 2
00

4.
 A

ll 
rig

ht
s 

re
se

rv
ed

cell activation is enhanced, which likely contributes to
persistent inflammation.

Most patients with SLE have autoantibodies to compo-
nents of the cell nucleus (ANA). These ANA arise in
genetically susceptible individuals in whom immune abnor-
malities promote B and T autoreactivity. These auto-
antibodies can mediate inflammation and tissue destruction.
In this study the carriers of both mutant alleles (–28G and
–403A) and those bearing the –403A allele alone had
comparably higher titers of mean ANA levels than those
with no mutation (–28C and 403G) (1:1040, 1:788, 1:564,
respectively). The higher elevated ANA concentration
enhanced the chronic inflammation in SLE. This suggests
that the RANTES –403A may also have some effect on
progression of SLE. Generally speaking, the susceptibility
to disorders usually results from the accumulated effect of
many genetic loci and environmental influences.

Our results show that there is no association between the
polymorphisms of –2518(A/G) MCP-1 and susceptibility to
SLE, whereas there is a significant association of –28(C/G)
RANTES polymorphisms with SLE and there are some
effects of –403(G/A) RANTES polymorphisms on SLE.
Moreover, patients with the C/G or G/G genotype at
RANTES –28 have significantly higher initial levels of
ANA, lower initial levels of C3, and higher incidences of
CNS lupus than patients with the C/C genotype, although
there is no significant difference in the initial levels of anti-
dsDNA, C4, and SLEDAI score between the 2 groups. No
significant differences were found in the distribution of the
different genotypic frequencies of –2518 MCP-1, –28
RANTES, and –403 RANTES in SLE patients with or
without hypertension, lupus nephritis, arthritis, and rashes.

In conclusion, RANTES –28C/G polymorphisms influ-
ence the severity of SLE disease activity and represent a
genetic risk factor for susceptibility to SLE in Chinese chil-
dren. The OR for the risk of susceptibility to SLE was 2.37
for children with the RANTES –28G allele compared to
those with the RANTES –28C/C genotype. In children with
SLE, the RANTES –28G allele was significantly associated
with higher levels of ANA, lower levels of C3, and higher
incidences of CNS lupus. Inhibition of RANTES expression
may be therapeutic in this disease, although the precise role
of the polymorphism in the RANTES –28 in SLE is still
unclear.
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