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ABSTRACT 
In engine structural life computations, it is common 

practice to assign a life of certain number of start-stop cycles 
based on a standard flight or mission. This is done during 
design through detailed calculations of stresses and 
temperatures for a standard flight, and the use of material 
property and failure models. The limitation of the design phase 
stress and temperature calculations is that they cannot take into 
account actual operating temperatures and stresses. This 
limitation results in either very conservative life estimates and 
subsequent wastage of good components, or in catastrophic 
damage because of highly aggressive operational conditions 
which were not accounted for in design. In order to improve 
significantly the accuracy of the life prediction, the component 
temperatures and stresses need to be computed for actual 
operating conditions. However, thermal and stress models are 
very detailed and complex, and it could take on the order of a 
few hours to complete a stress and temperature simulation of 
critical components for a flight. The objective of this work is to 
develop dynamic neural network models, that would enable us 
to compute the stresses and temperatures at critical locations, in 
orders of magnitude less computation time than required by 
more detailed thermal and stress models. This work expands on 
the work done previously [1] where a linear system 
identification approach was developed. The current paper 
describes the development of a neural network model and the 
temperature results achieved in comparison with the original 
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models for Honeywell turbine and compressor components. 
Given certain inputs such as engine speed and gas temperatures 
for the flight, the models compute the component critical 
location temperatures for the same flight in a very small 
fraction of time it would take the original thermal model to 
compute.  
 
NOMENCLATURE 
u Input 
y Output 
• Predicted output 
f, F Activation functions 
w, W Network weights 
A, B, F, C, D Polynomials identifying model  

structure 
q Time shift operator notation 
e Disturbance signal 
t Time or sample 
na Number of past outputs 
nb Number of past inputs 
nk Time delay 
. Regression vector  
. Vector containing weights 
. Rotational speed 
. Metal temperature at critical 

location 
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. . Gas temperature 
Wg Gas flow 
INTRODUCTION 

Accurate life prediction for turbine engines has become 
increasingly important in recent years as military and 
commercial aircraft fleet age, and engine component failures 
cause unplanned maintenance and repair. Failure modes such as 
Low Cycle Fatigue (LCF), Stress Rupture (SR) or Creep are 
caused by operational stresses (either cyclic or constant) to the 
engine component material. The common industry practice 
today is to count engine start stop cycles, and decrement it from 
a pre-calculated number for life, to arrive at remaining life. 
This pre-calculated number is overly conservative for obvious 
safety reasons. Probabilistically, we throw away 1000 
components to remove the unknown one that is theoretically 
predicted to be in a failed state [2]. Therefore, increasing the 
life prediction confidence is of utmost importance if we are to 
increase the service life of aircraft turbomachinery components, 
or if we are to predict imminent failure of an overused engine. 
Consequently, work is being done to increase our prediction 
and analysis capability for structural failure. Advances in 
fatigue prediction material models, damage tolerance life 
prediction model, modeling crack growth, and assessing 
strength have been made [3-6].  In all these advances, however, 
stresses and temperature of a critical component location need 
to be computed for the operation conditions it sees, before these 
advanced techniques can yield practical results for health 
monitoring. Since stresses and temperatures are computed with 
detailed numerical models, it is impractical to do the same on 
an every flight basis. In order to be able to capture the 
important information necessary in a timely manner, a reduced 
model concept was introduced [1]. The results of using impulse 
response model for model reduction were demonstrated for a 
Honeywell engine [1]. The idea of the model reduction 
(illustrated in  Figure 1) was to be able to build a dynamic 
model of the temperature or stress at a critical location as a 
function of changing gas temperature or engine speed. In ref 
(1), the impulse response model was used as the system was 
close to linear. However, in highly non-linear systems, the 
temperature or stress response cannot be predicted accurately 
by an impulse response model. In this paper, we describe the 
development and use of dynamic neural networks as a tool for 
model reduction for near real-time computation of critical 
location temperatures and stresses.   

 
 

Physics-based 
model 

T,   σ ,   profiles 

T, P, C1, C2� 
profiles T, P, C1, C2� 

profiles T, P, C1, C2� 
profiles T, P, C1, C2� 

profiles Reduced model

Reduced model
Critical 
T,  σ 

Stress cycles, 
material models 

Operating 
conditions 

Offline

Online

Critical 
location T,  σ 

T,  σ  =  F ( Operating condition )

Remaining life 

Thermal/ 
stress 

Operating 
conditions 
 2

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
The objective of model reduction is to take an existing 
numerical model (thermal, stress, fluid flow) that predicts 
detailed spatial and temporal quantities, and condense it so that 
instead of the detailed predictions, only task-specific targeted 
quantities are predicted, albeit at a fraction of the cost to 
computational resources. This usage of the knowledge of 
design phase numerical model in an online system is novel. 
Another unique aspect of this work is the creation of a dynamic 
model, as opposed to a static model, since dynamic stresses and 
temperatures are very important in the calculation of remaining 
life.  

Model reduction as explained above, can be achieved in 
various ways such as system identification methods, neural 
networks, regression techniques, and so on. In the case of finite 
element models, however, there is literature in the area of 
reduced-order modeling, which is distinct from the approach in 
this paper. Algorithms have been developed for solving 
transient thermal problems in a reduced subspace of the original  
discretization space [7]. Mass and stiffness matrices can be 
reduced with the Guyan reduction method [8], decreasing the 
size of the model. However, later literature indicates that it 
cannot be successfully applied to dynamic thermal problems 
and that in fact, cruder finite element approximations do better 
[9]. Model size reduction using component mode synthesis has 
been applied to turbine engine disc temperature calculation 
[10]. In this method, nodal degrees of freedom are divided into 
two sets .  active and omitted. Active degrees of freedom are 
translated into the reduced model, while omitted ones are 
replaced by the most important modal shapes.  
 

The above model-order reduction techniques require all 
inputs to the finite element model including nodal boundary 
conditions, which can be in the hundreds or more, and are 
applicable when the output required is of the same magnitude 
as the full numerical model. These reduced order models are 
strictly applicable to only the full finite element model part of 
the process. In other words, we cannot include in the reduced 
order model, models that provide the boundary conditions 
themselves, such as the performance model. These reduced 
order modeling techniques have been generally applied for ease 
of use of complex models or combination of models. In our 
case, however, the reduced model needs to predict temperature 
and stress in certain locations, and also reduce the input space 
as much as possible. 

 
With these considerations in mind, work was done towards 

developing system identification techniques for the purpose of 
computing stress and temperature at the life-critical locations 
Honeywell propulsion engines [1]. The impulse response 
method was used to compute temperatures and stresses. This 
technique lends itself well to systems that exhibit linear or close 
to linear behavior. For components that show non-linear 
behavior, however, other methods need to be explored. We 
present the use of dynamic neural networks for computing 
stresses and temperatures at critical locations of Honeywell 
turbomachinery components. The following sections provide a 
brief background of neural networks and describe the 
approaches taken in developing the current method. 
2 Copyright © 2004 by ASME Copyright © 2006 by ASME
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NEURAL NETWORKS 
Neural Networks are non-linear empirical model 

structures. Neural networks have been used in deriving models 
for complex and nonlinear systems, where developing physics-
based models could be extremely time-consuming and not very 
accurate. Neural networks have been used for diverse fields 
such as control, insurance, banking, image processing and 
medicine. In our case, we wish to derive a reduced dynamic 
model for computation of critical location temperature and 
stress of an engine component for application such as health or 
usage monitoring of aircraft systems. A very brief introduction 
to neural networks is given below. For more in-depth study, 
other references should be consulted [11, 12]. 

Figure 2(a) illustrates a neuron, the basic processing 
element for a neural network. A neuron takes a number of 
inputs (u), multiplies them by a constant (weight), then sums 
them up and uses the result as input to a singular valued 
activation  function f as shown. Figure 2(b) illustrates a 
feedforward neural network with two layers, three inputs, two 
hidden nodes and  two outputs. Here the weighted inputs are 
processed through function f. This is the first layer of the 
network. The outputs from this layer are in turn processed 
through the output layer function F, giving us the network 
outputs, •. This can be mathematically represented as 
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Common activation functions used for f and F are the sigmoid 
or hyperbolic tangent (tanh) function, linear transfer function, 
and the step transfer function. 

Figure 2: Neural Network Schematics (a) Neuron and 
(b) Example Network 
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Training the network is the process of finding the optimum 

weights w and W that will give the best match with the known 
target outputs from the data. This is accomplished through 
methods such as backpropagation and its variations, and quasi-
Newton methods such as Levenberg-Marquard all of which 
differ in speed, memory requirements, etc. The neural network 
described above, also known as multilayer perceptron network, 
is directly applicable to static systems. In the next section, we 
describe the extension to developing models of dynamic 
systems. 

DYNAMIC NEURAL NETWORKS  

System Identification background 
 In general, given a system’s input and output data, the 

science of deriving a dynamic model from the data is called 
system identification. There are many different methods and 
model structures in system identification, as applied to linear 
systems. Dynamic neural networks [2] complements the suite 
of system identification techniques by extending to non-linear 
systems. A general input-output linear model for a single-
output system with input u and output y can be written as  
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where u denotes the input; e(t) is the disturbance signal; A, B, 
C, D and F are polynomials in terms of the time shift operator 
q; and nk denotes the time delay.  
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The time shift operator is a notation that works on a function 
thus: 

)()( dtxtxq d −=−                                                               (4) 
Some linear model structures are ARX (Auto-Regressive, 

External input), OE (Output Error), ARMA, ARMAX, etc. We 
describe the ARX and OE linear model structures below, since 
they are going to be used in the model structure for the dynamic 
neural network. For a linear ARX model, the above equation 
simplifies to  

)()()()()( 11 tenktuqBtyqA +−= −−                                (5) 
Ignoring the noise term, the above equation can be written as 
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nb

na
                            (6) 

Once the parameters a1 through an and b1 through bn are 
determined, the output y can be predicted in terms of past 
inputs and past outputs. The number of past inputs and outputs 
to be used is given by the order of the system[na nb nk],where 
na is the number of past outputs, nb, the number of past inputs 
and nk, the time delay. For multi-input systems, nb and nk are 
Use: http://www.asme.org/about-asme/terms-of-use
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vectors with as many entries as the number of input channels. 
For multiple outputs, na is a vector as many entries as the 
number of outputs. 
 
For a linear OE model, the above equation simplifies to 

)()()](/)([)( 11 tenktuqFqBty +−= −−                        (7) 
The parameters of the OE model structure are estimated using a 
prediction error method. In this case, the prediction • can be 
computed in terms of past inputs and past output predictions.  

Dynamic Neural Networks 
For dealing with non-linear system identification, one 

approach is to use the feed forward network, but use input 

structures similar to the linear  system identification model 
structures such as ARX, OE, ARMAX, etc. Norgaard [13] has 
implemented a toolbox for just such an approach  and the same 
approach has been followed in this work. The neural network 
implementation of ARX model structure is called NNARX (for 
Neural Network ARX), and that for OE model structure is 
called NNOE, and so on. Non-linear counterparts to the linear 
model structures are obtained by 

],[)(� ..gty =                                                                (8) 

where g is the function realized by the neural network, .  is the 
regression vector, .  is the vector containing the weights.  

Figure 3: (a) NNARX model structure and (b) NNOE 
model structure 
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For the above representation, the regressors for the 
NNARX model structure is given by 

)]1(),.....(           
),(),....1([)(

+−−−
−−=

nbnktunktu
natytyt.

                         (9) 

Similarly, the regressors for the NNOE model structure is 
given by  
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                       (10) 

 
As we can see, the NNOE regressors have the past predictions 
of the output rather than actual past outputs. These 
representations are depicted schematically in Figure 3. 

DYNAMIC NEURAL NETWORKS DEVELOPMENT AND 
IMPLEMENTATION 

Problem domain definition and Selection of input(s) 
Before the dynamic neural network model is built, the 

domain and inputs need to be defined well. Figure 4 shows 
different domain boundaries that can be considered for this 
problem, As in the previous work on impulse response model, 
we choose domain boundary #3 [1]. Selecting boundary #3 
implies that various performance model outputs such as engine 
station parameters (gas temperature, pressure, flow) and engine 
speed would be used as inputs to the dynamic neural network 
model.  
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Figure 4: Problem domain and input selection 

Model structure selection 
The next step in the development is selection of the model 

structure. In our case, the problem is unique from the system 
identification point of view in that the outputs (critical location 
metal temperature or  stress) are not likely to be measured or 
computed with the original models during operation. However, 
we do have the original model outputs from different flight 
profiles, for training purposes. Therefore, during training, the 
NNARX model structure is used to get the full benefit of the 
original model outputs. During validation, the NNOE model 
structure is used, so that past predictions are used as inputs in 
place of the past outputs. This ensures that during operation, 
when no past outputs are likely to be present, the past 
predictions can be used, and that we validate our approach to 
real conditions.  
4 Copyright © 2004 by ASME Copyright © 2006 by ASME
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We use the 2-layer network architecture as shown in the 

example. The other phases of model structure selection is the 
selection of number of hidden nodes, selection of model order 
(number of past inputs and outputs) and time delay.  Several 
experimental runs were conducted to arrive at good 
combinations of these parameters, with help from physical 
insights into the system responses. The hyperbolic tangent 
(tanh)  and linear functions were used as the activation 
functions for the hidden and output layers. All implementation 
was done in Matlab. Results are described in the next section. 
Once the weights are found, the output predictions can be 
computed by equation (1). 

Critical Node Temperature Predictions for Engine 
Component 

The dynamic neural network method was applied to predict 
the temperature at several critical locations of a Honeywell 
turbomachinery component. The inputs used were rotational 
speed (N), related gas temperature (Tg) and gas flow (Wg)  
near the component. A 2-layer architecture of one hidden layer 
and one output layer was used. The usual procedure of 
tweaking the inputs, model structure, the network and the 
system order was followed to learn from the interim results and 
obtain the best model. Finalizing the number of past inputs to 
be used for each physical input (N, Tg and Wg ) takes some 
trial and error and physical insight for that particular location. 
For example, for a location with a slow thermal response, the 
number of past inputs should be higher, In the following 
results, 8 hidden nodes, with 3 physical inputs were used. The 
order of the system used for these results were: 
Number of past outputs (na): 1 
Number of past inputs (nb): [4 8 2] (for inputs N, Tg and Wg) 
Number of time delays (nk) : [1 1 1] (for inputs N, Tg and Wg) 
The regressors in this case can be written as (see equation 9): 
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ggggg
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The above regressors serve as inputs (ui) to the neural network 
representation in equation 1. The actual metal temperature 
predicted from the original model serves as • during training. 
We use the linear and hyperbolic tangent functions respectively 
for activation functions F and f. 
 

Once the physical inputs, the number of past inputs and the 
number of hidden neurons have been identified, the model 
structure definition is complete. Norgaard’s toolbox is used to 
train the network and obtain the weights using the training 
datasets. The toolbox uses the Levenberg-Marquard method for 
training the network. Once the weights w and W are found, the 
outputs are calculated by use of equation (1). Because of the 
availability of toolboxes, the bulk of the work is done in 
experimenting to find the optimum model structure, inputs and 
model order. Several realistic flight profiles were used for the 
training and validation of the neural networks model. Out of the 
9 flight profiles available, 6 were used for training and the rest 
for validation.  
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Figure 5 through Figure 8 show the results comparing the 
temperatures  obtained by the dynamic neural network model 
and the original finite element thermal model. Figure 5 displays 
the comparison for flight profiles (a), (b) and (c) for critical 
location 1. The data in these flight profiles were used for 
training and the maximum error between the original and 
reduced model is very small. Figure 6 shows the comparison 
for three flight profile data that the neural network model had 
not seen (validation data) for the same critical location. These 
flight profiles are a more rigorous test of the reduced model 
performance, and as can be seen from the plots, the reduced 
model results match very well with the original model results, 
with maximum error of 10%.      

 
Figure 7 shows the plots of critical location 2 temperatures 

against mission time, for flight profiles used for training. While 
(a) and (b) represent a full flight profile, (c) represents minor 
fluctuations that could be part of a full flight. In all cases, the 
error rate is small, within 5%. Figure 8 shows the critical 
location 2 temperatures, for validation flight profiles that were 
not used for training. Other than in flight profile (a), the error 
between the original and reduced models show good 
agreement, within 10%.  

Discussion  
One of the sources for the errors shown is the difference in 

the model structure used for validation versus training. As 
discussed in the section Model Structure Selection, we used the 
NNARX model structure for training, and the NNOE model 
structure for validation. This is because actual past outputs 
(metal temperatures) will not be available during operation of 
the real system. As a result, the regressor T(t-1) is the actual 
metal temperature from the original model for training, and the 
neural network model predicted metal temperature during 
validation.  

 
Another cause for some of the errors is the ‘one-size fits 

all’ approach for the implementation where the same model 
structure used for all critical locations. Structure in this context 
means the inputs, model order, delays and number of neurons. 
During the initial development of this approach, several 
locations in one component were being evaluated for 
temperature estimation. Since each location was physically 
situated differently with the gas path and its fluctuations, each 
had its own thermal response characteristic. It would have been 
ideal to fit each with a separate neural net model. However, at 
the demonstration phase of this work, the question to be 
resolved was ‘would this approach be feasible to estimate metal 
temperature within a certain percentage?’ Considering that we 
were evaluating multiple locations with multiple flight profiles, 
the additional permutations of varying the model structure 
(inputs, number of past inputs, delays, number of neurons) 
would have been very large. It was decided to fix the model 
inputs and order at an optimum for all locations. By developing 
a different model structure that fits the temperature response 
characteristics of each location better, these errors can be 
minimized. During implementation, different model inputs, 
order, delays and neurons were used for different locations and 
5 Copyright © 2004 by ASME Copyright © 2006 by ASME
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components, to meet the accuracy constraints of temperature 
prediction.  

In neural network modeling, under and over-training can 
be  sources of errors. With under-training, sufficient data is not 
available to capture all features of the system. Since a  model is 
the source of training data, undertraining is not a serious 
concern here. Overtraining can happen if the amount of data is 
very large and the network may be capturing insignificant 
details (such as those with noise) at the expense of capturing 
the significant ones. In our case, noise is not a factor because 
the data is generated by a model. However, some parts of a 
flight profile such as a long steady state phase (see Figure 5a) 
could contribute to overtraining at the expense of capturing 
shorter transients. In such a case, the repetitive or redundant 
data can be removed during training, taking care to keep 
enough of that feature for training, and added back during 
testing. This was done for the flight profiles shown in Figure 5a 
and Figure 7a. 

Another point to be noted is that the validation flight 
profiles were chosen to be different from the training flight 
profiles. The dynamics in each case could be different, although 
the static conditions enveloped the validation sets. The 
validation sets illustrate the scenario, wherein a dynamic 
behavior is being estimated with the model trained on different 
operating dynamics, and hence possibly different dynamic 
behavior. 

A concern, or rather a challenge, of the neural network 
technique is finding the right amount of training data to cover 
all possible operating conditions and dynamics so that the 
model generalizes well to new inputs during operation. There 
may well be a case when the network encounters inputs or 
dynamics that are out of the data range that it was trained on. 
The network predictions could then have large errors. The 
remedy is to train the network on all known limits of operating 
conditions and dynamics. Periodic retraining and updates of 
network weights with real operating data, would also go a long 
way to remedy this limitation.   

CONCLUSIONS 
A model reduction technique for computing critical 

component parameters for remaining life prediction was 
demonstrated. A dynamic neural network model was developed 
for the computation of engine critical location metal 
temperatures. The dynamic neural network model reduces the 
original thermal model of a turbomachinery component, so that 
the temperatures can be computed on the fly if needed. Results 
for two critical locations of a component were presented. The 
results show that such techniques can be applied with minimal 
error for computing remaining life estimates, while taking into 
account the actual operating conditions of the turbomachinery.  

The same approach can also be used for the computation of 
thermal stress at the critical location. There are several other 
applications for the model reduction concept, where the 
potential for detailed models can be exploited for estimating 
quantities that cannot be measured.  
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igure 5: Critical Location 1 Temperatures for Different 
light Profiles (Training data) 
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Figure 6: Critical Location 1 temperatures for Different 
Flight Profiles (Validation data) 
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Figure 7: Critical Location 2 Temperatures for Different 
Flight Profiles (Training data) 
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