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ABSTRACT

A time residual mean (TRM) energy is obtained by averaging a transformation of the energy of the
Boussinesq hydrostatic incompressible equations of motion. The transformation is the fundamental TRM
transformation between level Cartesian coordinates and coordinates that are the mean positions of density
surfaces. The TRM energy consists of a sum of mean kinetic, mean potential, wave kinetic, and wave
potential energies. It is shown that the interaction between the mean kinetic energy and mean potential
energy can be expressed entirely in terms of mean fields. The wave forcing of the mean TRM momentum
equations is expressed as a divergence. An explicit and exact form of the TRM equations, with the trans-
formed pressure term expressed in terms of the mean and wave fields, is also noted. It is suggested that the
mean domain for the TRM equations and the Cartesian domain may not be the same, which would have

consequences for the TRM boundary conditions.

1. Introduction

Most ocean models incorporate some kind of aver-
age. Accordingly, a variety of theories have been de-
veloped that put the appropriate equations of fluid mo-
tion in averaged form. Invariably, nonlinearities couple
the resulting equations for the mean fields with corre-
lations of the perturbation (wave) fields so that there is
some kind of wave-mean flow interaction. To assess
the possible uses of the averaged equations, it is neces-
sary to state precisely the interaction terms as they ap-
pear in the mean equations as well as the equations for
conserved quantities such as energy. The purpose of
this paper is, first, to find an energy equation under
time residual mean (TRM) averaging and, second, to
clearly formulate the interaction terms. TRM theory
was introduced by McDougall and McIntosh (1996,
2001) and generalized by Greatbatch and McDougall
(2003).
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TRM theory puts the density equation in a conve-
nient form, a form which contains no correlations of
perturbation quantities. Other theories are also capable
of doing this: an example is the generalized Lagrangian
mean (GLM) theory of Andrews and McIntyre (1978).
However, the TRM theory has some other useful and
special properties. In particular, the TRM velocity field
is nondivergent if the unaveraged velocity field is. It
has been suggested by McDougall and McIntosh (2001)
that these two properties make the TRM equations
a more suitable description of the behavior of
z-coordinate non-eddy-resolving climate models than
the Eulerian-averaged Cartesian equations.

Although it will not be discussed at length in this
paper, a second advantage of TRM theory is that its
three-dimensional extra advective velocity can be de-
rived from a streamfunction (the so-called quasi-Stokes
streamfunction). This streamfunction satisfies simple
boundary conditions, which makes it an attractive tool
for eddy parameterization. Some work in this direction
has been done by Aiki et al. (2004). The authors re-
cently learned that similar work was undertaken by
Killworth (2003, personal communication).

On the other hand, TRM theory has some potential
drawbacks. Wave effects on the mean field must appear
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somewhere. In TRM theory they appear in the mean
momentum equations as a Reynolds stress and as ad-
ditional terms associated with the transformed pressure
gradient. These effects may ultimately prove difficult to
study—just as they are for direct Eulerian averages—
because the TRM average does not incorporate infor-
mation about horizontal particle motion or momentum
transfer (whereas its ability to put the averaged density
equation in a special form is partly based on following
the vertical motion of density surfaces).

Another concern about TRM appears in section 2, in
which it is suggested that the domain of the mean co-
ordinates for the TRM equations and the Cartesian do-
main may not be the same. If this is so, a likely result
would be that the simple boundary conditions previ-
ously suggested for the quasi-Stokes streamfunction
would be replaced with more complex boundary con-
ditions, perhaps parameterized ones.

In section 2, the fundamentals required for TRM
theory are stated, the equations of motion are trans-
formed into a form suitable for averaging, and proper-
ties of the TRM average are discussed. The exact TRM
equations are found. The connection between the deri-
vation of TRM given here and that given by McDougall
and McIntosh (2001) is noted in section 2a. The formu-
lation given here differs from theirs in that explicit use
of density coordinates is avoided. However, the nec-
essary tools for the representation of a thickness-
weighted isopycnal average in mean z coordinates have
been developed by Andrews and Mclntyre (1978), De
Szoeke and Bennett (1993), McDougall and McIntosh
(1996, 2001), Greatbatch (1998), Iwasaki (2001), Great-
batch and McDougall (2003), and others.

In section 3 the TRM energy and mean energy inter-
action terms are presented. The energy is found from
the mean of the transformation of the standard Eule-
rian energy. Some similar work has been done in an
atmospheric context by Iwasaki (2001) and his prede-
cessors. An equation is given for the rate of change of
wave potential energy.

2. Fundamentals

The equations for an unforced, rotating, incompress-
ible, hydrostatic, Boussinesq fluid are

Youe + YoV (Uu) = yofv+ pe =0, (1)
Yove T YoVe * (Uv) + yofu + pye =0, 2
petgy=0, 3

V.-U=0, and 4)

Ye + V.- (Uy) = 0. (5)
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Here (x€, y<, ¢, 1) are rectangular Cartesian coordi-
nates. The dependent variables u, v, w, p, and vy are
evaluated at (x€, y*, z%, ). Also, V. = (9, 9, 9,¢) and
U = (u, v, w). We will assume that all boundaries are
solid and that U-n = 0 there. To be consistent with
prior work on TRM, v is the density.

There is an associated energy equation. It is obtained
by taking the inner product of the horizontal momen-
tum equations with (u, v) and using the other equations
to bring the pressure terms into a conservation form:

©

[% W + ) + ng‘]

+V,- {U[% (u* + %) + gyz© +p:|} =0.
(6)

a. TRM transformation

The exact TRM theory is based on a transformation
from mean z coordinates to the Cartesian coordinates.
The form of the transformation may be written

(x5, 256, 1) = I[(x, y, 2, t, 7)]
=[xy, z+2'(xy z,t1),t7],
(7)

where z’ = 0, and this average is taken over 7 at con-
stant x, y, z, and t. The mean coordinates are given
without superscripts. As in the case of transformation
to density coordinates, only the height coordinate is
transformed nonidentically. Earlier studies have fo-
cused on the case that 7 represents a shift in time so that
the average represents a low-pass time filter. In that
case, functional dependence is on the combination ¢ +
7. However, expressing the coordinates separately al-
lows general ensemble averaging as well as low-pass
time averaging. It is assumed that, with little or no er-
ror, the average commutes with partial differentiation,
that ¢y = ¢, and that ¢ — ¢ = 0, for any ¢ and .
The Jacobian determinant of the transformation is

J=2=1+2. ®)

It follows immediately that J = 1 + z’, = 1, a result
which will be useful in deriving the mean TRM equa-
tions in section 2d.

The following notation is adopted:

u(x, y, z, t, 1) = u(x, y, 251, 1) = ulx, y, 25 t, 1),

and likewise for other functions of the coordinates. This
notation is useful when referring to the flow fields in
the mean coordinates.
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FiG. 1. (left) A height—r slice of the Cartesian coordinates and (right) a height—7 slice of the
mean coordinates. Mapping between the two systems is accomplished by associating with each
density surface in Cartesian coordinates (contour lines on left) its mean height in mean
coordinates (contours on right). It is possible for a range of mean coordinates in each column
to map to the upper surface in Cartesian coordinates, with the result that the Jacobian of the
transformation vanishes in those locations. More details are given in section 2a.

Up to this point, the framework of the TRM trans-
formation has been given, but the specific transforma-
tion has yet to be defined. We now fix the TRM trans-
formation, making reference to Fig. 1. On the left is
shown the Cartesian coordinate system, with the x¢, y°,
and ¢ axes suppressed and with their extension in
height represented only by the centered vertical line.
On the right is shown the mean coordinate system,
again with x, y, and ¢ represented by the centered ver-
tical line. The contour lines show constant density sur-
faces. If a density surface outcrops at the sea surface, it
is considered to be continued at the sea surface, as is
shown for the thick contour line on the left. Consider
the 7 average of the Cartesian height of the density
surface shown by this thick contour line. This average
determines a mean height z, indicated by the heavy
horizontal line on the right. The transformation at
mean height z is now fixed (for the particular choice of
x, y, t that generated this diagram) by relating to z, for
each 7, the Cartesian height corresponding to the physi-
cal location of the density surface associated with the
mean height z. In other words, the thick horizontal line
on the right maps to the heights of the thick density
surface on the left under the TRM transformation. The
result of carrying out this process for several other den-
sity contours can be seen by relating the thinner mean-
height contours on the right to the heights of the thin
density contours on the left. Carrying out the process
for every density contour determines a map between
every mean coordinate on the right and a Cartesian

coordinate on the left, which is the TRM transforma-
tion.

Stability of each fluid column will guarantee J = 0 for
the TRM transformation. Stability demands that the
density surfaces be monotonically ordered in the Car-
tesian height coordinate and, hence, so must be the
corresponding mean heights.

By the construction shown in the figure, the T mean
of 7' is zero, as desired. Moreover, if x, y, z, and ¢ are
fixed, the TRM density y(x, y, z, t, 7) = y(x, y, 2, t, T)
= y[x%, ¥<, 2°(x, y, 2, 1, T), £, 7] is constant. Graphically,
the line of constant z and varying T maps to a single
density surface. As a result, ¥ is a mean quantity (it is
unchanged by the mean operator).

For readers familiar with GLM theory, it may be
helpful to note that the foundations of TRM theory
resemble the foundations of GLM theory except that
the TRM perturbation position z' is one-dimensional
and follows density surfaces. The perturbation & in
GLM is three-dimensional and follows particles (An-
drews and Mclntyre 1978).

As the upper boundary is approached on the right-
hand side of Fig. 1, the corresponding density surfaces
must approach the upper boundary on the left and
spend more and more of the averaging period as out-
cropping surfaces. (If they did not, their mean positions
could not approach the upper boundary on the right.)
In fact, the mean upper boundary must map entirely
onto the Caretsian upper boundary, which establishes
the boundary condition z" = 0 on the mean upper
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boundary. This is essentially the same argument as that
which was given in Fig. 3 and the surrounding discus-
sion in McDougall and McIntosh (2001).

Indeed, most of the above was detailed by McDou-
gall and MclIntosh (2001). The difference between the
derivation given there and that given here is that in this
paper the equations of motion are considered in the
two coordinate systems (x, y, z, ¢, 7) and (x¢, y°, 2, £, ),
but not in the system (x, y, v, , 7), nor do we express z’
approximately in terms of y and y'. We feel that avoid-
ing density coordinates makes the exact derivation
more straightforward (particularly when it comes to the
energy equation) and keeps the focus on the fundamen-
tal TRM quantity z'. However, the reader who wishes
to explore the connection may note that z’ = —v'/y, +
O(c?), where a measures perturbation amplitude; also
J = 5.(1/y)|., . [see McDougall and McIntosh (2001),
their (11) and (28)]. Substitution of these relationships
above into some of the equations of this paper will
reproduce the formulas of McDougall and Mclntosh
(2001).

A caveat, which does not appear to have been noted
in earlier work on TRM, arises in connection with the
domain of the transformation. It is clear from consid-
ering the process that defines the TRM transformation
that there are mean heights for which the Jacobian de-
terminant of the transformation will be zero. This arises
because outcropping limits the positions of density sur-
faces to a maximum height at the top (and, although it
is not pictured in the figure, a minimum height at the
bottom). For example, at centerline 7 = 0 shown in Fig.
1, there is a range of mean heights (all those above z)
that map to the Cartesian upper boundary under the
TRM transformation. The Jacobian determinant must
be zero at these points. In Fig. 1, a possible / = 0 region
is shaded. Examination of the transformation shows
that J goes discontinuously to zero across the edge of
this region.

Despite the presence of a J = 0 region, it is still
possible to transform all unaveraged flow variables to
be functions of the mean coordinates over the entire
range of mean heights (up to the upper boundary pic-
tured in Fig. 1), although they will be constant in each
vertical column in the J = 0 region. However, since J is
not differentiable everywhere, it may not be legitimate
to transform (over the entire range of mean heights)
differential equations in which J appears. Since we will
shortly be concerned with such equations as part of the
process of deriving the TRM equations [e.g., below in
(9)-(13)], we suspect that it is necessary when consid-
ering the TRM equations to limit the mean domain to
exclude the J = 0 region. The same issue should occur
in density-coordinate-based derivations of TRM [since
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v, is effectively infinite in magnitude at the boundary
where outcropping occurs and hence J = ¥,(1/v,)|
= 0].

Moreover, the edge of the / = 0 region is the edge of
the inverse image of the Cartesian upper boundary un-
der the TRM transformation. As a result, it is the lo-
cation at which the transformed version of the velocity
boundary condition U - n = 0 should be applied. Aver-
aging over 7 in the mean domain to produce the TRM
equations (see section 2d) would tend to destroy this
boundary condition if the discontinuity in J is not taken
into account. On the other hand, if the discontinuity in
J is accounted for, averages over derivatives of J (delta
functions) will pick up information at the location of
the discontinuity, which will require some kind of
boundary tracking or parameterized boundary track-
ing. This leads us to suspect that the mean domain
should be limited to the levels below the dotted line in
the right-hand panel when considering the TRM equa-
tions. Unfortunately, doing so would remove the natu-
ral boundary conditions along with information about
the near-boundary flow field.

In this paper, we will generally point out the simple
consequences of the possibility that the TRM equations
can be applied over a mean domain that is the same as
the Cartesian domain and that z' = 0 on the boundary
of that mean domain. It is less clear what should be
done about boundary conditions if the mean domain is
to be limited. We note that such a limitation would have
serious consequences for aspects of TRM theory not
considered elsewhere in this paper. In particular, it
would probably not be correct to assert that the quasi-
Stokes streamfunction (which is an averaged variable)
vanishes at the limited mean boundaries. Also, if limited,
the mean domain would in most cases be time dependent.

z+z’

b. Transformed equations

Consider (1)—(5). If one wishes to express these
equations in the coordinates (x, y, z, f), the mean posi-
tions associated with (x¢, y, z¢, ) at any given instant,
the equations must be transformed. (We may ignore 7
for the moment, as the equations have no explicit de-
pendence on the averaging parameter.) This is analo-
gous to the common transformation to density coordi-
nates. Expression of the partial derivatives 9., and so
on, in terms of d,, and so on, is required. From the
differential of the TRM transformation (7), these are
found to be

az/0t 9z7/0x

at(. = at - T az’ axc = ax - J az:
9z°/9y

dye = dy = =5 0.,
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along with 9. = (1/J)d,. The equations of motion in
mean coordinates are obtained by substituting these
differential relationships in all terms of the original
equations and manipulating:

Yollu), + YoV - (JUU) = oIV = (23p), + (Up), = 0,
)

Yov), + YoV - (JU) + yofTu® — (z5p°). + (Ip©), = 0,
(10)

(p°). +8Jy=0,
(11)

J,+V-(JuU" =0,

(12)
and
Jy), + V- Uy =0.
(13)
Here, V = (9, 9,, 9;) and U" = (u", v, w*). The
superscript a and the asterisk are chosen to be consis-
tent with previous papers on TRM. In the course of
carrying out the manipulations, one finds that w* is
defined in terms of w* by

5= (9, + u9, + V9, + w*d )z =w, (14)

Dt
where the first equivalence defines in turn the operator
D?/Dt. Of course, if the equations are to be solved with-
out reference to a known solution in Cartesian coordi-
nates, then w* may simply be treated as one of the
dependent variables. In either case, one of J or z°(x, y,
z, t) must be known. In section 2d, averaging over 7 will
remove the requirement that J be known. One may
note that (14) is a one-dimensional analog of the vector
equation in (2.6a) of Andrews and MclIntyre (1978):

(0, +v-V)E =ub.

That equation was used to define u” (=v), the
Lagrangian mean velocity.

If the mean domain is the same as the Cartesian do-
main and if z” = 0 on the boundary, the boundary
conditions on velocity are easily found. Since z“ = z on
the boundary in that case, (14) simplifies to w* = w*. As
a result, the transformed boundary condition U n = 0
implies U’ -n = 0.

Equations (9)-(13) have been written without any
forcing for simplicity. However, forcing is easily
handled. Let the forcing X be added to the right-hand
side of one of (1)—(5). The forcing would appear in the
corresponding equations of (9)—(13) as JX¢, and could
be carried though the subsequent calculations without
difficulty.
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For the energy, let E€ = v,[(u)* + (v)?]2 + g¥z“.
Then the transformation of (6) is

JES), + V- [JUYE® + p)] + (z;p), = 0. (15)

In the case that the mean domain is the same as the
Cartesian domain and z’ = 0 on the boundary of the
mean domain, one finds that z; = z, + 0, = 0 on the
mean domain boundary. This guarantees the conserva-
tion of energy on such a fixed domain.

¢. TRM averaging and TRM quantities

Almost every term in (9)—(13) is multiplied by J. This
suggests thickness-weighted (J weighted) averaging.
Let the TRM mean quantities be defined by

U‘=JU“+U" =0+ U, (16)
¥ =J¥ +y =5+0, and (17)
P, =), +tp.=p,+p.=gy+gzy (18

Here, U= (i1, v, w) and the carets, tildes, and double
primes are used for consistency with earlier works. A
property of the averaging for the perturbation veloci-
ties is

JU” = 0. (19)
As a result of (19) one has, for example,
Juu = 0% + 20" + Ju'u’ = @* + Tud'u". (20)

This kind of identity is useful when considering the
Reynolds stresses in the momentum equations and the
energies in the energy equation.

The exact fields can be reconstructed from the TRM
mean and perturbation quantities and a knowledge of
z', which is a perturbation field.

d. Mean TRM equations

With (16) and (19) in mind, it is easy to obtain the
mean equations: simply take averages of the trans-
formed (9)-(13). Doing this and manipulating yields

Yot + YoV - (U) = yofd + p, =

=V [yJUW + (=2'pL,0,2'p))], 21)
YoOr + YoV - (U0) + yofid + p, =

=V [y JUV + (0, =2'p., 2'p))], (22)

p.t8y=0, (23)

v-U=0, and (24

5,4+ V- (Uy) = 0. (25)
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The wave interaction terms are in divergence form.
In the case that the mean and Cartesian domains are
the same and z’ = 0 on the mean boundary, the wave
terms do not contribute to the time rate of change of
the domain integral of the TRM mean momenta. Also,
by applying the operator (—d,, d,) to the momentum
equations, it is seen that the only pressure wave term
(i.e., excluding the Reynolds stresses) that can affect
the “TRM vorticity” ¥, — i, is

0o
P (Pyzx = Pxzy)-

3. TRM energy

The energy is found by averaging the transformed
energy [see (15)]:

JE = 2@ + ) + 2 (" V) + g9z + g2,

(26)

This shows that it is possible to define kinetic and
potential energies associated with the mean field, as
well as wave kinetic and wave potential energy. Since J
= (0, the wave kinetic energy is nonnegative. Except for
a difference of boundary terms, the same can be shown
for the domain-integrated wave potential energy by an
integration by parts, provided that ¥, < 0 (stable strati-
fication). If z' is zero on the mean boundary, the dif-
ference of boundary terms drops out of the domain-
integrated wave potential energy.

a. Mean energy interactions

It is straightforward to show that the energy interac-
tion between mean field potential energy and mean
field kinetic energy can be expressed in terms of the
mean fields. The argument is the same as in the familiar
Eulerian case:

(g¥2), = —gzV - (U)
=~V (s2Uy) + gy
=~V (s2U7) — pib
= -V (gz09) — (o). + pi.,
= =V (g209) — (p). — pla, + 3,)
= V- [Ugzy + p)] + ap, + 1P,

The last term of the last equation on the right-hand
side is precisely the energy transfer term that arises
from multiplying the mean pressure term in TRM hori-
zontal momentum equations by (i, ¥). The remaining

transfers of mean kinetic energy must arise from mul-
tiplication of the wave terms in the TRM horizontal
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momentum equations by (&, ¥) and must represent
transfers to wave kinetic and potential energy.

b. Rate of change of wave potential energy

The rate of change of the wave energies can be found
from the definition (26) and manipulation of the TRM
equations in (21)—(25) and transformed equations in
(9)-(13). An interesting case is the rate of change of the
wave potential energy, which is analogous to the den-
sity variance equation in McDougall and McIntosh
(2001). One has

(8¥2'z0), = (8¥z"), = —gz'V - JU*Y) + g¥/z,.

Using (14), the definition of w*, one may put this
equation in the form

(g¥2'z), + V- (g¥/U2") = gyl(w — w¥),  (27)

which shows that the wave potential energy is forced by
the weighted mean difference of w* and w*.

4. Summary

We have defined a TRM energy, which is obtained as
an average of a transformation of the Eulerian energy
of the Boussinesq hydrostatic incompressible equations
of motion. The energy consists of a sum of mean ki-
netic, mean potential, wave kinetic, and wave potential
energy. It has been shown that interactions between the
mean field energies take place entirely in terms of mean
field quantities.

At present, the main uses of a TRM energy appear to
be as a diagnostic quantity and in the design of meso-
scale parameterizations based on an energy principle,
perhaps one analogous to the principle of mean poten-
tial energy decrease suggested by Gent et al. (1995).

A by-product of the derivation of the TRM energy
was an explicit and exact representation of the TRM
equations in terms of the mean fields and wave fields.
In particular, the transformed pressure term has been
expressed in terms of correlations of a perturbation
pressure and the density surface height perturbation z'.
Notwithstanding their frequent use of O(a) notation,
the exactness of the TRM equations was mentioned by
McDougall and McIntosh (2001) and further demon-
strated in Greatbatch and McDougall (2003). However,
the explicit representation in this paper serves to em-
phasize the point. In particular, error-free diagnosis of
TRM quantities in eddy-resolving models or observa-
tions can only be done on the basis of the exact defini-
tions and equations.

Last, we have suggested that, for the TRM equations,
the mean domain and the Cartesian domain may not be
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the same. If this is the case, modification of the TRM
boundary conditions may be necessary.
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