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Abstract. The purpose of this research work is to find the optimized kinematic structural parameters 

of the 3-TPS/TP parallel manipulator while taking into consideration the workspace, kinematic 

properties and other factors. The Ranked Pareto Particle Swarm Optimization (RP-PSO) approach is 

applied to solve the multi-objective optimization problems. Firstly, the structure of the parallel 

manipulator and its kinematic model are devised. Then, we set up the kinematical performance 

indices for the evaluation of manipulator working properties, including Local Condition Index (LCI), 

Global Condition Index (GCI) and Good Condition Workspace (GCW). The optimization is further 

carried out in a Parameter Design Space (PDS) with normalized geometry parameters. Then the 

geometry optimization problems are solved using a PDS based RP-PSO approach. Finally, the 

feasibility of this approach is supported by examples given this paper. 

Introduction 

The parallel robot manipulators (PRM) have been actively researched for the following advantages: 

simple and compact structure, higher speed, higher stiffness, large carrying capacity and high 

machining accuracy [1]. In the family of these parallel robots, many 3-DOF parallel robots have been 

developed [2]. One example is planar 3-RRR (Revolute-Revolute-Revolute) PRM [3]. The moving 

platform has three planar DOFs, which are two translations in a plane and rotation around the axis 

perpendicular to the plane. Another example is the 3-PTT (Prismatic-Hooke-Hooke) PRM, which has 

only 3 translational DOF along x, y and z axis [4]. One of the parallel robots presented by Hunt is the 

3-RPS (Revolute-Prismatic-Spherical) parallel robot with 3 chains. Each chain consists of a revolute 

joint, a prismatic joint and a spherical joint, respectively [5]. Another PRM with 3 translational DOFs 

is the Star, designed by Hervé based on group theory [6].  

This paper focuses on the optimal kinematic design of a new 3-TPS/TP PRM shown in Fig. 1. 

The moving platform of the new PRM is able to achieve three-dimensional motion through 

combination of two rotational movements and one translational movement [7].There are many 

performance indicators available to describe a PRM’s motion traits, e.g. the manipulability and 

workspace size. These indicators are often conflicting in real applications. For example, maximizing 

the workspace volume often tends to produce singularity in manipulator configurations, while 

considering only manipulability may lead to architectures with relatively small workspaces [8]. Thus 

a multi-objective optimization approach for PRM design is required. 

Some other methods have been presented. In these approaches, an objective function is defined 

based on specific requirements; numerical methods are then utilized to obtain optimal results. Stock 

et al. proposed a method using search minimization to optimize kinematic design of linear Delta robot 

[9]. Zhang et al. applied genetic algorithms for the multiple-criteria kinematic optimization of 

spherical serial mechanisms [10]. Stan et al. presented the optimal design of 3- DOF DELTA linear 

translation parallel robot also based on genetic algorithm approach [11]. 

The purpose of this research work is the search for the optimized kinematic structural parameters 

of a new PRM while balancing between the working space and kinematic properties. The ranked 

Pareto particle swarm optimization (RP-PSO) approach is adopted due to its fast convergence [12].  
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The structure and kinematic models of the parallel manipulator 

The structure of the PRM. The structure of 3-TPS/TP robot manipulator to be studied in this paper 

is shown in Fig. 1. The kinematic diagram is given in Fig. 2. The regular triangle denoted by 1 2 3B B B  

is a fixed platform and 1R  is the radius of its circumcircle. The moving platform is denoted by regular 

triangle b1b2b3. 2R  is the radius of its circumcircle. These two platforms are connected by three links, 

which are 111 bCB , 222 bCB  and 333 bCB  respectively. Please note that ( 1,2,3)iB i =  are the centers 

of the Hookes joints, ( 1, 2,3)ib i =  are the centers of the spherical joints, ( 1,2,3)iC i =  are the centers 

of the Prismatic joints. The fourth link, 1 4 2AC A , connects the center of the fixed platform ( 1A ) and 

moving platform ( 2A ), where 1A  is Hooke joint and 4C  is a prismatic joint. 

                                          
Fig. 1. The structure of PRM          Fig. 2. The kinematic diagram of PRM 

A global coordinate system A1-XYZ is attached to the center of the fixing platform, and a 

moving coordinate system A2-xyz is attached to the center of the moving platform. The z-axis passes 

through the center of the moving platform and is perpendicular to the equilateral triangle 1 2 3b b b . The 

y-axis and Y-axis pass through the center of moving platform and fixing platform, respectively, and 

are along the perpendicular lines of equilateral triangles. The initial distance between the moving 

platform and fixed platform is denoted by H . The movement of moving platform can be described by 

rotation angleα , β  along X and Y axis, and extended along Z axis. 

Coordinate Transformation Equations. In the moving coordinate system, the coordinates of each 

hinge point ib  can be described by rotation around X axis with angleα , and around Y axis with angle 

β , and displacement Z∆  in the Z direction. The coordinate transformation equations from the 

moving coordinates to the global coordinates are given by:  
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The Jacobian matrix can then be derived from coordinate transformation equation. 

Jacobian matrix. The inverse kinematics equation can be used to solve the elongation lengths of the 

links when the locations of points are known. That is 
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The Jacobian matrix which reflects the relationship between the speed of elongation of links and 

the velocity of center point of moving platform is defined as: 
-1

p l lv = Jv = T v   (3) 

where 
p

v is the velocity of center point in moving platform, 
l

v  is the speed of elongation of legs, J  

is Jacobian matrix, T  is inverse Jacobian matrix.  
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The kinematical performance indices 

In this research, we aim to optimize the manipulator’s geometry to obtain high flexibility and large 

workspace. This section introduces several kinematical performance indices for the evaluation of 

manipulator’s working property.  

Parameter Design Space (PDS). The parameter design space is a useful concept to normalize 

geometry parameters introduced in [8]. There are three structure parameters 1R , 2R  and H in the 

3-TPS/TP parallel manipulator, which are denoted as ( 1,2,3)iL i = . As stated in [8], the parameter D  

is defined as the sum of all characteristic parameters. Then, the non-dimensional parameters 

1 2( , , )il r r h  can be obtained by the following equation: 

/i il L D=   (4) 

For the manipulator studied here, all the three parameters il  can be considered as 

non-dimensional parameters. We have  

1 2 3l l l 1+ + = , 
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< <
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<
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Global Conditioning Index (GCI). The Global Conditioning Index (GCI) is defined as in [8]: 

w

w

dw

dw

µ
η = ∫

∫
 (6) 

where W is the workspace, µ is the local conditioning index (LCI) defined as the reciprocal of the 

condition number of the Jacobian matrix. 

1/ J J 1−µ = ⋅  (7) 

A larger µ  value means better dexterity. Thus the minimum LCI is usually an indicator of 

singularity occurrence. However, the value of LCI will vary with end-effecter locations and postures. 

The Global Conditioning Index (GCI) is proposed to provide a global assessment of the adverse 

effect of singularity. The GCI is the average of LCI over the whole workspace. The value of GCI only 

changes with different structural parameters. A larger η  usually indicates better kinematical 

performance in the entire workspace. GCI should be calculated only in the good-condition workspace 

(GCW), where the LCI values over the workspace are greater than or equal to the minimum LCI. 

The purpose of our optimization is to find geometry parameters which will bring a large work space 

with good condition. Therefore, our optimization objectives are to maximize GCI and GCW 

simultaneously. 

The multi-objective optimization by RP-PSO approach 

Formulation of the optimization problem. The aim of optimal kinematic design is to solve the 

multi-objective, non-linear optimization problem by RP-PSO approach, by way of selecting 

geometric design variables for the 3-TPS/TP PRM to provide an acceptable compromise between 

manipulability and workspace. The optimization is carried out in PDS with unified parameter. The 

goal is to maximize GCI and GCW simultaneously, that is, 

max ( ), n

P
F X X R

∈Φ
∈   (8) 

where { }1 2,X l l=  is a 2-dimensional vector, and the parameter 1l  and 2l  is normalized geometry 

parameters in the PDS. φ  defines a feasible set of P  values. { }1 2,F f f=  is a vector with 2 objective 

components to be maximized. In this work, { }1f η= , { }2f W= . Here, η  refers to GCI in (6), W is 

the volume of GCW solved by integration. 
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Ranked Pareto Particle Swarm Optimization. The Ranked Pareto Particle Swarm Optimization 

(RP-PSO) follows the basic idea of PSO but is capable of solving multi-objective optimization 

problems efficiently [14]. In the RP-PSO, potential solutions as particles are initiated randomly in the 

search space; these particles are then evaluated for their qualities with regard to all objectives. Those 

particles with highly-ranked qualities have preferences to enter the set of Global Best vectors, which 

stores many currently best solutions found by particles. Thus, particles in RP-PSO will search 

towards many possible directions and the diversity among solutions is well preserved. Ideally, a set of 

optimal solutions will be found when the termination criterion is met. The process using RP-PSO for 

PRM geometry optimization is detailed below. 

Step 1: Initialize particles. At the beginning of iterations, particles are initialized randomly in 

the search space, which are denoted by 1 2( , ), 1, 2, ,iX l l i P= … , where P  is the number of particles. 

Step 2: Calculate Raw Fitness Value (RFV) of each function for particles. 

, ( ), ,j i j iRFV f X j 1 2= =  (9) 

where i is the particle number, 1( )if X  is the value of GCI denoted by η, 2 ( )if X  is the volume of 

GCW denoted by W . Then we get a raw fitness value matrix (RFVM), which is a 2 P×  array of raw 

fitness values of this generation. 

Step 3: Transform RFVM to Modified Fitness Value (MFV) by comparing the RFV of each 

particle with those of other particles. The RFV of each particle is compared with RFV of all other 

particles. We define that particle 1i  is said to dominate particle 2i  at objective j  if 

, , , ,j i1 j i2RFV RFV j 1 2> =  (10) 

The MFV is defined to be the number of particles dominated by this particle at single objective. 

The larger RFV is, the greater the number of MFV is. MFV shows the qualities of particles regarding 

objective if , i.e., particles with higher MFV are more desirable than those particles with lower MFV.  

Step 4: Particles are ranked according to their qualities with regard to all objectives. The sum of 

all MFVs is called to be a global modified fitness vector (GMFV), which is a P -dimensional vector: 

,

j

j 1 2

GMFV MFVV
=

= ∑   (11) 

The GMFV can be treated as a benchmark of particle quality, in which particle quality with 

regard to all objectives are taken into account. Particles with higher GMFVs have higher aggregate 

qualities than those with lower GMFVs in general.  

Step 5: Particle Rank Value (PRV) is rounded to integers Particle Copy Number (PCN), and 

arranged in descending order according to PCN. Here, Global Best in RP-PSO is a P -dimensional 

vector which stores P  best locations found by all particles. To do this, we first set a particle rank 

value, denoted by PRV, for each particle. The PRV of thi  particle is defined by 

,...,

, , ,...,i
i

j

j 1 P

GMFV
PRV P i 1 2 P

GMFV
−

= × =
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  (12) 

The iPRV  is then rounded to an integer denoted by Particle Copy Number (PCN), which 

determines how many copies of this particle enter the Global Best ( bestG ) of this generation: 

( ), , ,...,i iPCN Round PRV i 1 2 P= =  (13) 
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To ensure that there are enough candidates for bestG , this function rounds to the nearest integer 

towards infinity. The particles which hold higher PRVs have the priority to enter the bestG  vector. 

This process continues until the bestG  vector is filled up. Particles with lower PRVs, not contributing 

to solution improvements, will not enter the bestG  if it has been filled by copies of particles with 

higher PRVs and redundant particles will be abandoned. 

Step 6: The best histories of particles are stored in a P -dimensional vector, denoted by bestP . 

Step 7: Update to create the new particle locations. Each particle updates its position according 

to the following equations. 

() ( ) () ( )new old 1 1 best old 2 2 best oldV v c rand P X c rand G X= ε× + × × − + × × −  (14) 

new old newX X V= +  

where ε , 1c  and 2c  are weighting factors. In RP-PSO, bestG  is a P -dimensional vector which stores 

best P  positions found by particles. As a consequence, particles in RP-PSO will search towards 

many possible directions. In this way, the diversity among solutions is well preserved. 

Step 8: The optimization process stops when the termination criteria are met, e.g. 50 iterations. 

Numerical example 

This section presents an example using RP-PSO approach for geometry optimization of parallel robot 

manipulator. The range of rotation angles including α and β are set to be [-20˚, 20˚]. Suppose that the 

desired task workspace of the robot is 0.125 m
3
, the maximum range of movement along z in the 

passive chain is: 0 0.3Z m< ∆ < . The optimization process is described in detail as below: 

The structure parameters to be optimized are 1R , 2R  and H . Let 1 1R L= , 2 2R L= , 3H L= . 

Using (4) and (5), we set up a parameter design space consisting of 1l  and 2l . In this example, the 

particle number is set to 300P = . The RP-PSO parameters ε is a fraction with [  . ]0 0 5ε∈ , 1 2c = , 

2 2c = . The iteration reaches a stable state at 50G = . 

The optimization results are shown in Fig. 3, in which the Pareto front is denoted by red stars. 

The blue dots show the positions of other particles at the end of iteration. The Pareto front consists of 

thirty nine particles. In Fig. 3, point A is the optimization result using the approach in our previous 

research [8]. It is clear that all particles on the Pareto front are Pareto Optimal and not dominated by 

any other solutions (including A) in the search space. For example, points B and C are particles on the 

Pareto front. The values of WSV and GCI of points A, B and C are listed in Table 1. 

The WSV and GCI of A are 0.065 and 0.0807, respectively. The effectiveness of the proposed 

optimization method is explicitly noticeable from significant increases in both WSV and GCI. The 

WSV of point B is increase from 0.065 of point A to 0.0673; the GCI is increased from 0.0807 to 

0.0877. For point C, the WSV and GCI are increased to 0.0988 and 0.0815, respectively. 

Please note that all points on the Pareto front will fulfill our requirements. In this paper, we 

calculate the structure dimensions from the results of Point B.  Starting from practical requirements, 

we choose 0.5H m= . Then, the normalization factor 3/ 1.278D H l= = , then, 1 1 0.395R l D m= = , 

2 2 0.382R l D m= = . The volume of the optimized workspace is 0.1677m
3
, which is large than the 

desired task workspace (0.125m
3
). 

Table 1 Optimization results 
Particle L1 L2 WSV GCI 

A 0.3955 0.2227 0.065 0.0807 

B 0.3093 0.2994 0.0673 0.0877 

C 0.2471 0.2443 0.0988 0.0815 
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Fig. 3. Optimization results and Pareto front 

Conclusion 

In this paper, a new geometry optimization methodology is presented for kinematic design of the 

parallel manipulator. The optimization objectives are set to be maximizing the manipulability and 

workspace simultaneously. The RP-PSO approach is adopted to find the optimization parameters in 

normalized parameter space. The effectiveness of the methodology is verified by numerical studies 

on a 3-TPS/TP parallel manipulator. 
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