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ABSTRACT 

 This paper introduces an approach for obtaining the numerical solution of the linear and nonlinear Volterra-Fredholm 

integro-differential equations based on quintic B-spline functions.The solution is collocated by quintic B-spline and then the 

integrand is approximated by 5-points Gauss-Tur´an quadrature formula with respect to the Legendre weight function.The main 

characteristic of this approach is that it reduces linear and nonlinear Volterra -Fredholm integro-differential equations to a system 

of algebraic equations, which greatly simplifying the problem. The error analysis of proposed numerical method is studied 

theoretically. Numerical examples illustrate the validity and applicability of the proposed method. 
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 Consider the nonlinear Volterra-Fredholm integro-differential equation of the form 

� p�(t)�
��	 y(�)(t) = g(t) + � k��t, x, y(x)�dx + � k��t, x, y(x)�dx ,�

� 1 ≤ m ≤ 4, t ∈ �a, b", (1)#
�  

with the boundary conditions, 

� $α%.�y(�)(a) + β%,�y(�)(b)' = γ% ,                         0 ≤ i ≤ m − 1,�+�
��	                                      (2) 

 

 where α%.�, β%,� and γ% are given real constants. 
The given kernels k�, k�are continuous on [a, b] and 
satisfie a uniform Lipschitz, and g(t) and p�(t) are the 
known functions and y is unknown function. The 

boundary value problems in terms of integro-differential 

equations have many practical applications. A physical 

event can be modelled by the differential equation, an 

integral equation or an integro-differential equation or a 

system of these equations. Some of the phenomena in 

physics, electronics, biology, and other applied sciences 

lead to nonlinear Volterra- Fredholm integro-differential 

equations. Of course, these equations can also appear 

when transforming a differential equation into an integral 

equation [1-7]. 

 In general, nonlinear Volterra-Fredholm integro-

differential equations do not always have solutions which 

we can obtain using analytical methods. In fact, many of 

real physical phenomena encountered are almost 

impossible to solve by this technique. Due to this, some 

authors have proposed numerical methods to approximate 

the solutions of nonlinear Fredholm-Volterra integro-

differential equations. To mention a few, in [8] the 

authors have discussed the Taylor polynomial method for 

solving integro-differential equations (1).The triangular 

functions method has been applied to solve the same 

equations in [9].Furthermore, 

 The operational matrix with block-pulse 

functions method is carried out in [10] for the 

aforementioned integro-differential equations. The Hybrid 

Legendre polynomials and Block- Pulse functions 

approach for solving integro-differential equations (1) are 

proposed in [11]. Yalcinbas in [12] developed the Taylor 

polynomial solutions for the nonlinear Volterra-Fredholm 

integral equations and in [13] considered the high-order 

linear Volterra-Fredholm integro-differential equations. 

The numerical solvability of Fredholm and Volterra 

integro-differential equations and other related equations 

can be found in [14-28].Using a global approximation to 

the solution of Fredholm and Volterra integral equation of 
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the second kind is constructed by means of the spline 

quadrature in [32-37]. 

 In this paper we will develop a collocation 

method based on quintic B-spline to approximate the 

unknown function in equation (1) then the 5-points 

Gauss-Tur´an quadrature formula with respect to the 

Legendre weight function is used to approximate the 

nonlinear Volterra-Fredholm integro-differential 

equations of second kind. 

 The organization of the paper is as follows. In 

Section 2, we describe the basic formulation of the quintic 

B-spline collocation method then the Gauss-Tur´an 

quadrature formula is discussed in Section 3.Section 4 

devoted to the solution of Eq. (1) by using collocation 

method for Volterra-Fredholm integro-differential 

equation. In section 5, description of new approaches for 

the error analysis of the schemes is given. Finally 

numerical examples are given in section 6 to illustrate the 

efficiency of the presented method. 

Quintic B-spline 

 We introduce the quintic B-spline space and 

basis functions to construct an interpolation s to be used 

in the formulation of the quintic B-spline collocation 

method. Let  π: {a = t	 < t� < ⋯ < 12 = b}, be a 

uniform partition of the interval �a, b"  with step size h = �+�2   .  The quintic spline space is denoted by 
S6(π) = 7s ∈ C:�a, b"; s<�t%, t%=�" ∈ P6          ,           i = 0,1, . . , N@A, 

where P6 is the class of quintic polynomials. The construction of the quintic B-spline interpolate s to the analytical solution y 
for (1) can be performed with the help of the ten additional knots such that 

t+6 < 1+: < 1+B < t+� < 1+� and  t2=� < 12=� < 12=B < 12=: < 12=6 . 
Following �33" we can define a quintic B-spline s(t) of the form 

s(t) = � c%B%6(t),                                                                                           (3)2=�
%�+�  

where 

B%(t) = 1120h6

GH
HI
HH
J(t − t%+B)6                                                                                                                                                    , t ∈ �t%+B, t%+�"(t − t%+B)6 − 6(t − t%+�)6                                                                                                                    , t ∈ �t%+�, t%+�"    (t − t%+B)6 − 6(t − t%+�)6 + 15(t − t%+�)6                                                                                             , t ∈ �t%+�, t%" (t − t%+B)6 − 6(t − t%+�)6 + 15(t − t%+�)6 − 20(t − t%)6                                                                  , t ∈ �t%, t%=�" (t − t%+B)6 − 6(t − t%+�)6 + 15(t − t%+�)6 − 20(t − t%)6  + 15(t − t%=�)6                               , t ∈ �t%=�, t%=�"(t − t%+B)6 − 6(t − t%+�)6 + 15(t − t%+�)6 − 20(t − t%)6  + 15(t − t%=�)6  − 6(t − t%=�)6  , t ∈ �t%=�, t%=B"0                                                                                                                                                                       ,    otherwise,

@ 

Satisfying the following interpolator conditions: 

s(t%) = y(t%) ,               0 ≤ i ≤ N, 
and the end conditions 

(i)sQ(t	) = yQ(t	) , sQ(t2) = yQ(t2),       j = 1,2, 
or 

(ii)DQs(t	) = DQs(t2) ,       j = 1,2,3,4,                                                         (4) 
or 

(iii)sQ(t	) = 0   , sQ(t2) = 0 ,             j = 3,4 . 
On quadrature formulae of Gauss–Tura´n 

Let P� be the set of all algebraic polynomials of degree at most m. The Gauss-Tur´an quadrature formula in [29,31] is 
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� f(x)dλ(x)=� � A%,νf (%)V
ν��

�W
%�	

�
� (τυ) + RV,�W(f),                       (5) 

where n ∈ N, s ∈ N	 and dλ(x) is a nonnegative measure on the interval (a, b) which can be the real axis R, with compact or 
infinite support for which all moments: 

µY = � xYdλ(x)�
�    ,             k = 0,1, … 

exist and are finite , moreover  µ	 > 0, ]^_ A%,ν = ` lν,%(x)dλ(x),   (i = 0, … ,2s, ν = 1, … , n) and  lν,%(x)��  are the fundamental 

polynomials of Hermite interpolation. The nodes τυ(υ = 1, … , n) in (5) are the zeros of polynomial πV(x) = xV +aV+�xV+� + ⋯ + a�x + a	 which minimizes the integral 
F(a	, a�, … , aV+�) = � �πV(x)"�W=�dλ(x)     ,               (6)�

�  

then the formula (5) is exact for all polynomials of degree at most 2(s + 1)n − 1, that is, RV,�W( f ) = 0, ∀f ∈  P�(W=�)V+�. The 
condition (6) is equivalent with the following conditions: 

� �πV(x)"�W=�xYdλ(x) = 0     ,                               (k = 0, … , n − 1)�
�  

let πVW (x) denoted by PV,W and dλ(x) = w(x) on �a, b". In this article, we use 5-points Gauss–Tura´n quadrature formula with 
respect to the weight function Legendre w(x) = 1 and �−1, 1" with n = 5, s = 3, therefore we can approximate integral as 

� f(x)d(x)=� � A%,νf (%)6
ν��

d
%�	

�
+� (τυ) + R6,d(f)  ,                                     (7) 

� �π6(x)"gxYd(x) = 0     ,                         (k = 0,1,2,3,4) ,                    (8)�
+�  

where π6(x) = x6 + a:x: + aBxB + a�x� + a�x + a	,  by solving system (8) we can obtain a% (i = 0, 1, 2, 3, 4) coefficients, 
on the other hand we have 

πi=�(x) = (x − αi)πi(x) − βiπi+�(x)  ,           ν = 0,1,2,3,4, 
π+�(x) = 0 ,         π	(x) = 1 , 

Where 

αi = αi(3,5) = (xπi, πi)(πi, πi) = ` xπi�(x)πV�Wdx�+�` πi�(x)πV�Wdx�+� = ` xπi�(x)π6ddx�+�` πi�(x)π6ddx�+�  , 
βi = βi(3,5) = (mn,mn)(mnop,mnop) = ` mnq(r)msqturpop` mnopq (r)msqturpop = ` mnq(r)mvwurpop` mnopq (r)mvwurpop  , 

β	 = ` π6ddx�+� , 

so that we can obtain the zeros of  polynomial π6B,6(x) of eigenvalue Jacobian matrix 
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J6 =
yz
zz
zz
{ α	 |β� 0 0 0|β� α� |β� 0 00 |β� α� |βB 00 0 |βB αB |β:0 0 0 |β: α: }~

~~
~~
�
 , 

and the values of  τ�, αi, βi which are tabulated in Table 1. 
Table  1: Determined values of   ��, ��, �� �                          ��                                                      �� ��  

0                  -0.938106999475975 - 0.204189952                3.83357763e(-7)                          

1                  -0.573307914524401 -0.0013538804 0.2697108295          

2                  -2.00573118159208e(-16) 

3                    0.573307914524401                  

4                    0.938106999475975 

0.00105893788 

0.2173728849 

-0.4744354850 

0.3046524435 

0.2789709710 

0.2554389765               

Note: -2.00573118159208e(-16)= -2.00573118159208× ��+��   

 

Finally to determine A%,i , we use the following polynomial for approximation of function f(x) 
f Y,�(x) = (x − τi)Y Ωi(x) = (x − τ�)Y �(x − τ%)�W=�

%��  ,                (9) 
where 0 ≤ k ≤ 2s, 1 ≤ ν ≤ n and 

Ωi(x) = ( πi(x)x − τi)�W=� = �(x − τ%)�W=�        ,            ν = 1, … , n%�� , 
since (5) is exact for all polynomials of degree at most 2(s + 1)n − 1 then accuracy degree f Y,�  is degf Y,� = (n − 1)(2s + 1) + k ≤ (2s + 1)n − 1. 
Then (5) is exact for polynomials (9), that is, R� fY,i� = 0, (0 ≤ k ≤ 2s, 1 ≤ ν ≤ n) then by replacing f Y,� (x) instead of f(x) 
in (5) we have 

� � A%,QfY,i(%)(τQ) = � fY,�(x)dλx�
� = μY,i    ,                                                  (10)V

Q��
�W

%�	  

therefore for each ν = j, we get the  linear system (2s + 1) × (2s + 1), where A%,i are unknowns i = 0, … ,2s, υ = 1, … , n. 
The approximate solution of nonlinear Volterra- Fredholm integro-differential equation 

In the given nonlinear Volterra- Fredholm integro-differential Eq. (1), we can approximate the unknown function by quintic 

B-spline (3), then we obtain: 

� p�(t)�
��	 s(�)(t) = g(t) + � k��t, x, s(x)�dx + � k��t, x, s(x)�dx ,�

� 1 ≤ m ≤ 4, t ∈ �a, b", (11)#
�  

with the boundary conditions, 
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� �α%.�s�(a) + β%,�s�(b)� = γ% ,                           0 ≤ i ≤ m − 1.�+�
��	  

We now collocate Eq. (11) at collocation points tQ = a + jh, h = �+�2  , j = 0,1, … , N , and we obtain 
� p�(tQ)�
��	 s(�)�tQ� = g�tQ� + � k� �tQ, x, s(x)� dx + � k� �tQ, x, s(x)� dx ,�

� 1 ≤ m ≤ 4, j = 1, … , N . (12)#�
�  

By partitioning the interval �a, b" to N equal subintervals we obtain 
� p�(tQ)�
��	 s(�)�tQ� = g�tQ� + � � k� �tQ, x, s(x)� dx + � � k� �tQ, x, s(x)� dx ,  

#��p
#�

2+�
��	  

#��p
#�

Q+�
��	  j = 1, … , N . (13) 

For using the Gauss–Tura´n formula we need to change each subinterval �t�, t�=�" to the interval �−1, 1". Then by the 
following change of variable, we have 

x = 12 �(t�=� − t�)u + (t�=� + t�) ",       dx = t�=� − t�2 du = h2 du , 
and then 

� k�t, x, s(x)�dx = h2 � k �t, 12 �(t�=� − t�)u + (t�=� + t�)�, s �12 �(t�=� − t�)u + (t�=� + t�)��� du.   �
+�     #��p

#�  

To approximate the integral Equation (13), we can use the 5-points Gauss–Tura´n quadrature formula in the case n =5 and s = 3, then we get the following nonlinear system: 
� p�(tQ)�
��	 s(�)�tQ� = g�tQ� + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
Q+�
��	  + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
2+�
��	        , j

= 1, … , N,    (14) 
where ξ�� = ��[�t�=� − t��τi + (t�=� + t�)] and we have the nodes τi and coefficients A ,i of previous section. 
We need four more equations to obtain the unique solution for Equation (14), we impose the end conditions (4). Hence by 

associating equation (14) with (4) we have the following nonlinear system (N + 5) × (N + 5): 

GHH
I
HHJ � p�(tQ)�

��	 s(�)�tQ� = g�tQ� + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d
 �	

6
���

Q+�
��	  + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
2+�
��	  ,    

� �α%.�s(�)(a) + β%,�s(�)(b)� = γ% ,                           0 ≤ i ≤ m − 1,�+�
��	 j = 1, … , N,                                                 (15)         

s(�=�)(t	) = s(�=�)(t2) ,      0 ≤ r ≤ 4 − m.                                                                                                                      
@ 

By solving the above nonlinear system ,we determine the coefficients c% , i = −2, . . . , N + 2 ,by setting c% in (3), we obtain the 
approximate solution for Equation (11). 

Error Analysis 

In this section, we consider the error analysis of the Volterra- Fredholm integro-differential equation of the second kind .To 

obtain the error estimation of our approximation, first we recall the following definitions in [29-31,33]. 

Definition 5.1 The Gauss-Tur´an quadrature formula with multiple nodes, 
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� f(x)dλ(x)=� � A%,if (%)V
i��

�W
%�	

�
� (τ�) + RV,�W(f), 

is exact for all polynomials of degree at most 2(s + 1)n − 1, that is, RV,�W( f ) = 0 ∀ f ∈ P�(W=�)V+�. 
Definition 5.2 The most immediate error analysis for spline approximates S to a given function f de¢ined on an interval �a, b" 
follows from the second integral relations. 

If f ∈ Cd�a, b", then £DQ (f − S)£ ≤ γhd+Q, j = 0, … ,6. Where  ¥f¥∞ = max	¦%¦2 sup#§op¦#¦#§¨©(#) ¨, 
and DQ the j-th derivative. 
Theorem 5.1      The approximate method 

� p�(tQ)�
��	 s(�)�tQ� = g�tQ� + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
Q+�
��	  + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
2+�
��	  ,    

� �α%.�s(�)(a) + β%,�s(�)(b)� = γ% ,                           0 ≤ i ≤ m − 1,�+�
��	 j = 1, … , N,                                                 (16)                                                                                                                               

 

for solution of the Volterra- Fredholm integro-differential Eq .(11) is converge and the error bounded is 

ªeQ(�)ª ≤ hL2<p�Q< � � � ¨A ,i¨¨eQ(�)d
 �	

6
���

Q+�
��	 ¬+ hL∗2<p�Q< � � � ¨A ,i¨¨e���

d
 �	

6
���

2+�
��	 ¬  + 1<p�Q<  � ¨p�Q

�+�
��	 ¨<e���<   . 

Proof :   We know that at   tQ = a + jh, h = #+�2  , j = 0,1, … , N ,the corresponding approximation method for nonlinear 
Volterra- Fredholm integro-differential Eq. (11) is 

� p��tQ��
��	 s(�)�tQ� = g�tQ� + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
Q+�
��	  + h2 � � � A ,ik�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
2+�
��	  , 

j = 1, … , N,         1 ≤ m ≤ 4.                                                                                    (17) 
By discrediting (1) and approximating the integral by the 5-points Gauss–Tura´n rules, we obtain 

� p��tQ��
��	 y(�)�tQ� = g�tQ� + h2 � � � A ,ik�( ) �tQ, ξ��, y�ξ����d

 �	
6

���
Q+�
��	  + h2 � � � A ,ik�( ) �tQ, ξ��, y�ξ����d

 �	
6

���
2+�
��	  , 

j = 1, … , N,         1 ≤ m ≤ 4.                                                                                         (18) 
By subtracting (18) from (17) and using interpolatory conditions of quintic B-spline, we get 

� p��tQ��
��	 �s(�)�tQ� − y(�)�tQ�"

= h2 � � � A ,i�k�( ) �t%, ξ��, s�ξ����d
 �	

6
���

Q+�
��	 − k�( ) �t%, ξ��, y�ξ����" + h2 � � � A ,i�k�( ) �t%, ξ��, s�ξ����d

 �	
6

���
2+�
��	− k�( ) �t%, ξ��, y�ξ����", 

So 
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⟹ <p��tQ�<<s(�)�tQ� − y(�)�tQ�<
≤ h2 � � � ¨A ,i¨¨k�( ) �tQ, ξ��, s�ξ����d

 �	
6

���
Q+�
��	

− k�( ) �tQ, ξ��, y�ξ���� ¬+ h2 � � � ¨A ,i¨¨k�( ) �tQ, ξ��, s�ξ����d
 �	

6
���

2+�
��	 − k�( ) �tQ, ξ��, y�ξ����¬

+ � ¨p��tQ��+�
��	 ¨¨s(�)�tQ� − y(�)�tQ�¨   , j = 1, … , N. 

We suppose that s(�)�tQ� = sQ(�), y(�)�tQ� = yQ(�), j = 1, … , N , m = 1,2,3,4 and kernels  k�( ), k�( ), l = 0, … ,6  satisfy a 
Lipschitz condition in its third argument of the form 

<k�( )(t, ξ, s )– k�( )(t, ξ, y)< ≤ L¨s − y¨, <k�( )(t, ξ, s )– k�( )(t, ξ, y)< ≤ L∗¨s − y¨, 
where L, L∗ is independent of   t, ξ, s and y. We get 

<p�Q< ªsQ(�) − yQ(�)ª ≤ hL2 � � � ¨A ,i¨¨s�� − y��
d

 �	
6

���
Q+�
��	 ¬+ hL∗2 � � � ¨A ,i¨¨s�� – y��

d
 �	

6
���

2+�
��	 ¬ + � ¨p�Q

�+�
��	 ¨ ªsQ(�) − yQ(�)ª   , j

= 1, … , N. 
Since that <p�Q< ≠ 0, then we have 

ªeQ(�)ª ≤ hL2<p�Q< � � � ¨A ,i¨¨e���eQ(�)d
 �	

6
���

Q+�
��	 ¬+ hL∗2<p�Q< � � � ¨A ,i¨¨e���

d
 �	

6
���

2+�
��	 ¬  + 1<p�Q<  � ¨p�Q

�+�
��	 ¨<eQ(�)<   . 

Where eQ(�) = sQ(�) − yQ(�)  , j = 1, … , N, r = 0, … , m. 
When h → 0  then the above first and second term are zero and the third term in the above tends to zero because this term is 
due to interpolating of y(t) by quintic B-spline. We get for a fixed  j, 

ªeQ(�)ª → 0  as h → 0 , m = 0, … ,4. 
Numerical Examples 

In order to test the applicability of the presented method, we consider two examples of the nonlinear Volterra - Fredholm 

integro-differential equations, these examples have been solved with various values of N. The absolute errors in the solution 

for various values of N are tabulated in Tables. The tables verified that our approach is more accurate. Programs are 

preformed by Mathematica for all the examples. 

Example 6.1 Consider the following nonlinear Volterra-Fredholm integro-differential equation with the exact solution y(t) = t�, 
y′(t) + y(t) = − 12 � t#

	 y�(x)dx + 14 � x�
	 yB(x)dx + g(t),          0 ≤ x, t ≤ 1, 

where g(t) = ��	 td + t� + 2t − �B�, with boundary conditions: y(0) = 0. 
This equation has been solved by our method with N = 6, 16, 46, the absolute error at the particular grid points is tabulated in 

table 2 .Table 3 shows, a comparison between the absolute errors of our method together with triangular functions method 

[9], operational matrix with block-pulse functions method [10], and Hybrid Legendre polynomials and block-pulse functions 
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method [11] and reproducing kernel Hilbert space method [38]. As it is evident from the comparison results, it was found that 

our method in comparison with the mentioned methods is better with a view to accuracy and utilization. 

Example 6.2 Cosider the following nonlinear Volterra-Fredholm integro-differential equation with the exact solution y(t) = −1 + t�, 
y′′′(t) + y(t) = � y�(x)#

	 dx + � (t�x + tx�)�
	 y�(x)dx + g(t),          0 ≤ x, t ≤ 1, 

whereg(t) = +�6 t6 + �B tB + 6d t� − ��B�	6 t − 1, with boundary conditions: y(0) = −1, y′(0) = 0, y′′(0) = 2. 
 The approximate solutions are calculated for 

different values of N = 5, 15, 35, the absolute error at the 

particular grid points is tabulated in table 4 . While in 

[39], the adopted method yields no solution for N = 3, 

takes time to give the approximate answer for N = 5, and 

is proper only for N = 4, our method is significant not 

only because it yeilds solutions for any N, but also 

because the approximate solutions it gives are very close 

to exact ones. This table verified that our results are more 

accurate. 

Table 2: The error ||E|| in solution of example 6.1 at particular points 

t                                                  N=6                               N=16                            N=46         

0                                             8.67E − 19                    1.08E – 19                        1.35E − 20 

0.1                                          1.48E – 09                     2.01E – 10                       2.42E − 11 

0.2                                          2.74E − 09                     3.83E – 10                       4.62E − 11 

0.3                                          3.85E – 09                     5.45E – 10                       6.60E − 11 

0.4                                          4.87E − 09                     6.89E – 10                      8.35E − 11 

0.5                                          5.75E – 09                     8.14E – 10                       9.86E − 11 

0.6                                          6.43E – 09                     9.14E − 10                      1.11E − 10 

0.7                                          6.90E − 09                     9.84E – 10                      1.19E − 10 

0.8                                          7.11E – 09                     1.01E – 09                      1.22E − 10 

0.9                                          6.91E – 09                     9.87E − 10                      1.19E − 10 

1                                             6.20E − 09                    8.91E − 10                       1.08E – 10 
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Table 3: Numerical comparison of absolute error for Example 6.1 

t            our method              method in [9]               method in [10]                  method in [11]                     method in [38] 

N = 26                      m = 32                           m = 32                              n = 8,m = 8                         N = 26, n = 5 

0                          0                                   0                               0                                          0                                           0          

0.1                 7.60E – 11               1.66E – 04                    2.18E – 03                       3.10E − 05                           6.14E − 07 

0.2                 1.45E – 10               2.54E − 04                   1.46E − 03                       7.50E – 05                            1.23E − 06 

0.3                 2.06E – 10               2.62E − 04                   1.67E – 03                        1.71E – 04                           1.86E − 06 

0.4                 2.61E – 10               1.91E – 04                    7.24E – 03                        9.40E – 05                           2.52E − 06 

0.5                 3.08E − 10              4.10E – 05                    1.60E – 02                         2.28E – 04                          3.19E − 06 

0.6                 3.46E – 10              2.02E – 04                    1.15E − 02                         5.02E – 04                          3.90E − 06 

0.7                 3.73E − 10              2.83E − 04                    4.51E – 03                         5.83E – 04                          4.65E − 06 

0.8                 3.84E – 10              2.83E – 04                     4.87E – 03                        3.74E − 04                          5.44E − 06 

0.9                 3.74E – 10              2.02E – 04                     1.67E − 02                        4.70E – 05                          6.29E − 06 

1                    3.38E – 10              3.70E – 05                     3.09E – 02                        1.40E − 05                          7.20E − 06 

 

Table 4: The error ||E|| in solution of example 6.2 at particular points 

t                       N = 5                  N = 15                       N = 35 

0                       1.11E – 16          2.21E – 16                    0 

0.1                    3.38E – 13          4.34E – 14                2.28E − 14 

0.2                    1.68E – 12          2.78E – 13                5.62E − 14 

0.3                    1.01E – 12          1.54E – 12                2.59E − 13 

0.4                    2.15E – 11          5.05E – 12                1.09E − 12 

0.5                    7.78E – 11          1.28E − 11                2.53E − 12 

0.6                    1.87E – 10          2.66E – 11                5.14E − 12 

0.7                    3.70E – 10          4.88E – 11                9.42E − 12 

0.8                    6.51E − 10          8.20E – 11               1.55E − 11 

0.9                    1.05E − 09          1.28E − 10                2.42E − 11 

1                       1.59E – 09          1.90E – 10                3.57E − 11 

 

CONCLUSION 

 In the present work, a technique has been 

developed for solving the linear and nonlinear Volterra-

Fredholm integro-differential equations by using the 5-

points Gauss-Turan quadrature formula with respect to 

the Legendre weight function and collocating by quintic 

B-spline. These equations are converted to a system of 

linear or nonlinear algebraic equations in terms of the 

linear combination coefficients appearing in the 

representation of the solution in spline basic 

functions.This method tested on 2 examples .The absolute 

errors in the solutions of these examples show that our 
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approach is more accurate in comparison with the 

methods given in [9,10,11,38,39] and our results verified 

the accurate nature of our method. 
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