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Abstract

There is a strong need for powerful unified statistical methods for discovering underlying

genetic architecture of complex traits with the assistance of omics information. In this

paper, two methods aiming to detect novel association between the human genome and

complex traits using intermediate omics data are developed based on statistical mediation

modeling. We demonstrate theoretically that given proper mediators, the proposed statis-

tical mediation models have better power than genome-wide association studies (GWAS)

to detect associations missed in standard GWAS that ignore the mediators. For each of

the modeling methods in this paper, an empirical example is given, where the associa-

tion between a SNP and BMI missed by standard GWAS can be discovered by mediation

analysis.
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1 Introduction

1.1 Biological background

A general goal of genetic studies in biology is to discover the genetic architectures underly-

ing complex traits such as height, body mass index (BMI), disease endpoints, etc. Such work

is becoming more and more feasible owing to the completion of the human genome project

(Adams et al., 1991) and developments of high-throughput technology. The most popular strat-

egy to detect the associations between genetic variants and a complex trait is genome-wide

association study (GWAS). Generally speaking, GWAS performs a simple regression to test

the association between each genetic variant and the complex trait. Nowadays, the most com-

monly used genetic markers in GWAS are single-nucleotide polymorphisms (SNPs), which

refers to a DNA sequence variation occurring commonly within a population at a single base

pair position, where different sequence alternatives (alleles) exist in normal individuals in some

population (Brookes, 1999). The number of one allele among two alleles at the single base pair

position is called its allelic dosage. The frequency at which the least common allele occurs in

a given population is named minor allele frequency (MAF). Two concepts in genetics will be

mentioned in this thesis: phenotype and genotype. Phenotype is a description of an individual’s

actual physical characteristics or traits. For example, both the value of metabolites and BMI

belong to phenotypes. In contrast, one’s genotype refers to the individual’s complete herita-

ble genetic identity. Most phenotypes are influenced by both genotype and by environmental

factors.

Nevertheless, GWAS has at least two weaknesses that need to be taken care of and improved.

First of all, considering the complicated mechanisms between SNPs and traits, the signal to

noise ratio is small. Thus, GWAS often collects large samples to obtain sufficient power. Sec-

ondly, multiple testing problem is severe in GWAS where a lot of statistical tests are performed

simultaneously. Since the number of tests is the number of independent SNPs considered in

GWAS, which can be hundreds of thousands or even millions, the significance threshold should

be corrected, e.g. using Bonferroni correction, for multiplicity. Given the large sample size re-

quirement and stringent significance threshold, the discovery power of GWAS is usually low in

many cases.
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Our study concerns an extra level of information, i.e. intermediate omics data besides ge-

nomics. Omics data refer to a field of study in biology ending with -omics, such as pro-

teomics and metabolomics, which stand for protein and metabolite spectra generated by high-

throughput biochemical techniques. Such modern omics techniques allow characterization of

functional mechanisms, which can link commonly used genomic data to complex traits. It

is clear that such intermediate phenotypes play an essential role as a natural mediator in the

biology of complex traits, in the chain of "genomics - intermediate omics - complex traits".

Although these high-throughput omics data are widely considered informative, combining

information from multiple levels is rather challenging in statistical analysis (Ritchie et al.,

2015).

In this paper, the trait we take as an example is body mass index (BMI), i.e. the ratio of one’s

weight to his or her height squared, which is of essential clinical relevance globally as a risk

factor for a number of diseases, such as coronary heart disease (Freedman et al., 2001) and

hyperlipidemia (Kawada, 2002). Since BMI is a very good measurement of one’s level of body

fat and also can be measured and calculated easily, clinicians deem it as an efficient screening

tool. To date, using large GWAS meta-analysis, about a hundred independent genetic variants

have been discovered to be associated with BMI, however, unfortunately, they still explain little

of the variation of BMI (Locke et al., 2015b).

1.2 Previous studies of mediation analysis

The concept of mediation refers to the effect of one variable on another that is mediated through

intermediate variables called mediators. Traditionally, mediation analysis has been developed,

discussed and commonly used in the social sciences. Baron and Kenny (1986) firstly clari-

fied the distinction between moderator and mediator, and introduced the standard regression

approach to mediation. Later, in the causal inference literature, counterfactual notions were

presented in Robins and Greenland (1992), so that the mediation effects can be generally de-

fined without any specific statistical model. VanderWeele and Vansteelandt (2009) showed that

the direct and indirect effects described in the counterfactual framework can be estimated using

regression analysis under appropriate identification conditions. To deal with nonlinear and non-

parametric models, Imai et al. (2010) developed an estimation method based on simulations,
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which can also be used to achieve a set of sensitivity analyses mentioned in their study.

1.3 The aim of the study

Modern omics techniques are able to simultaneously measure many intermediate phenotypes

between the genome and complex traits such as BMI. However, no clear and powerful method

has been developed, using such omic information, to enhance our ability to identify more

functional loci (i.e. genomic regions harboring the causal genes) and explain the underlying

mechanisms of complex traits. Noticing the the large sample size requirement and stringent

significance threshold of GWAS, the objective of this study is to develop more powerful meth-

ods based on mediation modeling for identifying associations between genetic variants and

complex traits with the assistance of omic phenotypes.

The outline of the paper is as follows. Section 2 presents the datasets used in this study briefly.

Section 3 demonstrates the methodological backgrounds of the mediation models and intro-

duces two methods aiming to detect associations between SNPs and BMI potentially missed by

standard GWAS. Section 4 contains empirical applications of the methods and discusses their

pros and cons. Section 5 concludes.

2 Material

In this research, two datasets are analyzed. The first data ,which are used as discovery dataset,

include 1,669 unrelated individuals from TWINGENE, a sub-study within the Swedish Twin

Registry . The concentration of 157 metabolites were measured and annotated from circulat-

ing serum samples using ultra-performance liquid chromatography coupled with tandem mass

spectrometry (UPLC-MS/MS). All the subjects were also genotyped using Illumina OmniEx-

press microarray, where 638,331 SNPs are available in our data.

In an independent cohort, PIVUS from Uppsala, Sweden, the same UPLC-MS/MS approach

was used to profile the metabolome in 916 unrelated 70-years-old individuals, who were also

genotyped using the Illumina OmniExpress array and imputed to the same reference panel
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(Lind et al., 2005). This PIVUS dataset serves as a replication data in analysis below. For both

TWINGENE and PIVUS, measurements of the BMI and all metabolites are inverse-Gaussian

transformed to be standard normally distributed.

Besides these two datasets, the GWAS results of a very recent European-ancestry BMI meta-

analysis by the GIANT consortium (Locke et al., 2015b) are referred to. The study examined

associations between BMI and about 2.8 million SNPs in up to 339,224 individuals. Regression

results including the effect size, standard error, p-value and allele frequency of each tested SNP

are available.

In this thesis, both BMI and metabolites are continuous variables. The value of a SNP repre-

sents its allelic dosage. Let f denote the MAF of a SNP. We then assume the allelic dosage

follows a binomial distribution B(2, f), known as the Hardy-Weinberg equilibrium (HWE)

(Lynch et al., 1998; Falconer et al., 1996). The genetic effect is assumed to be additive, which

means the genetic effect of 1 versus 0 is half as that of 2 versus 0. In this way, we are able to

use all the observations for estimating a single parameter, i.e. the additive genetic effect, which

leads to the best power.

3 Methodology

3.1 Concepts of mediation models

In statistics, a mediating variable refers to the intermediate variable relating an independent

variable to a dependent variable in a causal sequence (MacKinnon, 2008). More specifically, if

X causes M and M causes Y in a causal chain relating X and Y, then the relationship is called

mediation and M is called a mediator. In other words, mediating relationships occur when a

variable transmits the effect of an independent variable on a dependent variable.

In our case, we are interested in the model shown in Figure 1. Assume a metabolite lies on a

mediation pathway between a SNP and BMI, then the total genetic effect (TGE) is dissected to

two parts: the mediated genetic effect (MGE) mediated by the metabolite and the direct genetic

effect (DGE), which refers to the sum of all effects on other pathways between the SNP and
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SNP Metabolite BMI

MGE

DGE

Figure 1: Example of a mediation model where a SNP can affect BMI mediated by a metabolite

BMI without the metabolite. Apart from TGE (= MGE + DGE), which GWAS focuses on,

MGE is also informative for discovering mechanisms underlying SNPs and BMI. If multiple

mediation pathways exist in parallel between the SNP and BMI, the signs of these parallel

mediation effects may differ, so that these genetic effects cancel out each other, which may

leads to a TGE close to zero. In this case, the existence of MGE indicates the association

between a SNP and BMI but TGE does not. Hence, we are concerned with MGE instead of

TGE and build a statistical mediation model in the form of Figure 1 to estimate MGE of the

SNP on BMI mediated by the metabolite.

Although we assume the change in metabolite causes the change in BMI in the model above,

the causality between a metabolite and BMI is always ambiguous in biology. Statistical tools

such as mendelian randomization lack power when sample size is not large enough and the

genetic effect size is tiny (Lawlor et al., 2008). As in most cases, metabolites are measured in

a relatively small population, the statistical tools usually cannot help to determine the causality

between metabolites and BMI. Therefore, we also come up with an alternative method using

mediation model to select candidate SNPs instead of estimating their mediation effects.

3.2 Statistical mediation modeling

Since the number of SNPs in the datasets we deal with is huge, considering the computational

time, for discovery purposes we propose a simple mediation modeling using linear regressions.

The interaction term between the SNP and the metabolite is not included in the model due to

lack of power to test it. Assume a complex trait y such as BMI is associated with a metabolite

m and the allelic dosage of a SNP s,

y = 1α1 + mβ1 + sβ2 + ε1 (1)
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and the metabolite is associated with the same SNP,

m = 1α0 + sβ0 + ε0 (2)

where ε0 and ε1 are i.i.d. normally distributed residuals, with variance σ2
0 and σ2

1 , respectively.

Both ε0 and ε1 are independent of s. When covariates exist, we can replace the original y by

the residuals of regression of y on the covariates, similar for m. Therefore covariates such as

age and sex are omitted in the equations for simplicity. The MGE in this case, which refers

to the effect of the SNP on BMI mediated through the metabolite, is therefore β0β1. β2 is the

DGE. The TGE = MGE + DGE = β0β1 + β2.

3.2.1 Test the omic-mediation effect

Despite that t-test should be used to test the significance of a regression coefficient, since t-

statistic has an asymptotic standard normal distribution, we can use χ2 test with one degree

of freedom as a good substitute for t-test when sample size is large. Let β̂m = β̂0β̂1 be the

estimate of MGE from the mediation model above. Although both β̂0 and β̂1 follow normal

distribution, the distribution of the product β̂m is symmetric but not normal under the null

hypothesis β0β1 = 0. However, since the distribution of the product of two normal variables

has shorter tail, meaning a smaller proportion of the population rests within its tail than would

be under a normal distribution, the type I error of a test based on the product distribution will

be less than a test based on normal distribution given the same rejection region. Therefore if the

null hypothesis βm = 0 is rejected using χ2 test with one degree of freedom, it must be rejected

using a test based on the product distribution. Since a conservative test does not generate more

false positives, it is acceptable for a discovery step. So we can still use the χ2 test, and the

comparison of power can be presented clearly.

The variance of β̂m can be obtained using β̂0, β̂1 and the corresponding standard errors. Ac-

cording to the delta method and noticing the independence between β̂0 and β̂1 (Bollen, 1987),

we have

Var(β̂m) = Var(β̂0β̂1) ≈ β̂2
0Var(β̂1) + β̂2

1Var(β̂0) (3)

So the χ2 statistic with one degree of freedom for β̂m is

C =
β̂2
m

Var(β̂m)
=

β̂2
0 β̂

2
1

β2
0Var(β̂1) + β2

1Var(β̂0)
=

C0C1

C0 + C1
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where C0 and C1 are the chi-square statistics for β̂0 and β̂1, respectively. As the chi-square

values are always positive, we have

C =
C0C1

C0 + C1

=
C0

C0/C1 + 1
< C0 (4)

and similarly C < C1. Therefore, the significance of β̂m is conditioned on that of both β̂0

and β̂1, which means both the SNP-metabolite and metabolite-BMI association have to be

significant.

3.2.2 The power of the mediation analysis

Case 1: No direct genetic effect First, let us assume that β2 = 0 and compare the power of

the mediation test and that of genome-wide association analysis. Given the underlying media-

tion model (1) and (2), in an ordinary GWA analysis, TGE (= MGE when DGE = 0) is tested

via the regression model

y = 1(α0β1 + α1) + sβ0β1 + (ε0β1 + ε1) (5)

Such a linear regression yields β̂GWA that is also an unbiased estimate of βm = β0β1, but its

standard error is considerably bigger than that of β̂m. The allelic dosage s of a SNP with MAF

f has a mean of 2f and variance 2f(1− f). Asymptotically, as the number of individuals n is

sufficiently large, we have

Var(β̂GWA) =
Var(ε0β1 + ε1)∑n

i=1(si − s̄)2
≈ σ2

0β
2
1 + σ2

1

nVar(si)
=

σ2
0β

2
1

2nf(1− f)
+

σ2
1

2nf(1− f)
. (6)

Similarly, since Var(mi) = β2
0Var(si) + Var(ε0) = 2β2

0f(1− f) + σ2
0 ,

Var(β̂0) ≈
σ2
0

nVar(si)
=

σ2
0

2nf(1− f)

and

Var(β̂1) ≈
σ2
1

nVar(mi)
=

σ2
1

n(2β2
0f(1− f) + σ2

0)
.

Therefore according to (3),

Var(β̂m) ≈ β2
1Var(β̂0) + β2

0Var(β̂1)

=
σ2
0β

2
1

2nf(1− f)
+

σ2
1β

2
0

n(2β2
0f(1− f) + σ2

0)

=
σ2
0β

2
1

2nf(1− f)
+

σ2
1

2nf(1− f) + nσ2
0/β

2
0

. (7)
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Comparing (6) and (7), it is obvious that Var(β̂GWA) > Var(β̂m) due to nσ2
0/β

2
0 > 0. So that the

ordinary GWA has less power than mediation model. The power boost via the mediator can be

expressed as the proportion of χ2 statistic increased compared to ordinary GWA, i.e.

Var(β̂GWA)− Var(β̂m)

Var(β̂m)
=

σ2
0σ

2
1

2f(1− f)β2
0(σ2

1 + σ2
0β

2
1) + σ4

0β
2
1

(8)

From (8), the reduction of the standard error of β̂ by the mediation analysis increases when f

decreases, thus the power boost is larger for rare variants. Additionally, the smaller β0 and β1

are, the larger the power boost is.

In particular, if the complex trait and the metabolite are both transformed to be standard nor-

mally distributed, we have 2f(1− f)β2
0 + σ2

0 = 1 and β2
1 + σ2

1 = 1. Consequently, (8) can be

simplified as
Var(β̂GWA)− Var(β̂m)

Var(β̂m)
=

1
1
σ2
0

+ 1
σ2
1
− 2

where 0 < σ2
0,σ2

1 < 1. In this case, our conclusions above still hold.

Case 2: Direct genetic effect exists To compare the discovery power of standard GWA anal-

ysis and that of our omic-mediation analysis (OMA) given β2 6= 0, simulations are drawn. The

simulation results are summarized in Figure 2. A causal SNP with MAF of 0.30 is simulated

for a population with 1,000 individuals. The SNP has a narrow sense heritability of 1% (i.e. the

proportion of variance explained is 1%) on the omic mediator, and the mediator explains 5%

of the variance of the complex trait. The simulated MGE is set to be 1. The bottom horizontal

axis represents the simulated DGE on the trait. The top horizontal axis indicates the corre-

sponding total narrow sense heritability (h2) of the SNP on the trait. The vertical line marks the

scenario that the TGE is zero, i.e. DGE = - MGE. Each point was calculated based on 10,000

simulations.

As shown in Figure 2, the GWA analysis may have better power if and only if DGE is suffi-

ciently large compared to MGE. However, the DGE can be regarded as the sum of the mediated

effects of the same SNP in all the other pathways except the one through the analyzed media-

tor; as these effects may have different directions and consequently cancel out each other, it is

unlikely that the DGE can be large enough to generate a large TGE. In fact, we already learned

from large GWAS that most functional loci have rather small TGE thus are very challenging to
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identify using standard GWAS. According to the discussion above, we have shown, analytically

and empirically, it is reasonable to expect that OMA is more powerful than the standard GWA

when a good or complete mediator is available.

3.2.3 Procedure of mediation analysis

In our analysis, not all the combinations of SNPs and metabolites should be modeled and tested

using the mediation analysis. Although more powerful than the direct test between each SNP

and BMI, as we have shown in (4), the significance of the MGE has to be conditioned on the

significance of both the SNP-metabolite and metabolite-BMI associations. Therefore, there

is a requirement of the mediator to be associated with both the SNP and BMI. The steps we

performed in our study are:

Step 1 Regress BMI on each metabolites, select the top five BMI-associated metabolites.

Step 2 For each of the selected metabolites, perform GWAS to find the SNP most correlated

to the metabolite.

Step 3 Build the mediation model and estimate MGE, its variance and p-value by the method

mentioned above for each of the five SNP - metabolite combinations.

It is worth noting that the MGE in our model depends on the association between SNP and

metabolite and that between metabolite and BMI. Since GWAS is performed for each of the

five selected metabolites, we actually run 5 × 638, 331 tests for associations between SNPs

and metabolites. For the associations between metabolites and BMI, 157 tests are performed.

Hence the total number of tests is 5 × 638, 331 + 157 ≈ 5 × 1, 000, 000. In accordance with

a genome-wide significance threshold of 5 × 10−8 for a single GWA scan, the correspondent

5% Bonferroni-corrected significance threshold should be 10−8 instead of 0.05/5 = 0.01 even

though only five MGE are tested here.
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Figure 2: Comparison of the discovery power of standard GWA analysis and that of omic-

mediation analysis (OMA).
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SNP Metabolite BMI

SNP BMI

Figure 3: Steps to select candidate SNP. Solid arrow means association can be verified by re-

gression or biology literature. Dashed arrow means association remaining to check in a GWAS

result.

3.3 Selecting candidate SNPs using mediation model

When a metabolite is correlated to BMI without known biological causality, the metabolite can

still be used as an indicator for selecting candidate SNPs. By decreasing the number of SNPs

to be tested, the significance threshold becomes less stringent. If n independent SNPs are set

as candidates, then the significance threshold turns to be 0.05/n. In this research, we pick one

SNP as candidate for each metabolite indicator to maximally lower the significance threshold.

The procedure is stated below.

Step 1 According to the biology literature, choose a metabolite correlated to BMI. Test their

correlation using data.

Step 2 Perform GWAS on the metabolite to find the SNP most correlated to it.

Step 3 Test the association between the SNP and BMI in a GWAS dataset.

The steps are presented in Figure 3. Unlike the first method, the association between SNP and

metabolite is merely suggestive for that between SNP and BMI, which refers to TGE in this

case. By doing this, since only one test is performed to verify the association between SNP

and BMI, a GWAS level of significance is not necessary. Consequently some genetic effects

on BMI, which are neglected because of mid-range error and stringent significance threshold,

might be discovered.
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Table 1: Top five BMI-associated metabolites

Metabolite
Discovery Data: TwinGene Replication Data: PIVUS

Effect size(s.e.) P Effect size(s.e.) P

Uric acid 0.306(0.025) 1.02× 10−32 0.290(0.034) 1.01× 10−16

L-Tyrosine 0.259(0.024) 2.04× 10−25 0.182(0.033) 5.88× 10−08

Glycerophospholipids PC(33:1) −0.212(0.025) 1.99× 10−17 −0.234(0.033) 1.60× 10−12

L-proline 0.208(0.025) 5.29× 10−16 0.169(0.034) 8.21× 10−07

Arachidonic acid ethyl ester 0.183(0.025) 1.28× 10−13 0.142(0.033) 2.61× 10−05

4 Results and Discussion

4.1 Statistical mediation modeling

We build SNP - Metabolite - BMI mediation models for different combinations of SNPs and

metabolites. Age and sex are included as covariates in all subsequent analyses. As we have

shown in the Methodology section, the p-value of the mediation effect is always larger than

that of the SNP effect on the metabolite and that of the metabolite effect on BMI. Hence we

perform our step-by-step analysis following the procedure in Section 3.2.3.

4.1.1 Prioritizing candidate SNP - Metabolite associations

We regress BMI on each of the 157 metabolites and rank the metabolites according to their level

of association (p-values) with BMI in TWINGENE. The top five BMI-associated metabolites

are presented in Table 1. Then for each of the five chosen metabolites, the SNP most correlated

to the metabolite is detected by GWAS (Table 2) using the R package GenABEL (Aulchenko

et al., 2007).

4.1.2 Applying the omic-mediation analysis

After the five SNP-metabolite combinations are chosen, we can apply omic-mediation analysis

to them. For the "two-stage" association of SNP - metabolite - BMI, MGE is calculated by

12



Table 2: The most correlated SNP for each metabolites

Metabolite SNP
Discovery Data: TwinGene Replication Data: PIVUS

Effect size(s.e.) P Effect size(s.e.) P

Uric acid rs1014290 −0.274(0.041) 2.40× 10−11 −0.241(0.051) 2.83× 10−06

L-Tyrosine rs10431051 −0.220(0.055) 6.40× 10−05 0.071(0.071) 3.21× 10−01

Glycerophospholipids PC(33:1) rs341093 −0.546(0.127) 1.86× 10−05 0.064(0.135) 6.35× 10−01

L-proline rs2005883 0.424(0.046) 1.15× 10−19 0.446(0.064) 5.62× 10−12

Arachidonic acid ethyl ester rs174538 −0.229(0.038) 1.65× 10−09 −0.277(0.048) 9.62× 10−09

Table 3: The omic-mediation analysis results for the five SNP-metabolite combinations

Metabolite SNP
Discovery Data: TwinGene Replication Data: PIVUS

MGE(s.e.) P MGE(s.e.) P

Uric acid rs1014290 −0.086(0.014) 3.66× 10−09 −0.073(0.018) 3.36× 10−05

L-Tyrosine rs10431051 −0.058(0.015) 1.75× 10−04 0.013(0.013) 3.29× 10−01

Glycerophospholipids PC(33:1) rs341093 0.117(0.030) 1.22× 10−04 −0.015(0.032) 6.35× 10−01

L-proline rs2005883 0.090(0.015) 1.14× 10−09 0.079(0.019) 4.03× 10−05

Arachidonic acid ethyl ester rs174538 −0.043(0.009) 1.99× 10−06 −0.042(0.012) 3.93× 10−04
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multiplying the SNP effect on the metabolite and the effect of the metabolite on BMI. The

corresponding standard error is calculated based on the delta method (see Methodology part).

According to the results presented in Table 3, rs1014290 and rs2005883, whose p-values of

MGE reach the corrected significance 10−8, are significantly associated with BMI mediated

by uric acid and L-proline separately. In the replication dataset PIVUS, for each of the two

pathways, the MGE is similar to that in discovery data in terms of size and direction. Their

p-values also reach the replication significance threshold of 0.05.

4.1.3 Discussion

Neither rs1014290 nor rs2005883 has been found to be associated with BMI in large meta-

analyses of GWAS. The p-values of their TGEs from the meta-analysis by the GIANT con-

sortium are 0.721 and 0.344, separately. As demonstrated in the Methodology section, the

statistical power of testing the mediation effect is higher than that of testing the association

between the SNP and BMI directly when DGE of the SNP on BMI is around zero or the DGE

and MGE cancel out each other. For this reason, some SNPs which are undetectable in much

larger GWA studies can be detected by OMA. We provide a straightforward workflow to bridge

genomics and complex traits using omics measurements, which is essential to genetic studies

in the omics era.

However, there are two assumptions we make might be violated when the omic-mediation

analysis is performed. First, in order to build the mediation model, we assume the pathway is

from a SNP to a metabolite to BMI. But the true causality between the metabolite and BMI

might be mutual or even reversed as in Figure 4. In fact, if BMI affects the metabolite instead

of that the metabolite regulates BMI, β̂m and its p-value from our method do not infer the MGE

at all. In our case, we report the association between rs1014290 and BMI mediated by uric

acid (UA). Although the correlation between UA and BMI has been mentioned in Yue et al.

(2012) and Ryu et al. (2012), the causality might be mutual (Sajja Srikanth and Sushma) or

even reverse (Ishizaka et al., 2010). Therefore the association between rs1014290 and BMI is

questionable in the situation that the change in BMI causes the change in UA.

Given the pathway is true, the residuals ε1 in (1) and ε0 in (2) are assumed to be independent,
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SNP Metabolite BMI

Figure 4: Example of the mediation model failure due to the reverse causality between metabo-

lite and BMI.

Figure 5: MGE of rs1014290 (left) and rs2005883 (right) as a function of degree of violation

of no covariate assumption. Grey region is confidence interval.

which means there is no covariate except for sex and age affecting both the metabolite and BMI.

This assumption is too strict to be met since a metabolite is almost surely affected by several

SNPs and metabolites affecting BMI. When the assumption is violated, the least squares esti-

mators are not unbiased even when sample size is large. Although this assumption is difficult

to test from the data, a sensitivity analysis can be used. By expressing the MGE as a function

of ρ, i.e. the correlation between εi1 and εi2, a sensitivity analysis investigates how robust the

results are to the violation of the no-covariate assumption. The results of sensitivity analysis for

the two mediation models we built are shown in Figure 5. We can see that the MGE is around

zero when ρ equals to 0.3 for rs1014290 and 0.2 for rs2005883. In this regard, the association

between rs1014290 and BMI, where a more severe violation is allowed, is more robust than

that between rs2005883 and BMI.
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4.2 Selecting candidate SNPs using the mediation model

In this section, we regard the metabolite as an indicator for selecting candidate SNPs. As we

have stated in Section 2.3, correlation rather than causality between a metabolite and BMI is

sufficient to set the metabolite as an indicator and perform this method for discovery. According

to Banfi and Del Fabbro (2006), there is a correlation between creatine and BMI in elite athletes.

The correlation can be verified by regressing BMI on creatine (Table 4). It is noteworthy that

the regression is just used for verifying rather than predicting. Then by regressing creatine on

each SNP, rs4673546 is found as the most creatine-associated SNP. The association between

rs4673546 and creatine is replicated in PIVUS. Consequently, according to the GWAS results of

the meta-analysis by the GIANT consortium Locke et al. (2015a), the effect size of rs4673546

on BMI is -0.0141 (s.e. = 0.0047), with a p-value = 0.0027. As we have discussed in Section

2.3, since multiplicity is avoided, the significance threshold is 0.05 here. Hence the analysis

concludes that rs4673546 is significantly associated with BMI.

4.2.1 Discussion

Generally speaking, this method is more biology-based due to the metabolite used as indicator

is selected according to biology literature instead of statistical method. Additionally, since only

correlation is required, this method can be performed more widely.

The method assumes SNPs are independent to each other. However, if n SNPs (n > 1) are

chosen as candidates for each metabolite, there is a chance that some of them are correlated

to each other. In such a case, the n tests concerning the associations between SNPs and BMI

are correlated, which means the significance threshold 0.05/n is conservative. Nevertheless, a

conservative significance threshold is acceptable for a discovery research as we have mentioned

before.

16



Table 4: The correlations between creatine and BMI (the first line) and between rs4673546 and

creatine (the second line)

Correlation Checked
Discovery Data: TwinGene Replication Data: PIVUS

Coefficient(s.e.) P Coefficient(s.e.) P

creatine - BMI 0.110(0.028) 0.0001 0.119(0.038) 0.0016

rs4673546 - creatine 0.287(0.038) 5.27× 10−14 0.174(0.051) 0.0007

4.3 Further research

In our research, OMA is based on a simple mediation model which might be worth generalizing

in many aspects. For example, the causality between metabolite and BMI is assumed to be one

way, while mutual effect is more common and plausible for the relationship between metabolite

and BMI. Therefore the estimation and testing concerning a mediation model with a feedback

loop between mediator and outcome will be practical. In addition, multiple levels of mediator

deserves more attention.

5 Conclusion

As we have shown, if there is an underlying mediation pathway between a genetic variant and

a complex trait, comparing to OMA, direct GWA analysis has less power and the power differ-

ence even scales up with the effect of the mediator on the trait. By the analysis of MGE with a

correct mediator measured, OMA is able to discover the associations mediated by metabolites

between SNPs and BMI, which can hardly be detected via GWAS even with large sample size.

When the causality between a metabolite and BMI is unclear, omics data can also be helpful

with respect to selecting SNPs for further association tests so that the stringent standard GWAS

significance level is not required. In conclusion, omics data play an important role in detect-

ing the missing genetic architectures underlying complex traits. We therefore emphasize that

more efforts should be dedicated into measuring and analyzing intermediate omic phenotypes

in genetic studies.
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