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ABSTRACT 
 Radio Frequency (RF) spectrum is anexpensive and limited natural resource for wireless communication systems. 
In recent times, Cognitive Radio (CR)has come out as one of the most competent candidates for enhancing the spectral 
exploitation effectiveness. Spectrum sensing is one of the most decisive elements in a CR system facilitating CR to access 
the licensed spectrum when it is not exploited by Primary Users (PUs).Conventional spectrum sensing approaches such as 
waveform based sensing algorithm, matched filter algorithm and energy detection algorithm are employed for recognizing 
the spectrums holes in the band. In actual fact, existing wideband spectrum sensing approaches in a distributed CR network 
is complicated to recognize, owing to huge implementation/computational complication and huge economic/energy costs. 
In order to overcome these concerns, a novel spectrum sensing method based on the ANFIS algorithm which is principally 
exploited to identify the borders of the subband and recognize the spectrum holes in specified input band. ANFIS is 
employed for effectively sensing the spectrum and considerably reducing the sensing error throughout the process 
spectrum sensing. The parameters such as power spectral density, bandwidth efficiency, SNR and channel capacity is used 
for identifying the condition of the spectrum. The experimental results shows that the sensing the spectrum using the 
proposed method is better than the other techniques. 
 
Keywords: primary users (PU), radio frequency (RF), adaptive neuro fuzzy inference system (ANFIS), cognitive radio (CR). 
 
1. INTRODUCTION  
 Due to the continuous development of 
applications and services in wireless communications, the 
requirement for access to supplementary frequency 
spectrum has been growing considerably. Given that 
almost the entire frequency spectrums are allocated, 
reacting to the requirement has turn out to be one of the 
chief challenges in wireless communications. On the other 
hand, various spectrum occupancy measurement surveys, 
carried out by the Federal Communications Commission 
(FCC) [1] and Shared Spectrum Company (SSC) [2], have 
exposed that most of the allocated spectrum is either 
unexploited or under-utilized. As a result, spectrum 
insufficiency in wireless communications is believed to be 
owing to the inadequacy of static frequency distribution 
rather than the intense usage of the spectrum. 
When a wide-band spectrum is allocated to a number of 
primary users, secondary users can look for unoccupied 
channels (spectrum holes) inside the wide-band spectrum 
and converse in that band. The conventional approach for 
detecting holes in a wide-band spectrum is channel-by-
channel scanning. To put into practice this, an RF front-
end with a collection of tunable and narrow band pass 
filters is required. The occupancy of each channel can be 
decided by measuring the energy of the signal at the 
output of each filter.  
 Spectrum sensing is the process of obtaining 
knowledge regarding the spectrum usage and existence of 
primary users in a geographical region. Given that there is 
no collaboration between primary users and secondary 
ones, spectrum accessibility for secondary users is decided 
with the help of spectrum sensing. As a result, the 
secondary user observes the spectrum and if it locates a 
hole then it transmits. Indeed, the initial fundamental 

cognitive task of a CR is to exploit spectrum sensing for 
determining spectral availability. The spectrum bands can 
be categorized into three types: [3] 

 Black spaces: which are engaged by high-power 
local interferers 

 Grey spaces: which are moderately engaged by 
low-power interferers 

 White spaces: which are without RF interferers 
apart from ambient noise, which is made up of 
natural and artificial forms of noise 

White spaces and grey spaces (with a smaller amount 
probability) are candidates for exploitation by secondary 
users. 

 In order to identify a primary user in addition to 
keep away from false alarm are of highly essential for 
such a system. In actual fact, it is extremely complicated 
for a cognitive radio to have the information of direct 
measurement of a channel between a primary transmitter 
and receiver.  
 The three major signal processing approaches for 
sensing the existence of a primary user (PU) that appear in 
the literature are matched filter detection, Energy 
Detection (ED) and cyclo stationary feature detection [4]. 
Matched filter detection and cyclostationary feature 
detection approaches necessitate the previous knowledge 
of the PU’s signal to formulate the decision regarding the 
existence or nonexistence of the PU signal [5]. Even 
though ED technique does not necessitate any prior 
knowledge of PU’s signal, the performance of this 
technique is vulnerable to noise covariance uncertainty 
[6]. Because both the previous knowledge regarding the 
PU’s signal and the noise variance are indefinite to the 
CRs in practical circumstances, exploring well-organized 
and blind SS techniques for CRs has emerged as an 
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significant research confront. Numerous blind SS 
techniques have been developed [7] without necessitating 
the previous knowledge of the PU’s signal, the channel 
and the noise power. In addition, the performance of 
conventional SS techniques is inadequate by received 
signal strength which may be rigorously degraded in 
multipath fading and shadowing circumstances. Several 
diversity enhancing approaches such as multi-antenna, 
cooperative and oversampled techniques have been 
introduced in the literature to increase the SS efficiency in 
wireless fading channels. The majority of these 
approaches employs the properties of the Eigenvalues of 
the received signal’s covariance matrix and employs 
current results from advances in Random Matrix Theory 
(RMT).  
 In order to overcome these issues in existing 
spectrum sensing techniques, a novel artificial intelligence 
algorithm is proposed for predicting the state of the 
spectrum.  
 
2. RELATED WORKS  
 Arroyo et al. 2014 [8] established distributed 
wideband spectrum sensing practice over adaptive 
diffusion networks. The author principally consider 
unidentified and different channels between the primary 
and the cognitive users, an averaged received power 
spectrum across all the cognitive users is estimated by 
every user by means of diffusion adaptation approaches. 
This averaged power spectrum estimate is consistent 
enough for the users to carry outspectrum sensing and 
make a decision concerning the existence or the 
nonexistence of the primary user. 
 Feng & Zongben (2014) [9] developed a new 
method for cooperative spectrum sensing by utilizing 
sparsity. This method uses the concept of Bayesian 
hierarchical prior modeling in the framework of sparse 
Bayesian learning. This model has sparsity-inducing 
penalization terms leading to sparser solutions evaluated 
against typically l1 norm dependent ones. Depending on 
the factor graph that indicates the signal model of the 
hierarchical prior models, the Variational Message Passing 
(VMP) algorithm is employed to approximate the Power 
Spectral Density (PSD) map. 
 Shahrasbi & Rahnavard (2013) [10] formulated 
an efficient coordinated spectrum sensing algorithm for 
wideband large-scale cognitive radio networks. This 
scheme depends on clustering secondary users in 
accordance with their spectrum sensing results and 
carrying out the spectrum sensing tasks collaboratively 
inside each cluster. Additionally, the clusters can work 
together with each other to accomplish an optimal 
distributed spectrum sensing across the network. The 
author set up a cognitive radio framework and estimates 
this approach using numerical simulations.  
 Liu et al. 2013 [11] examined node allocation 
schemes to make the most of the minimum sensing 
performance between the sub-bands. The author 
introduced Iterative Hierarchical Hungarian Allocation 
(IHHA), Bow-Shaped Allocation (BSA), Class Division 

Allocation (CDA) to recognize the Max-Min objective. In 
addition, on the basis of PU priority level and anti-
interference capability, the frequency Band Property 
Parameter (BPP) is characterized. By enhancing the 
minimum sensing performance with BPP, modified 
equality that suits for the actual scene is obtained.  
 Zhenghao et al. 2011 [12] formulated a 
probabilistic graphical model to signify and fuse multi-
prior information from one hop neighboring secondary 
users. Belief Propagation (BP) is exploited for the 
statistical inference of the spectrum occupancy.  
 Hongjian et al. 2011 [13] developed a novel 
Multi-rate sub-Nyquist Spectrum Detection (MSSD) 
system for cooperative wideband spectrum sensing in a 
distributed CR network. By means of only aa small 
number of sub-Nyquist samples, MSSD is capable of 
sensing the wideband spectrum without complete 
spectrum recovery. In particular, given the low spectral 
occupancy, sub-Nyquist sampling is carried out in each 
sampling channel and an assessment statistic is formed by 
exploiting sub-Nyquist samples from multiple sampling 
channels. Moreover, the exploitation of different sub-
Nyquist sampling rates is developed to enhance the system 
detection performance, and the performance of MSSD 
over both non-fading and Rayleigh fading channels is 
analyzed. 
 Chin-Liang et al. 2011 [14] created an 
optimization problem to stabilize the sensing-throughput 
tradeoff for a CR network with wideband spectrum 
sensing, at the same time the combined aggregate 
throughput for all the two potential scenarios of the CR 
network is maximized under a specified interference 
imposed on the primary network. In order to reduce the 
computational complexity, the author further presented a 
two-stage iterative approach to solve the optimization 
problem. 
 Mahram et al. 2012 [15] considered the wideband 
spectrum sensing setback in cognitive radio networks. The 
author offered a new approach to sense the spectrum 
depending on DOA (Direction of Arrival) estimation 
model. With the intention of sensing the spectrum, the 
author inspected the MUSIC-like algorithm by means of 
fourth-order cumulants matrix of the received signals. 
Wideband spectrum is presumed to be linear and 
consistently spaced among subchannels. In order to 
approximate the number of occupied subchannels, singular 
value decomposition of the fourth-order cumulants matrix 
is exploited and to approximate the position of occupied 
subchannels, the author examined optimizing a cost 
function that is obtained from MUSIC-like algorithm. 
 Srinu et al. 2011 [16]discussed regarding 
spectrum sensing which necessary conception in Cognitive 
Radio (CR) systems and the author formulated energy 
measurement algorithm for measuring the energy 
consumption in each sub band at some stage in the 
spectrum sensing. It utilizes the ineffective utilization of 
radio frequency spectrum without generating destructive 
interference to the licensed/primary user communication. 
In recent years, several investigations on spectrum sensing 
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are concentrated on cooperative/multinode detection 
approaches. On the other hand, they are confined to the 
recognition of signals in a single frequency band or narrow 
band. With the intention of improving the opportunistic 
throughput, the CR must sense the signals in multiple 
bands or wideband.  
 Dan et al. 2010 [17] developed a novel signal 
separation approach for spectrum sensing and signal 
separation, which places and divides signals occupying the 
wideband frequency spectrum. This approach includes two 
phases: 1) wavelet edge detection algorithm is employed 
to trace the signal spectrum edge; 2) wideband signal 
separation scheme takes care of signal separation and 
recovery. 
 
3. PROPOSED METHODOLOGY  
 In this research work, a new technique is 
attempted to recognize spectrum holes. An adaptive neuro 
fuzzy inference system model which can predict the 
channel status whether occupied or un- occupied is 
intended for spectrum sensing. The power spectral density, 
capacity over subband, bandwidth effectiveness is 
provided as an input to the ANFIS to predict the condition 
of the subband. Spectrum sensing involves the discovery 
of white spaces in the band.  
 The power of the signal is computed with the 
help of the parameters such as SNR, Power spectral 
density, capacity, bandwidth efficiency is computed for 
subbands recognized from the spectrum segmentation. 
Subsequently it is given as an input to the ANFIS for 
identifying the state depending on the input and its 
threshold value. 
SNR estimation: SNR is computed individually over 
different subbands and is characterized as the ratio of the 
signal power in each subband to the noise power in that 
subband. 

Consider that the power calculated for each and 
every subband is  where  represents the number of 

subbands. The noise of the subband is indicated as  and 

bandwidth for overall signal is indicated as a . The SNR 
is calculated as given below, 
 

 (1) 
 

Channel capacity estimation: The channel capacity  is an 
extremely vital parameter to examine the channel 
condition. The channel capacity here can be assumed as 
the transmission rate over the channel. 
The channel capacity of a channel with bandwidth  and 

 is given as follows 
 

 (2) 
 

The channel capacity decreases as SNR decreases. When 
the channel is unoccupied then the noise power is elevated 
and the capacity will diminish. A low channel capacity 
points out that the channel is empty. 

Bandwidth efficiency: The bandwidth efficiency reflects 
how competently the allocated bandwidth is exploited. It is 
the throughput data rate per hertz in a specified bandwidth. 
 

 (3) 
 

Where  represents the data rate in bit/sec and   
represents the bandwidth allocated for the signal. At this 
point represents the channel capacity , i.e. the 
transmission rate over the channel.  
The bandwidth efficiency is computed as follows, 
 

(4) 
 

Where  represents channel capacity and  represents 
bandwidth. It is an index to declare the condition of a 
channel. 
 
Noise uncertainty 

The detection sensitivity can be characterized as 
the minimum  at which the primary signal can be 
precisely (e.g. with a probability of 0.99) identified by the 
cognitive radio and is given as, 
 

(5) 

 

Where represents the noise power,  is transmitted 

power of the primary user, represents the interference 

range of the secondary user, and indicates the maximum 
distance between primary transmitter and its matching 
receiver. 

The last equation recommends that in order to 
compute the required detection sensitivity, the noise power 
has to be identified, which is not available in reality, and 
needs to be estimated by the receiver. On the other hand, 
the noise power estimation is limited by calibration errors 
in addition to changes in thermal noise generated by 
temperature variations. Since a cognitive radio possibly 
will not meet the sensitivity requirement owing to an 
underestimate of ,  should be calculated with the 
worst case noise assumption, by this means necessitating a 
more sensitive detector [18].  
 
a) Aggregate interference uncertainty 
 In future, owing to the widespread exploitation of 
secondary systems, there will be increased prospect of 
multiple cognitive radio networks operating over the same 
licensed band. Consequently, spectrum sensing will be 
influenced by uncertainty in aggregate interference (e.g. 
owing to the unknown number of secondary systems and 
their positions). Despite the fact that, a primary system is 
out of interference range of a secondary system, the 
aggregate interference possibly will lead to incorrect 
detection. This uncertainty generates a requirement for 
supplementary sensitive detector, as a secondary system 
may destructively interfere with primary system 
positioned beyond its interference range, and consequently 
it should be capable of detecting them.  
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b) Spectrum sensing  
 A comprehensive coverage of ANFIS can be seen 
in [19]. The ANFIS network is a neurofuzzy network that 
was developed by Jang in 1993 [20]. In view of the fact 
that the ANFIS is an adaptive network, fractions of its 
nodes are adaptive, which indicates that their outputs is in 
accordance with the parameters such as , noise 
uncertainty and aggregate interference. The structural 
design of ANFIS is illustrated in Figure-2, and the node 
function in each layer is depicted below. 
 

 
Figure-1. Equivalent ANFIS architecture. 

 
Layer-1: The recognized subband is provided as 

an input to the ANFIS together with the input parameters 
such as channel capacity, power spectral density, 
bandwidth efficiency and . The membership function 
is exploited for transforming the input to fuzzy set in the 
subsequent layer.  Every node  in this layer is an adaptive 
node with a node function 
 

  or (6) 
 

 (7) 
 

Where represents the input to the th node and 

 (or ) indicates a linguistic label (such as “low” or 

“high”) related with this node. It means, , represents 
the membership grade of a fuzzy set 

and it indicates the degree to 

which the given input  satisfies the quantifier . 

The membership functions for and  aretypically 
described by generalized bell functions, e.g.: 
 

(8) 

 

Layer-2: The output extracted from the first layer 
is provided as a input to this layer and  the if component of 
the condition is executed for recognizing the spectrum 
holes in the given input. For instance, 
 

 (9) 
 

Each node output represents the firing strength of a rule. 
Layer-3: The hidden layers of the input fuzzy set 

are examined depending on the predefined threshold 
value. For instance,when the channel capacity for the 

subband is less than the threshold value or almost equals 
to zero then the sub band is unoccupied.  
 

 
(10) 

 

The outputs of this layer are called the normalized firing 
strengths. 

Layer-4: This layer’s nodes are adaptive with 
node function and it is exploited for the purpose of finding 
the condition of spectrum 
 

 (11) 
 

where represents the output of layer 3, and 

indicates the parameter set. Parameters of this 
layer are referred to as consequent parameters. 

Layer-5: This layer’s single fixed node, labeled 
, calculates the final output as the summation of all the 

received signals 
 
 

(12) 

 

Thus, an adaptive network that is functionally comparable 
with a Sugeno first-order fuzzy inference system is 
created. Defuzzification layer fuzzy value is converted 
into the normal value. The predicted values from all 
neurons are summed up into output value in the last layer.   
 
4. EXPERIMENTAL RESULTS  
 In this section, the performance of the proposed 
spectrum sensing technique is evaluated against 
conventional techniques. The parameters exploited to 
measure the performance of the proposed technique are 
linear MMSE value. Consider that the channel between 
secondary and primary user is Rayleigh faded. It must be 
observed that the simulation is not carried out over a 
physical network model because this work does not rely 
on any physical layer setting. In a cognitive radio system, 
each SU has a detection probability  and a false alarm 

probability  on a primary channel. 
 

 
 

Figure-2. Comparison of LMMSE vs noise power. 
 
In Figure-2, the linear minimum mean-square errors 

(LMMSEs) of the proposed spectrum sensing algorithm is 
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evaluated against the existing algorithms such energy 
based detection, spectrum sensing based on HSMM and 
fuzzy neural network based spectrum sensing, are plotted 
versus the noise variance . The sensing unit is modeled 

to have a detection probability of  and a false-

alarm probability of . It is found that the 
proposed approaches achieve the lowest LMMSEs while 
other approaches had the worst performance. Additionally, 
since the noise variance increases, the LMMSEs increase 
and the performance of the estimators get close to each 
other.  
 

 
 

Figure-3. Comparison of LMMSE vs detection 
probability. 

 

In Figure-3, the Linear Minimum Mean-Square 
Errors (LMMSEs) of the proposed spectrum sensing 
algorithm is compared against the existing algorithms such 
energy detection, spectrum sensing based on HSMM and 
fuzzy neural network based spectrum sensing are plotted 
versus detection probability. It is observed that the 
proposed algorithms achieve the lowest LMMSEs whereas 
other algorithms had the worst performance.  

 

 

Figure-4. Comparison of LMMSE vs false alarm 
probability. 

In Figure-4, the LMMSEs values of the proposed 
algorithm is compared with the existing algorithms such 
energy detection, spectrum sensing based on HSMM and 
fuzzy neural network based spectrum sensing are plotted 
versus the false-alarm probability for a detection 
probability of  and a noise variance of 

. It is observed that the LMMSEs increase as 
the false-alarm probability increases. This is mainly 
because the power of the pilot symbol is reduced 
(  is employed) in the presence of a false alarm; 
that is, when the channel sensing unit makes a decision 
that the primary users are exist in the system when in fact 
they are not.  
 
5. CONCLUSIONS 
 In this paper, a novel spectrum sensing method is 
proposed depending on the artificial intelligence for 
indentifying the spectrum. This spectrum sensing method 
based on the ANFIS algorithm which is principally 
exploited to identify the borders of the subband and 
recognize the spectrum holes in specified input band. In 
contradiction to a simple energy detector, the detector 
depending on the proposed ANFIS can predict the state at 
a future time instant. The experimental results based on 
real spectrum measurement data reveal that the ANFIS 
based detector leads to more accurate state estimation and 
prediction than other detectors, predominantly in 
circumstances with high path loss and/or strong shadowing 
effects. Additionally, the method was evaluated against 
three methods from the literature in this field, in two of the 
considered scenarios. This proposed approach showed 
success percentages comparable with those achieved by 
the other approaches. Further work will be directed to a 
statistical analysis to get an optimal setting of the three 
thresholds used in the method. 
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