
S.-W. Lee, H.H. Bülthoff, T. Poggio (Eds.): BMCV 2000, LNCS 1811, pp. 297-307, 2000.
 Springer-Verlag Berlin-Heidelberg 2000

Front-End Vision: A Multiscale Geometry Engine

Bart M. ter Haar Romeny1, and Luc M.J. Florack2

Utrecht University, the Netherlands
1 Image Sciences Institute, PO Box 85500, 3508 TA Utrecht

2 Department of Mathematics, PO Box 80010, 3508 TA Utrecht
B.terHaarRomeny@isi.uu.nl, Luc.Florack@math.uu.nl

Abstract. The paper is a short tutorial on the multiscale differential geometric
possibilities of the front-end visual receptive fields, modeled by Gaussian
derivative kernels. The paper is written in, and interactive through the use of
Mathematica 4, so each statement can be run and modified by the reader on
images of choice. The notion of multiscale invariant feature detection is
presented in detail, with examples of second, third and fourth order of
differentiation.

1 Introduction

The front end visual system belongs to the best studied brain areas. Scale-space
theory, as pioneered by Iijima in Japan [10,17] and Koenderink [11] has been heavily
inspired by the important derivation of the Gaussian kernel and its derivatives as
regularized differential operators, and the linear diffusion equation as its generating
partial differential equation. To view the front-end visual system as a 'geometry-
engine' is the inspiration of the current work. Simultaneously, the presented examples
of applications of (differential) geometric operations may inspire operational models
of the visual system.

Scale-space theory has developed into a serious field [8, 13]. Several
comprehensive overview texts have been published in the field [5, 7, 12, 15, 18]. So
far, however, this robust mathematical framework has seen impact on the computer
vision community, but there is still a gap between the more physiologically,
psychologically and psychophysically oriented researchers in the vision community.
One reason may be the nontrivial mathematics involved, such as group invariance,
differential geometry and tensor analysis.

The last couple of years symbolic computer algebra packages, such as
Mathematica, Maple and Matlab, have developed into a very user friendly and high
level prototyping environment. Especially Mathematica combines the advantages of
symbolic manipulation and processing with an advanced front-end text processor.
This paper highlights the use of Mathematica 4.0 as an interactive tutorial toolkit for
easy experimenting and exploring front-end vision simulations. The exact code can be
used rather then pseudocode. With these high level programming tools most programs
can be expressed in very few lines, so it keeps the reader at a highly intuitive but
practical level. Mathematica notebooks are portable, and run on any system
equivalently. Previous speed limitations are now well overcome. The full (1400
pages) documentation is available online, (see www.wri.com).

http://www.wri.com/

298 B. M. ter Haar Romeny and L.M.J. Florack

1.1 Biological Inspiration: Receptive Field Profiles from First Principles

It is well known that the Gaussian kernel,)
2

.
exp(

2

1
),(

22 σπσ
σ xx

xG
!!! −= as a front-

end visual measurement aperture can be uniquely derived in quite a number of ways
(for a comprehensive overview see [17]). These include the starting point that lower
resolution levels have a higher resolution level as cause ('causality’ [11]), or that there
is linearity and no preference for location, orientation and size of the aperture (‘first
principles’ [2]). This Gaussian kernel is the Green's function of the linear, isotropic

diffusion equation
s

L
LL

y

L

x

L
yyxx ∂

∂=+=
∂
∂+

∂
∂

2

2

2

2

, where 22σ=s is the variance.

Note that the derivative to scale is here the derivative to σ2 which also immediately
follows from a consideration of the dimensionality of the equation. All partial
derivatives of the Gaussian kernel are solutions too of the diffusion equation.

The Gaussian kernel and all of its partial derivatives form a one-parameter family
of kernels where the scale σ is the free parameter. This is a general feature of the
biological visual system: the exploitation of ensembles of aperture functions, which
are mathematically modeled by families of kernels for a free parameter, e.g. for all
scales, derivative order, orientation, stereo disparity, motion velocity etc.

The Gaussian kernel is the unique kernel that generates no spurious resolution (e.g.
the squares so familiar with zooming in on pixels). It is the physical point operator,
the Gaussian derivatives are the physical derivative operators, at the scale given by
the Gaussian standard deviation.

The receptive fields in the primary visual cortex closely resemble Gaussian
derivatives, as was first noticed by Young [19] and Koenderink [11]. These RF's
come at a wide range of sizes, and at all orientations.

Below two examples are given of measured receptive field sensitivity profiles of a
cortical simple cell (left) and a Lateral Geniculate Nucleus (LGN) center-surround
cell, measured by DeAngelis, Ohzawa and Freeman [1], http://totoro.berkeley.edu/.

Fig. 1. a. Cortical simple cell, modeled by a
first order Gaussian derivative. From[1].

b. Center-surround LGN cell, modeled by
Laplacean of Gaussian. From [1].

Through the center-surround structure at the very first level of measurement on the
retina the Laplacean of the input image can be seen to be taken. The linear diffusion
equation states that this Laplacean is equal to the first derivative to scale:

s

L

y

L

x

L

∂
∂=

∂
∂+

∂
∂

2

2

2

2

. One conjecture for its presence at this first level of observation

Front-End Vision: A Multiscale Geometry Engine 299

might be that the visual system actually measures Ls, i.e. the change in signal ∂L when
the aperture is changed with ∂s: at homogeneous areas there is no output, at highly
textured areas there is much output. Integrating both sides of ∂L= (Lxx+Lyy) ∂s over all
scales gives the measured intensity in a robust fashion.

The derivative of the observed (convolved) data
x

G
LGL

x ∂
∂⊗=⊗

∂
∂

)(shows

that differentiation and observation is accomplished in a single step: convolution with
a Gaussian derivative kernel. Differentiation is now done by integration, i.e. by the
convolution integral.

The Gaussian kernel is the physical analogon of a mathematical point, the
Gaussian derivative kernels are the physical analogons of the mathematical
differential operators. Equivalence is reached for the limit when the scale of the
Gaussian goes to zero:)(),(lim

0
xxG δσ

σ
=

→
, where is the Dirac delta function, and

x
xG

∂
∂=⊗

→
),(lim

0
σ

σ
. Any differention blurs the data somewhat, with the amount of the

scale of the differential operator. There is no way out this increase of the inner scale,
we can only try to minimize the effect. The Gaussian kernel has by definition a strong
regularizing effect [16,12].

2 Multiscale Derivatives

It is essential to work with descriptions that are independent of the choice of
coordinates. Entities that do not change under a group of coordinate transformations
are called invariants under that particular group. The only geometrical entities that
make physically sense are invariants. In the words of Hermann Weyl: any invariant
has a specific geometric meaning. In this paper we only study orthogonal and affine
invariants. We first build the operators in Mathematica:

The function gDf[im,nx,ny, σσσσ] implements the convolution of the image with the
Gaussian derivative for 2D data in the Fourier domain. This is an exact function, no
approximations other then the finite periodic window in both domains. Variables: im
= 2D image (as a list structure), nx,ny = order of differentiation to x resp. y, σσσσ =
scale of the kernel, in pixels.

gDf[im_,nx_,ny_,σσσσ_]:= Module[{xres, yres, gdkernel},
 {yres, xres} = Dimensions[im];
 gdkernel = N[Table[Evaluate[
 D[1/(2 Pi σσσσ2) Exp[-((x2+y2)/(2σσσσ2))],{x,nx},{y, ny}]],
 {y,-(yres-1)/2,(yres-1)/2}, {x,-(xres-1)/2,(xres-1)/2}]];
 Chop[N[Sqrt[xres yres] InverseFourier[Fourier[im]
 Fourier[RotateLeft[gdkernel, {yres/2, xres/2}]]]]]];

This function is rather slow, but is exact. A much faster implementation exploits
the separability of the Gaussian kernel, and this implementation is used in the sequel:

gD[im_,nx_,ny_,σσσσ_] := Module[{x,y,kx,ky,tmp},
 kx ={N[Table[Evaluate[D[(Exp[-(x2/(2σσσσ2))])/
(σσσσ Sqrt[2ππππ]),{x,nx}]],{x,-4σσσσ, 4σσσσ}]]};

300 B. M. ter Haar Romeny and L.M.J. Florack

 ky = {N[Table[Evaluate[D[(Exp[-(y2/(2σσσσ2))])/
(σσσσ Sqrt[2ππππ]), {y, ny}]], {y, -4σσσσ, 4σσσσ}]]};
tmp = ListConvolve[kx, im, Ceiling[Dimensions[kx]/2]];
Transpose[ListConvolve[ky,
Transpose[tmp],Reverse[Ceiling[Dimensions[ky]/2]]]]];

An example is the gradient 22
yx LL + at a range of scales:

im = Import["mr128.gif"][[1,1]];
p1 = Table[grad = Sqrt[gD[im,1,0,σσσσ]2 + gD[im,0,1,σσσσ]2];
{ListDensityPlot[grad,PlotRange→→→→{0, 40}, DisplayFunction→→→→
Identity],
 ListDensityPlot[σσσσ grad, PlotRange→→→→{0, 40},
DisplayFunction→→→→Identity]}, {σσσσ, 1, 5}];
Show[GraphicsArray[Transpose[p1]]];

3 Gauge Coordinates

In order to establish differential geometric properties it is easiest
to exploit intrinsic geometry. I.e. that we define a new coordinate
frame for our geometric explorations which is related to the local
isophote structure, so it is different in every different point. A
straightforward definition of a new local coordinate frame in 2D
is where we cancel the degree of freedom of rotation by defining
gauge coordinates: we locally 'fix the gauge'.

Fig. 2. Top row: Gradient of a sagittal MR image at scales 1, 2, 3, 4 and 5 pixels. Lower row:
same scales, gradient in natural dimensionless coordinates, i.e. x’→x/σ, so

xx ∂∂∂∂ /'/ σ" . This leaves the intensity range of differential features more in a similar

output range due to scale invariance. Resolution 1282.

Front-End Vision: A Multiscale Geometry Engine 301

The 2D unit vector frame of gauge coordinates {v,w} is defined as follows: v is the
unit vector in the direction tangential to the isophote, so Lv ≡ 0, w is defined
perpendicular to v, i.e. in the direction of the intensity gradient.

The derivatives to v and w are by definition features that are invariant under
orthogonal transformations, i.e. rotation and translation. To apply these gauge
derivative operators on images, we have to convert to the Cartesian {x,y} domain. The
derivatives to v and w are defined as:

jiji

yx

yyxx
wjiji

yx

yxxy
v L

LL

LL
L

LL

LL
∂=

+

∂+∂
=∂∂=

+

∂+∂−
=∂ δε

2222
;

The second formulation uses tensor notation, where the indices i,j stand for the
range of dimensions. δij is the nabla operator, δij and εij are the symmetric Kronecker
tensor and the antisymmetric Levi-Civita tensor respectively (in 2D). The definitions
above are easily accomplished in Mathematica:

δδδδ = IdentityMatrix[2]
εεεε = Table[Signature[{i,j}],{j,2},{i,2}]
jacobean = Sqrt[Lx^2 + Ly^2];
dv = 1/jacobean*{Lx,Ly}.εεεε.{D[#1,x],D[#1,y]}&
dw = 1/jacobean*{Lx,Ly}.δδδδ.{D[#1,x],D[#1,y]}&

The notation (...#)& is a 'pure function' on the argument #, e.g. D[#,x]& takes
the derivative. Now we can calculate any derivative to v or w by applying the operator
dw or dv repeatedly. Note that the Lx and Ly are constant terms.

rule1 = {Lx →→→→ ∂∂∂∂x
 L[x,y], Ly →→→→ ∂∂∂∂y

 L[x,y]};
rule2 = Derivative[n_,m_][L][x,y] →→→→ L <>
 Table[x,{n}] <> Table[y, {m}];
Lw = dw[L[x, y]] /. rule1 /. rule2 // Simplify

22 LyLx +

Lww = dw[dw[L[x, y]]] /. rule1 /. rule2 // Simplify

22

22 2

LyLx

LyyLyLxLxyLyLxxLx

+
++

Due to the fixing of the gauge by removing the degree of freedom for rotation, we
have an important result: every derivative to v and w is an orthogonal invariant, i.e.
an invariant property where translation or rotation of the coordinate frame is
irrelevant. It means that polynomial combinations of these gauge derivative terms are
invariant. We now have the toolkit to make gauge derivatives to any order.

3.1 Examples to 2nd, 3rd and 4th Order

The definitions for the gauge differential operators ∂v and ∂w need to have their regular
differential operators be replaced by Gaussian derivative operators. To just show the
textual formula, we do not yet evaluate the derivative by using temporarily HoldForm
(/. means 'apply rule'):

302 B. M. ter Haar Romeny and L.M.J. Florack

gauge2D[im_, nv_, nw_, σσσσ_] := (Nest[dw,Nest[dv,L[x,y],nv],nw]
/. {Lx -> ∂∂∂∂x

 L[x,y], Ly -> ∂∂∂∂y
 L[x,y]})

/. ((Derivative[n_, m_])[L])[x,y] -> HoldForm[gD[im, n, m,
σσσσ]] // Simplify)

3.2 Ridge Detection

Lvv is a good ridge detector. Here is the Cartesian (in {x,y}) expression for Lvv:

Clear[im,σσσσ]; gauge2D[im, 2, 0, 2]

(gd[im,0,2,2] gd[im,1,0,2]2 - 2 gd[im,0,1,2] gd[im,1,0,2]
gd[im,1,1,2] + gd[im,0,1,2]2 gd[im,2,0,2]) /
(gd[im,0,2,2]2+gd[im,0,2,2]2)

im = Import["hands.gif"][[1, 1]];
Lvv = gauge2D[im, 2, 0, 3] // ReleaseHold;
Block[{$DisplayFunction = Identity},p1 = ListDensityPlot[im];
p2 = ListDensityPlot[Lvv];]; Show[GraphicsArray[{p1, p2}]];

Fig. 3. a. Input image: X-ray of hands,
resolution 439x138 pixels.

b. Ridge detection with Lvv, scale 3 pixels.
Note the concave and convex ridges.

3.3 Affine Invariant Corner Detection

Corners can be defined as locations with high isophote curvature κ and high intensity
gradient Lw. Isophote curvature κ is defined as the change w” of the tangent vector w’
in the gauge coordinate system. When we differentiate the definition of the isophote
(L = Constant) to v, we find κ = -Lvv/Lw:

D[L[v, w[v]] = = Constant, v]; κκκκ=
w''[v]/.Solve[D[L[v,w[v]]==Constant,{v,2}]/.w'[v]→→→→0,w''[v]]

-L(0,2)[v,w[v]]/L(1,0)[v,w[v]]

Front-End Vision: A Multiscale Geometry Engine 303

Blom proposed as corner detector [6]: n
w

n
w

w

vvn LL
L

L κ=−=Θ][. An obvious

advantage is invariance under as large a group as possible. Blom calculated n for

invariance under the affine transformation ()yx
dc

ba

y

x

→

'

' . The derivatives

transform as

∂
∂

∂
∂

→

∂∂
∂∂

''/

/

yxdb

ca

y

x . The corner detectors Θ[n] transform as Θ[n] =

(ad-bc)2{(a Lx’+c Ly’)
2+(b Lx’+d Ly’)

2 }(n-3)/2 {2 Lx’ Ly’ Lx’y’-Ly’

2Lx’x’-Lx’

2Ly’y’}.This is a
relative affine invariant of order 2 if n=3 with the determinant D=(ad-bc) of the affine
transformation as order parameter. We consider here special affine transformations
(D=1).

So a good corner-detector is 23]3[
wvvw

w

vv LLL
L

L
=−=Θ . This feature has the nice

property that is is not singular at locations where the gradient vanishes, and through
its affine invariance it detects corners at all 'opening angles'.

im = N[Import["utrecht256.gif"][[1, 1]]];
corner1 = (gauge2D[im, 2, 0, 1] \ gauge2D[im, 0, 1, 1]2) //
ReleaseHold;
corner2 = (gauge2D[im, 2, 0, 3] \ gauge2D[im, 0, 1, 3]2) //
ReleaseHold; Block[{$DisplayFunction = Identity},
p1 = ListDensityPlot[im]; p2 = ListDensityPlot[corner1];
p3 = ListDensityPlot[corner2];]; Show[GraphicsArray[{p1, p2,
p3}]];

Fig. 5. a. Input image,
resolution 256x256.

b. Corner detection
with LvvLw

2, σ=1 pixel.
c. idem, σ=3 pixels.

3.4 T-junction Detection

An example of third order geometric reasoning in images is the detection of T-
junctions. T-junctions in the intensity landscape of natural images occur typically at
occlusion points. When we zoom in on the T-junction of an observed (i.e. blurred)
image and inspect locally the isophote structure at a T-junction, we see that at a T-
junction the change of the isophote curvature κ in the direction perpendicular to the

304 B. M. ter Haar Romeny and L.M.J. Florack

isophotes (the w-direction) is high. So a candidate for T-junction detection is
w∂

∂κ . We

saw before that the isophote curvature is defined as κ = -Lvv/Lw. Thus the Cartesian
expression for the T-junction detector becomes

κκκκ= Simplify[-(dv[dv[L[x, y]]]/dw[L[x, y]]) /.
 {Lx -> D[L[x, y], x], Ly -> D[L[x, y], y]}];
ττττ = Simplify[dw[κκκκ] /. {Lx -> D[L[x, y], x],
 Ly -> D[L[x, y], y]}]; % /. Derivative[n_, m_][L][x, y] ->
StringJoin[L, Table[x, {n}], Table[y, {m}]]

1/(Lx2 + Ly2)3 (-Lxxy Ly5 + Lx4 (2Lxy2 – Lx Lxyy + Lxx Lyy) +
Ly4(2Lxy2 + Lx(-Lxxx + 2Lxyy) + Lxx Lyy) + Lx2 Ly2 (3Lxx^2 -
Lx Lxxx - 8Lxy2 + Lx Lxyy – 4 Lxx Lyy + 3Lyy2) +
Lx Ly3 (Lx Lxxy + 6 Lxx Lxy - 6Lxy Lyy – Lx Lyyy) +
Lx3 Ly (2Lx Lxxy – 6 Lxx Lxy + 6 Lxy Lyy – Lx Lyyy))

To avoid singularities at vanishing gradients through the division by (Lx

2+Ly

2)3 =

Lw

6 we use as our T-junction detector 6
wL

w∂
∂= κτ , the derivative of the curvature in

the direction perpendicular to the isophotes:

ττττ= Simplify[dw[κκκκ]\dw[L[x,y]]6 /. {Lx→→→→∂∂∂∂x
L[x,y], Ly→→→→∂∂∂∂y

L[x, y]}];

Finally, we apply the T-junction detector on our blocks at a scale of σ=2:

ττττ= ττττ /. Derivative[n_,m_][L][x,y]→→→→HoldForm[gD[blocks,n, m,
σσσσ]]; σσσσ = 2; ListDensityPlot[ττττ // ReleaseHold];

Fig. 6. a. Input image: some T-junctions
encircled. Resolution 317x204 pixels.

b. T-juction detection with 6
wL

w∂
∂= κτ at a

scale of 2 pixels.

3.5 Fourth Order Junction Detection

As a final fourth order example, we give an example for a detection problem in
images at high order of differentiation from algebraic theory. Even at orders of

Front-End Vision: A Multiscale Geometry Engine 305

differentiation as high as 4, invariant features can be constructed and calculated for
discrete images through the biologically inspired scaled derivative operators. Our
example is to find in a checkerboard the crossings where 4 edges meet. We take an
algebraic approach, which is taken from Salden et al. [14].

When we study the fourth order local image structure, we consider the fourth order
polynomial terms from the local Taylor expansion:

pol4=(Lxxxx x4+4Lxxxy x3 y+6Lxxyy x2 y2+4Lxyyy x y3+Lyyyy y4)/4!

The main theorem of algebra states that a polynomial is fully described by its roots:
e.g.))((21

2 xxxxcbxax −−=++ . Hilbert showed that the 'coincidenceness' of the

roots, i.e. how well all roots coincide, is a particular invariant condition. From
algebraic theory it is known that this 'coincidenceness' is given by the discriminant:

Discriminant[p_, x_] := With[{m = Exponent[p, x]},
 Cancel[((-1)^(1/2*m*(m - 1)) Resultant[p, D[p, x], x])/
 Coefficient[p, x, m]]];

The resultant of two polynomials a and b, both with leading coefficient one, is the
product of all the differences ai-bj between roots of the polynomials. The resultant is
always a number or a polynomial. The discriminant of a polynomial is the product of
the squares of all the differences of the roots taken in pairs. We can express our
function in two variables (x,y} as a function in a single variable x/y by the substitution
y→1. Some examples:

Discriminant[(Lxx x2+2 Lxy x y+Lyy y2)/2!, x] /. {y -> 1}

Lxy2 + Lxx Lyy

The discriminant of second order image structure is just the determinant of the
Hessian matrix, i.e. the Gaussian curvature. Here is our fourth order discriminant:

Discriminant[pol4, x] /. {y -> 1}

 (497664 Lxxxy2 Lxxyy2 Lxyyy2 - 31104 Lxxxx Lxxyy3 Lxyyy2 –
884736 Lxxxy3 Lxyyy3 + 62208 Lxxxx Lxxxy Lxxyy Lxyyy3 – 648
Lxxxx2 Lxyyy4 - 746496 Lxxxy2 Lxxyy3 Lyyyy + 46656 Lxxxx Lxxyy4

 Lyyyy + 1492992 Lxxxy3 Lxxyy Lxyyy Lyyyy - 103680 Lxxxx Lxxxy
Lxxyy2 Lxyyy Lyyyy - 3456 Lxxxx Lxxxy2 Lxyyy2 Lyyyy + 1296
Lxxxx2 Lxxyy Lxyyy2 Lyyyy - 373248 Lxxxy4 Lyyyy2 + 31104 Lxxxx
Lxxxy2 Lxxyy Lyyyy2 – 432 Lxxxx2 Lxxyy2 Lyyyy2 - 288 Lxxxx2

Lxxxy Lxyyy Lyyyy2 + Lxxxx3 Lyyyy3)/54

A complicated polynomial in fourth order derivative images. Through the use of
Gaussian derivative kernels each separate term can easily be calculated as an
intermediate image. We change all coefficients into scaled Gaussian derivatives:

discr4[im_, σσσσ_] :=
 Discriminant[pol4, x] /. {y →→→→ 1, Lxxxx →→→→ gD[im, 4, 0, σσσσ],
 Lxxxy →→→→ gD[im, 3, 1, σσσσ], Lxxyy →→→→ gD[im, 2, 2, σσσσ],
 Lxyyy →→→→ gD[im, 1, 3, σσσσ], Lyyyy →→→→ gD[im, 0, 4, σσσσ]};
ListDensityPlot[noisycheck, ImageSize -> {200, 100}];
ListDensityPlot[discr4[noisycheck,5],ImageSize->{200, 100}];

The detection is rotation invariant, robust to noise, and no detection at corners:

306 B. M. ter Haar Romeny and L.M.J. Florack

Fig. 7. a. Noisy input image. Resolution 200 x
100 pixels.

b. Four-junction detection with the algebraic
discriminant D4 at σ=4 pixels.

References

1. Gregory C. DeAngelis, Izumi Ohzawa, and Ralph D. Freeman, "Receptive-field dynamics
in the central visual pathways", Trends Neurosci. 18: 451-458, 1995.

2. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, Scale
and the differential structure of images, Im. and Vision Comp., vol. 10, pp. 376-388, 1992.

3. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A Viergever, Cartesian
differential invariants in scale-space, J. of Math. Im. and Vision, 3, 327-348, 1993.

4. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, The
Gaussian scale-space paradigm and the multiscale local jet, International Journal of
Computer Vision, vol. 18, pp. 61-75, 1996.

5. L.M.J. Florack, Image Structure, Kluwer Ac. Publ., Dordrecht, the Nether-lands, 1997.
6. B. M. ter Haar Romeny, L. M. J. Florack, A. H. Salden, and M. A. Viergever, Higher

order differential structure of images, Image & Vision Comp., vol. 12, pp. 317-325, 1994.
7. B. M. ter Haar Romeny (Ed.), Geometry Driven Diffusion in Computer Vision. Kluwer

Academic Publishers, Dordrecht, the Netherlands, 1994.
8. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, eds.,

Scale-Space '97: Proc. First Internat. Conf. on Scale-Space Theory in Computer Vision,
vol. 1252 of Lecture Notes in Computer Science. Berlin: Springer Verlag, 1997.

9. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, Invariant
third order properties of isophotes: T-junction detection, in: Theory and Applications of
Image Analysis, P. Johansen and S. Olsen, eds., vol. 2 of Series in Machine Perception
and Artificial Intelligence, pp. 30-37, Singapore: World Scientific, 1992.

10. T. Iijima: Basic Theory on Normalization of a Pattern - in Case of Typical 1D Pattern.
Bulletin of Electrical Laboratory, vol. 26, pp. 368-388, 1962 (in Japanese).

11. J.J. Koenderink: The Structure of Images, Biol. Cybernetics, vol. 50, pp. 363-370, 1984.
12. T. Lindeberg: Scale-Space Theory in Computer Vision, Kluwer Academic Publishers,

Dordrecht, Netherlands, 1994.
13. M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert (Eds.), Proc. Second Intern. Conf on

Scale-space Theories in Computer Vision, Lecture Notes in Computer Science, Vol. 1682,
Springer, Berlin, 1999.

14. A. H. Salden, B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A.
Viergever, A complete and irreducible set of local orthogonally invariant features of 2-
dimensional images, in: Proc. 11th IAPR Internat. Conf. on Pattern Recognition, I. T.
Young, ed., The Hague, pp. 180-184, IEEE Computer Society Press, Los Alamitos, 1992.

15. J. Sporring, M. Nielsen, L. Florack: Gaussian Scale-Space Theory, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1997.

Front-End Vision: A Multiscale Geometry Engine 307

16. O. Scherzer, J. Weickert, Relations between regularization and diffusion filtering, J. Math.
Imag. in Vision, in press, 2000.

17. J. Weickert, S. Ishikawa, A. Imiya, On the history of Gaussian scale-space axiomatics, in
J. Sporring, M. Nielsen, L. Florack, P. Johansen (Eds.), Gaussian scale-space theory,
Kluwer, Dordrecht, 45-59, 1997.

18. J. Weickert, Anisotropic diffusion in image processing, ECMI, Teubner Stuttgart, 1998.
19. R.A. Young, Simulation of Human Retinal Function with the Gaussian Derivative Model,

Proc. IEEE CVPR CH2290-5, 564-569, Miami, Fla., 1986.

	1 Introduction
	1.1 Biological Inspiration: Receptive Field Profiles from First Principles

	2 Multiscale Derivatives
	3 Gauge Coordinates
	3.1 Examples to 2nd, 3rd and 4th Order
	3.2 Ridge Detection
	3.3 Affine Invariant Corner Detection
	3.4 T-junction Detection
	3.5 Fourth Order Junction Detection

	References

