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Ranking Intervals and Dominance Relations

for Ratio-Based Efficiency Analysis

We develop comparative results for ratio-based efficiency analysis, based on the decision making units’

(DMUs) relative efficiencies over sets of feasible weight that characterize preferences for input and output

variables. Specifically, we determine (i) ranking intervals which indicate the best and worst efficiency rankings

that a DMU can attain relative to other DMUs, (ii) dominance structures which convey what other DMUs

a given DMU dominates in one-on-one efficiency comparisons, and (iii) efficiency bounds which show how

much more efficient a DMU can be relative to a given DMU or a subset of other DMUs. These efficiency

results–which reflect the full range of feasible input and output weights–are robust in the sense that they

are insensitive to possible outliers and do not necessitate particular returns-to-scale assumptions. We also

report a real case study where these results supported the efficiency analysis of the twelve departments at a

large technical university.

Key words : performance measurement, data efficiency analysis, preference modeling

1. Introduction

Inspired by the seminal paper of Charnes et al. (1978), the Data Envelopment Analysis (DEA)

literature offers numerous methods for examining the efficiency of decision making units (DMUs)

(see, e.g., Cooper et al., 2007). These methods are often employed in settings where information

about the values of input and output variables is not readily available, but where subjective pref-

erence information about these values can nevertheless be elicited (Thompson et al., 1986; Allen

et al., 1997). As an application domain, higher education has these characteristics, which is one of

the reasons for why the DEA and its variants have been employed extensively in education (see,

e.g., Sarrico and Dyson, 2000).
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Technically, the efficiency score for a DMU (CCR-DEA; Charnes et al., 1978) is computed

relative to an efficient frontier, characterized by efficient DMUs whose efficiency ratio (defined as

the ratio between the aggregate value of their outputs and that of their inputs) is highest among

all DMUs for some input/output weights. By definition, efficient DMUs have an efficiency score

of one. For inefficient DMUs, the efficiency score will be less than one, indicating how ‘close’ to

the efficient frontier the DMU can be when its inputs and outputs are aggregated using weights

that are most favorable to it. In both cases, however, the resulting efficiency score conveys no

information about how high the DMU’s efficiency ratio can be relative to those of other DMUs for

other input/output weights: for example, even if a DMU is efficient, there may exist some feasible

weights for which some other DMUs have strictly higher efficiency ratios. This suggests that it is

instructive to examine how the DMUs’ efficiency ratios change relative to each other as a function

of input/output weights.

Because the efficiency scores are computed relative to the efficiency frontier, these scores are

potentially sensitive to what DMUs are included in or excluded from the analysis: specifically, the

introduction/removal of a single outlier (e.g., an exceptionally efficient DMU that produces more

outputs per inputs than the other DMUs) may shift the efficient frontier considerably, which may

disrupt the reported efficiency scores for other DMUs and hence perplex the users of efficiency

results (see, e.g., Seiford and Zhu, 1998ab; Zhu, 1996). Such disruptions do not take place in direct

one-on-one comparison of the DMUs’ efficiency ratios which are not affected by outliers. Nor do

such pairwise comparisons necessitate specific returns-to-scale assumptions which may be difficult

to validate ex ante when defining the efficient frontier (see, e.g., Galagedera and Silvapulle, 2003;

Dyson et al., 2001).

Motivated by the above considerations, we develop efficiency results which allow us to answer

questions such as:

• What are the best/worst rankings that DMU A can attain in comparison with other DMUs,

based on their efficiency ratios?
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• Does DMU A dominate DMU B in terms of its efficiency? (in the sense that the efficiency

ratio of DMU A is at least as high as that of DMU B for all feasible weights and strictly higher

for some)

• How much more/less efficient can DMU A be relative to DMU B? Or, more generally, relative

to some selected subset of other DMUs?

The first question is partly motivated by the popularity of ranking lists, as exemplified by the

ranking of ‘best’ universities by the Shanghai Jiao Tong University (cf. Liu and Cheng, 2005;

see also Köksalan et al., 2009). It results in ranking intervals which are defined by the DMUs’

best/worst rankings over the sets of feasible weights and which are robust because they will exhibit

only small changes due to the introduction/removal of DMUs. The second question helps establish

and communicate dominance structures based on one-on-one comparisons between the DMUs. The

third question (which is related to super-efficiency; see, e.g., Andersen and Petersen, 1993) yields

efficiency bounds that provide information about relative efficiency differences among the DMUs.

All these efficiency results can be employed for the identification of most/least efficient DMUs and

the specification of performance targets.

We also describe a case study where these efficiency results were employed to analyze the depart-

ments at a large technical university. The results of this case study were communicated to and

appreciated by the Board of the University. They catalyzed an informed debate on the possibilities

and limitations of using efficiency analyses for the purpose of guiding resource allocation decisions.

We present salient arguments from this case study and outline topics for future research as well.

The rest of this paper is organized as follows. Section 2 discusses earlier methods for ratio-based

efficiency analysis and their uses in higher education. Section 3 formulates the methodological

contributions. Section 4 describes the case study, and Section 5 concludes.

2. DEA Methods and Their Uses in Higher Education

In the DEA literature, there are numerous methods for analyzing the relative efficiencies of DMUs

that transform multiple inputs into multiple outputs (see, e.g., Cooper et al., 2007). These meth-

ods have been extensively applied in contexts where subjective preference information about the
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relative values of these input/output variables can be elicited (cf. Thanassoulis et al., 2004). Early

approaches for incorporating preference information include, among others, the specification of

assurance regions (Thompson et al., 1990) and cone ratios (Charnes et al., 1990). Subsequently,

relationships between DEA models and multi-criteria decision making (MCDM) methods have

been explored extensively (Stewart, 1996; Joro et al., 1998; Bouyssou, 1999). These relationships

also underpin the Value Efficiency Analysis method (Halme et al., 1999; Halme and Korhonen;

2000; Korhonen et al., 2002) which makes inferences about the DMUs’ value efficiencies with the

help of an implicit value function. Recent advances at the juncture of DEA and preference model-

ing include models based on the explicit construction of the decision maker’s (DM) value function

(Gouveia et al., 2008) and the specification of context-sensitive assurance regions for input/output

weights (Cook and Zhu, 2008).

Higher education is an attractive domain for DEA because universities consume several inputs

and produce multiple outputs (e.g., degrees, research articles) to which prices may be difficult to

attach. In consequence, DEA has been employed extensively at various levels in higher education

by treating universities, departments, research units or even students as ‘units of analysis’.

For example, Ahn et al. (1988) analyze the production behavior of higher education institutions

and compare the relative efficiencies of public and private doctoral-granting universities in the

US. Athanassopoulos and Shale (1997) compare the relative efficiencies of 45 higher education

institutions in the United Kingdom (UK). Johnes (2006a) considers the possibilities and limitations

of DEA models in higher education and analyzes more than 100 higher educational institutions in

the UK. Based on her work with multi-level modeling–where efficiency scores are established for

individual students and at the higher departmental level–she reports that the efficiency scores at

the different levels are not necessarily closely correlated (Johnes, 2006bc).

Abbott and Doucouliagos (2003) consider the efficiencies of Australian public universities using

input/output measures from 1995, and conclude that the universities operate at a fairly high level

of efficiency. Avrikan (2001) analyzes the relative efficiencies of Australian universities using three

models that focus on overall performance, delivery of educational performance, and performance
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on fee-paying enrollments. McMillan and Chan (2006), too, consider Australian universities and

determine efficiency scores with DEA and stochastic frontier analysis: specifically, they compare

the efficiency rankings from these two methods, and observe that there is a relatively high degree

of consistency in these rankings. Räty (2002) employs Finnish university data and demonstrates

that the use of efficient facets can help identify variables for efficiency measurement.

Focusing on business education, Colbert et al. (2000) determine the relative efficiencies of 24

leading MBA programs in the US. Tauer et al. (2007) examine the efficiencies of the 26 academic

departments at Cornell University as a step towards establishing performance targets. Korhonen

et al. (2001) apply VEA to determine efficiency scores for research units at the Helsinki School of

Economics, and develop an approach for allocating resources to support the attainment of higher

aggregate efficiency.

Sarrico and Dyson (2000) illustrate the use of DEA at the University of Warwick as a planning

tool which recognizes multiple perspectives into departmental activities and which is also explicitly

linked to other techniques such as strategic options formulation. Feng et al. (2004) describe a

multi-method approach where the Analytic Hierarchy Process (AHP) is first employed to evaluate

the research activities at 26 Chinese universities, whereafter they use DEA to assess the relative

efficiencies of the R&D strength of these universities. Kao and Hung (2008) assess the relative

efficiencies of the departments at the National Cheng Kung University by defining an assurance

region and by categorizing four groups of similar departments through efficiency decomposition

and cluster analysis.

Building on the data in Times Higher Educational Supplement (THES), Tulkens (2007) evaluates

the attractiveness of universities by determining how many other universities a university either

dominates or is dominated by using a conservative approach that does not develop an explicit value

representation using criterion weights (i.e., university A dominates B if A outperforms B on all

the six evaluation criteria in the THES listing). Köksalan et al. (2009), on the other hand, admit

weight information and provide optimization formulations for exploring how sensitive the rankings

of MBA programmes are to different assumptions about criterion weights. But their approach,

Page 6 of 31

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Management Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Author: Ranking and Dominance Results for Ratio-Based Efficiency Analysis
6

too, is formulated only in terms of output variables and is therefore not applicable to efficiency

analyses.

3. Comparative Results for Ratio-Based Efficiency Analysis

3.1. Efficiency Ratios

There are K DMUs which consume M inputs and produce N outputs. The k-th DMU (DMUk for

short) consumes xmk ≥ 0 units of the m-th input and produces ynk ≥ 0 units of the n-th output. The

input consumption and output production vectors are xk = (x1k, . . . , xMk)T and yk = (y1k, . . . , yNk)T ,

respectively.

Preference information about the relative values of inputs and outputs is captured by non-

negative weights v = (v1, . . . , vM)T and u = (u1, . . . , uN)T , respectively. These weights are assumed

to satisfy homogeneous linear constraints (cf. Podinovski, 2001, 2005)

Su = {u = (u1, . . . , uN) 6= 0 | Auu≤ 0} (1)

Sv = {v = (v1, . . . , vM) 6= 0 | Avv≤ 0}, (2)

where Au,Av are coefficient matrices derived from the DM’s preference statements about the

relative values of inputs and outputs.

For any feasible input weights v ∈ Sv, the virtual input of DMUk is vT xk =
∑M

m=1 vmxmk. Simi-

larly, the virtual output for u ∈ Su is uT yk =
∑N

n=1 unynk. We assume that the virtual inputs and

the virtual outputs are strictly positive for all feasible weights (i.e.,
∑

m vmxmk > 0 ∀ v ∈ Sv and
∑

n unynk > 0 ∀ u ∈ Su for all k = 1, . . . ,K). This assumption holds, for example, if inputs and

outputs have strictly positive weights, and if there is at least one input (output) that is consumed

(produced) by every DMU. It also holds if all DMUs consume/produce some positive amounts of

all inputs/outputs. The assumption of positive virtual inputs/outputs ensures that the (absolute)

efficiency ratio (cf. Podinovski, 2001) of DMUk, defined as

Ek(u, v) =
∑

n unynk∑
m vmxmk

, (3)

is well-defined for any u∈ Su, v ∈ Sv (see also Dyson et al., 2001).
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3.2. Efficiency Rankings

The DMUs’ efficiency ratios (3) depend on input and output weights. For any feasible weights, the

DMUs can be ranked based on their efficiency ratios. As the weights assume different values in

their respective feasible sets, the resulting rankings may change relative to each other.

In this setting, we first determine the best (=smallest) efficiency ranking that a DMU can attain

relative to the other DMUs over the set of input/output weights. Similarly, we also compute the

worst (=largest) ranking. These two bounds establish a ranking interval which conveys information

about the relative efficiencies of the DMUs.

Towards this end, we define the sets

R>
k (u, v) = {l ∈ {1 . . . ,K} | El(u, v) > Ek(u, v)}

R≥
k (u, v) = {l ∈ {1 . . . ,K} | El(u, v)≥Ek(u, v), l 6= k},

which contain the indexes of DMUs whose efficiency ratios are either strictly higher than that

of DMUk (for R>
k (u, v)), or at least as high as that of DMUk (for R≥

k (u, v)). By construction,

R>
k (u, v)⊆R≥

k (u, v).

The corresponding efficiency rankings are defined as r>
k (u, v) = 1 + |R>

k (u, v)| and r≥k (u, v) =

1+ |R≥
k (u, v)| (here, |R| denotes the cardinality of the set R). For example, if the efficiency ratio of

DMUk is strictly higher than the efficiency ratios of other DMUs at (u, v)∈ (Su, Sv), both efficiency

rankings are equal one, because R>
k (u, v) = R≥

k (u, v) = ∅. Yet these rankings treat ties differently:

for if exactly two DMUs have same highest efficiency ratio at (u′, v′) ∈ (Su, Sv), then r>(u′, v′)

ranks them both as first, but r≥(u′, v′) ranks them as second.

Formally, the ranking interval for DMUk is defined as [rmin
k , rmax

k ] where the minimum and

maximum rankings for DMUk are given by

rmin
k = minu,vr

>
k (u, v)

rmax
k = maxu,vr

≥
k (u, v),
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where the optimization problems are solved over (u, v) ∈ (Su, Sv). Both optimum solutions exist,

because r>
k (u, v) and r≥k (u, v) assume values in the set {1, . . . ,K}.

From Theorems 1 and 2, the ranking interval [rmin
k , rmax

k ] can be determined from linear pro-

gramming problems where the feasible weight sets are closed and bounded due to constraints (6)

and (9). All proofs are in the Appendix.

Theorem 1. Consider the minimization problem

minu,v,z 1+
∑
l 6=k

zl (4)

subject to
∑

n

unynl ≤
∑
m

vmxml +Czl, l 6= k (5)

∑
n

unynk =
∑
m

vmxmk = 1 (6)

zl ∈ {0,1}, l 6= k

(u, v)∈ (Su, Sv),

where C is a large positive constant. Then the solution to (4) is rmin
k , the best (smallest) efficiency

ranking of DMUk.

Theorem 2. Consider the maximization problem

maxu,v,z 1+
∑
l 6=k

zl (7)

subject to
∑
m

vmxml ≤
∑

n

unynl +C(1− zl), l 6= k (8)

∑
n

unynk =
∑
m

vmxmk = 1 (9)

zl ∈ {0,1}, l 6= k

(u, v)∈ (Su, Sv),

where C is a large positive constant. Then the solution to (7) is equal to rmax
k , the worst (largest)

efficiency ranking of DMUk.

In general, those DMUs whose input/output profiles differ considerably from what is con-

sumed/produced by all DMUs on the average are more likely to have large ranking intervals, because
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these DMUs may achieve very high or low rankings for feasible weights that correspond to the

extreme points of Su and Sv. Conversely, the DMUs which are close to the average input/outputs

may have narrower ranking intervals.

3.3. Efficiency Dominance

Although ranking intervals provide information about the relative efficiencies of the DMUs, they

are not very well suited for the comparison of pairs of DMUs. For instance, even if two DMUs have

overlapping ranking intervals, it is possible that one of them has a higher efficiency ratio (3) for

all feasible input/output weights.

To compare the efficiency ratios of DMUs on a one-on-one basis, we build on concepts from pref-

erence programming (see, e.g., Salo and Hämäläinen, 1992, 2001) and define efficiency dominance

between DMUs as follows.

Definition 1. DMUk dominates DMUl (denoted by DMUk ÂDMUl) if and only if

Ek(u, v)≥El(u, v) for all (u, v)∈ (Su, Sv) (10)

Ek(u, v) > El(u, v) for some (u, v)∈ (Su, Sv). (11)

If DMUk Â DMUl, the efficiency ratio of DMUk is at least as high as that of DMUl for all feasible

weights and, moreover, there exist some weights for which its efficiency is strictly higher. Thus, if

the inequalities (10)–(11) hold, DMUk can be incontestably regarded as more efficient than DMUl.

By construction, Definition 1 establishes an irreflexive, asymmetric, antisymmetric and transitive

binary relation among the DMUs. This relation, however, is not necessarily total (i.e., it may be

that neither DMUk Â DMUl nor DMUl Â DMUk).

The dominance relation in Definition 1 can be determined by examining the efficiency ratio

Dk,l(u, v) =
Ek(u, v)
El(u, v)

. (12)

By the following Lemma 1, this ratio (12) is invariant subject to multiplication of input/output

weights by positive constants.
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Lemma 1. Take any (u, v) ∈ (Su, Sv) and let (u′, v′) be vectors that are obtained from (u, v) by

multiplying them componentwise so that u′ = cuv, v′ = cvv for some cu > 0, cv > 0 . Then (u′, v′)∈

(Su, Sv) and Dk,l(u, v) = Dk,l(u′, v′).

By Lemma 1, the ratio (12) remains invariant even if normalization constraints (such as
∑

n un =

1 and
∑

m vm = 1) are imposed on input/output weights. After the introduction of these normal-

ization constraints, the feasible sets Su and Sv become closed and bounded. Because the ratio

Dk,l(u, v) is continuous in its arguments, the ratio (12) reaches its maximum and minimum.

A concern in the optimization of the relative efficiency ratio (12) is that this ratio is nonlinear

in u and v. We thus establish Theorem 3 which allows the dominance structures to be computed

using linear programming.

Theorem 3. Consider the maximization/minimization problems

max/minu,v

∑
n

unynk (13)

subject to
∑

n

unynl =
∑
m

vmxml (14)

∑
m

vmxmk = 1 (15)

(u, v)∈ (Su, Sv) (16)

Then the maximum/minimum of Dk,l(u, v) = Ek(u, v)/El(u, v) in (12) over (Su, Sv) is equal to the

maximum/minimum of (13) subject to constraints (14)-(16).

Specifically, if the minimum of (12), denoted by Dk,l, is less than one, DMUk does not dominate

DMUl. If the minimum is greater than one, then dominance holds. Finally, if the minimum is

one, the sufficiency condition (11) can be checked by computing the maximum of (13) subject to

(14)–(16). If the resulting maximum, denoted by Dk,l, is greater than one, dominance does hold;

but if not, then DMUk and DMUl have the same efficiency ratio (3) for all feasible weights and

dominance does not hold. In practice, the properties of Â (transitivity, asymmetricity) can be

exploited to reduce the number of pairs for which this relation needs to be explicitly computed.
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A DMU need not be dominated by a DMU which has a higher DEA efficiency score. For example,

consider three DMUs A,B and C which all consume one unit of a single input and produce two

outputs so that A = (1,3),B = (2,1),C = (3,1). For the weight information 1/3u1 ≤ u2 ≤ 3u1, there

are two efficient DMUs, A and C. Yet, for the weight vector (u1, u2) = (0.75,0.25), the virtual output

of DMUB (i.e., 0.75× 2 + 0.25× 1 = 1.75) is higher than that of DMUA (i.e., 0.75× 1 + 0.25× 3 =

1.50) so that DMUB is not dominated by DMUA.

3.4. Efficiency Differences among DMUs

The maximization and minimization problems in Theorem 3 provide information about much more

(or less) efficient DMUk can be relative to DMUl. For example, if Dk,l = 1.42, the efficiency ratio

of DMUk can be at most 42 % greater than that of DMUl. Conversely, if Dk,l = 1.10, then the

efficiency ratio of DMUk will be at least 10 % higher than that of DMUl; and if Dk,l = 0.80, the

efficiency ratio of DMUk will be at least 80 % of the efficiency ratio of DMUl. In this way, the

efficiency bounds Dk,l,Dk,l provide information about the efficiency differences between the DMUs.

The consideration of pairwise ratios can be extended to situations where the efficiency DMUk is

compared concurrently with several DMUs in L∈ {1, . . . ,K}, k 6∈L. Specifically, the ratios

Dk,L(u, v) =
Ek(u, v)

maxl∈LEl(u, v)
= minl∈L

Ek(u, v)
El(u, v)

(17)

Dk,L(u, v) =
Ek(u, v)

minl∈LEl(u, v)
= maxl∈L

Ek(u, v)
El(u, v)

(18)

indicate how efficient DMUk is in comparison with the highest and lowest efficiency ratios of

DMUl, l ∈ L for different input/output weights. By Theorems 4 and 5, the maximum of (17) and

the minimum of (18) can be obtained from the following linear programs.

Theorem 4. The maximum of (17) over feasible input/output weights is the optimum value of

maxu,v

∑
n

unynk (19)

subject to
∑

n

unynl ≤
∑
m

vmxml, l ∈L (20)

∑
n

vmxmk = 1
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(u, v)∈ (Su, Sv).

Theorem 5. The minimum of (18) over feasible input/output weights is the optimum value of

minu,v

∑
n

unynk (21)

subject to
∑

n

unynl ≥
∑
m

vmxml, l ∈L (22)

∑
n

vmxmk = 1

(u, v)∈ (Su, Sv).

In principle, one may also be interested in the highest efficiency ratio of DMUk relative to the

smallest of the efficiency ratios of DMUl, l ∈L, or the smallest efficiency ratio of DMUk relative to

the highest of the efficiency ratios of DMUl, l ∈L. These bounds can be determined by inspection

and the repeated application of Theorem 3, because

maxu,vDk,L(u, v) = maxu,v

Ek(u, v)
minl∈LEl(u, v)

= maxu,vmaxl∈L

Ek(u, v)
El(u, v)

= maxl∈Lmaxu,vDk,l(u, v) = maxl∈LDk,l(u, v)

and

minu,vDk,L(u, v) = minu,v

Ek(u, v)
maxl∈LEl(u, v)

= minu,vminl∈L

Ek(u, v)
El(u, v)

= minl∈Lminu,vDk,l(u, v) = minl∈LDk,l(u, v).

3.5. Specification of Performance Targets

The above efficiency results can be employed to specify different kinds of performance targets. For

example, based on efficiency rankings, one can introduce targets such that DMUk will belong to

(i) the R∗
k (< rmin

k ) best DMUs for some weights or (ii) the R◦
k (< rmax

k ) most efficient DMUs for

all weights. The following Theorems address these two specific cases when these targets are to be

attained through radial increases in the production of outputs.

Theorem 6. The minimization problem

minu,v,z ζ (23)
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subject to 1+
∑
l 6=k

zl ≤R∗
k (24)

∑
n

unynl ≤
∑
m

vmxml +Czl, l 6= k (25)

∑
n

unynk = ζ (26)

∑
m

vmxmk = 1

zl ∈ {0,1}, l 6= k

(u, v)∈ (Su, Sv)

(where C is a large positive constant) has a solution ζ∗ > 1 which gives the least radial increase in

outputs that improves the best possible ranking of DMUk from rmin
k to R∗

k (< rmin
k ).

Theorem 7. The minimization problem

minu,v,z ζ (27)

subject to 1+
∑
l 6=k

zl ≤R◦
k

∑
m

vmxml ≤
∑

n

unynl +C(1− zl), l 6= k,

∑
n

unynk = ζ

∑
m

vmxmk = 1

zl ∈ {0,1}, l 6= k

(u, v)∈ (Su, Sv).

(where C is a large positive constant) has a solution ζ∗ > 1 which gives the least radial increase in

outputs that improve the worst possible ranking of DMUk from rmax
k to R◦

k (< rmax
k ).

These two kinds of performance targets can be imposed simultaneously by introducing relevant

constraints from Theorems 6 and 7.

Even dominance structures can be employed in the specification of performance targets. First,

we ask how much more a DMUk that does not dominate DMUl should produce in order to achieve

a point where it starts to dominate DMUl. In considering this question, we may assume that
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Dk,l < 1 in Theorem 3 (otherwise, we have 1 = Dk,l = Dk,l so that the efficiency ratios of both

DMUs coincide for all feasible weights and thus any marginal improvement will suffice). When

Dk,l < 1, the efficiency ratio of the revised DMUk becomes at least as high as that of DMUl for all

feasible weights when DMUk increases the production of its outputs by a factor of ζ∗l = 1/Dk,l. If

this necessary condition for dominance is required to hold for several DMUs, the required increase

will be ζ∗ = maxl∈Lζ∗l where L contains the indexes of these other DMUs. Second, we may ask how

much more a DMUk that is dominated by DMUl should produce to achieve the point where it is

no longer necessarily dominated by DMUl. In this case 1≤Dl,k ≤Dl,k with at least with one strict

inequality. It follows that DMUk must increase the production of its outputs at least by a factor of

ζ∗ = Dl,k, or else it will continue to be dominated by DMUl. If the existing dominance of DMUk by

DMUl, l ∈L is to be eliminated (so that no DMUl no longer dominates DMUk), then the required

increase will be at least ζ∗ = maxl∈LDl,k.

The results in Section 3.4, too, can be used for setting performance targets. For instance, assume

that the maximum of Theorem 4 is Dk,L and the target is to increase the efficiency of DMUk so

that for some weights its efficiency ratio becomes ρ times greater than the highest of the efficiency

ratios of DMUl, l ∈ L. Then ζ = ρ/Dk,L is the least radial increase in the production of outputs

through which this target can be reached. Similarly, given the minimum Dk,L in Theorem 5, the

efficiency of DMUk can be improved so as to ensure that for all feasible weights its efficiency ratio

will be at least ρ times greater than the smallest efficiency ratios among DMUl, l ∈L. This target

can be attained by increasing the production of outputs a factor of ζ = ρ/Dk,L.

In terms of efficiency implications, an increase in the production of outputs by a factor of ζ > 1

corresponds to a decrease in the use of inputs by a factor of 1/ζ < 1, because

∑
n un[ζynk]∑
m vmxmk

=
∑

n unynk∑
m vm[1/ζ]xmk

.

As a result, radial targets on the output side can be easily mapped into corresponding requirements

on the input side. Any such targets ζ∗ can also be factored into radial targets ζu and ζv which are

applied through y′nk = ζuynk and x′mk = [1/ζv]xmk subject to the constraint ζuζv = ζ∗. Furthermore,
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Figure 1 Output vectors of the six DMUs.

it is possible to introduce non-radial performance targets as well by constraining slack variables so

that the targeted changes in ranking intervals, dominance relations or efficiency differences will be

achieved.

3.6. Illustrative Examples

Consider the six DMUs in Figure 1 which consume one unit of a single input and produce two

outputs such that A = (1,9);B = (2,7);C = (3,8);D = (5,7);E = (7,5);F = (8,2). If the DM states

that the (unit) value of the first output variable is greater than that of the second, but no more

than two times as valuable, the set of feasible output weights becomes Su = {(u1, u2) 6= (0,0) | u2 ≤

u1 ≤ 2u2, ui ≥ 0, i = 1,2} which is shown in Figure 1 and 2, together with the DMUs outputs. The

DMUs’ CCR-DEA efficiency scores are (0.83,0.75,0.92,1.00,1.00,0.95).

The DMUs’ ranking intervals can be computed from Theorems 1 and 2 while the dominance

structure for the DMUs can be established using Theorem 3. The results are shown in Figure

3 where the arrows indicate dominance relationships and the ranking intervals are shown after

then DMUs’ labels. Here, for example, the ranking interval [2,5] of DMUF shows that the relative
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Figure 2 Feasible weights and DMUs’ relative efficiencies.

Figure 3 Figure 3. Ranking intervals and efficiency dominances among the DMUs.

efficiency of DMUF is sensitive to weights. This can be contrasted with DMUC whose ranking

interval [3,4] shows that its efficiency is the third or fourth highest. These ranking intervals and

dominance relations can also be read from Figure 2.

Figure 1 also illustrates the use of rankings in the specification of performance targets. For

example, if DMUF is required to become efficient through a proportional increase of all its outputs

(which is equivalent to the requirement that it attains the highest ranking rmin
F = 1 for some feasible

weights), it needs to move from F to F ′ = (8 4
9
,21

9
)≈ (8.44,2.11) where its virtual value achieves that
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of DMUE for output weights (u1, u2)∝ (2,1). However, if it is required to improve its performance

so that it will be among the three most efficient DMUs for all feasible output weights, an even

greater improvement to point F ′′ = (84
5
,2 1

5
)≈ (8.80,2.20) is required. This is because for any radial

increase of outputs that falls short of this, the use of equal output weights (u1, u2) ∝ (1,1) will

assign a higher virtual value to the three DMUs C,D and E, and hence DMUF will not be among

the three most efficient ones. Moreover, if DMUB is required to improve its efficiency so that it can

become one of three most efficient ones, it needs to produce more outputs until it reaches the point

B′ = (2 4
9
,8 5

9
)≈ (2.44,8.56) where its virtual output achieves that of DMUC (and remains less than

that of DMUD and DMUE).

Dominance relations, too, can be employed in target specification. For example, DMUA–which is

dominated by DMUC–should increase its output production by more than a factor of (3+8)/(1+

9) = 11/10 ≈ 1.10 in order not to be dominated DMUC . On the other hand, the best possible

ranking of DMUF is two. This is better than three, the best possible ranking of DMUC , yet neither

one dominates the other. If DMUC now seeks to dominate DMUF , it needs to increase its output

production by a factor of (2× 8+1× 2)/(2× 3+1× 8) = 18/14≈ 1.29.

From the management perspective, an important benefit of these concepts is that at best they

capture forceful verbal statements that correspond to realistic yet challenging targets. For example,

the DMU could be required to it best possible ranking so that it achieves a position in the top 20%

of most efficient DMU; or that it will no longer be dominated by some ‘rival’ DMUs. In contrast,

the usual DEA projection of DMUs onto the efficient frontier may call for unrealistically large

performance improvements, at least for the most inefficient DMUs. It may also be more difficult

to communicate in non-technical simple terms what such projections mean.

4. A Case Study on the Comparison of University Departments

We illustrate the use of the preceding efficiency results by reporting a case study at a large Technical

University with well over 10 000 students. At the time of the study, the University had twelve

departments responsible for research activities and degree programmes of which most were in
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engineering and technical sciences, but also in fields such as architecture and production economics.

The efficiency results were produced for the twelve departments. Administrative units, support

functions, and separate research institutes without responsibilities for degree programmes were not

considered.

A major impetus for the study came from the Board of the University which requested that the

Resource Committee–which has the remit to develop principles for resource allocation within the

University–consider alternative models for efficiency analysis and resource allocation. Further to

this request, the pilot study was carried out in two phases. The initial results were first presented

to the Board and, based on positive feedback, further analyses were conducted three months later

using a more comprehensive set of preference statements supplied by the ten members of the

Resource Committee.

The outputs were defined as three-year departmental averages in the University’s reporting sys-

tem which contained 44 outputs, structured under seven classes (Degrees and credits awarded/

International publications/ Domestic publications/ International mobility of staff/ Other inter-

national scientific activities/ Other domestic scientific activities/ Student exchanges). Statements

about the relative values of these outputs were elicited from the Resource Committee members

with a spreadsheet tool. For each of the seven output classes, the tool first assigned 10 points to

the first (reference) output in a class (e.g., MSc degree), and then asked the respondents to give

a number of points to the other outputs in the same class. Thus, for example, giving 80 points to

a PhD degree would correspond to the preference statement that a PhD degree is eight times as

valuable as an MSc degree. Second, the respondents were asked to compare these seven reference

outputs through similar point allocations. Finally, the corresponding vector of relative weights was

derived for each respondent. Based on this weight vector, the tool also showed for every output

class its relative share of the University’s total virtual output, computed by valuing all the outputs

of the University using on this weight vector.

The two input variables were basic funding (which is provided by the Government and allocated

to the Departments by the Rector) and external funding (which is acquired by the research groups
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Figure 4 Efficiency scores for the twelve departments.

from external funding sources). The choice of these inputs was motivated by the recognition that

(i) most other inputs (e.g., annual person-years, office space) are ultimately financed through these

two sources of funding, and (ii) information about these two inputs was readily available. Because

the management of external funding involves extra workload, and because this funding also puts

additional constraints on how it is used, the respondents were asked to state how much more ‘valu-

able’ basic funding would be in comparison with external funding. Here, most respondents reported

that basic funding would be 1.25-2.00 times as valuable as funding from external sources (e.g., a

$100,000 of basic funding would have the same value of $125,000-200,000 of external funding).

Figure 4 shows the usual CCR-DEA scores using a feasible weight set that was formed from the

respondents’ weight vectors and their convex combinations. Among the twelve Departments, three

are efficient (A,J and L), followed by the ‘nearly’ efficient Department K (with an efficiency score

of 0.97), four Departments with efficiency scores in the range 0.60-0.90, and, finally, the three least

efficient ones with efficiency scores less than 0.60.

The good performance of Departments J,K and L is confirmed by Figure 5 which shows the

ranking intervals of the twelve Departments. For example, the efficiency ratio of L is among the

three highest ones for all feasible weights while the efficiency ratios of J and K are among the top
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Figure 5 Best and worst efficiency rankings for the departments.

four. Although A is efficient, its efficiency ranking may be as low as 7 for some weights, indicating

that its efficiency ratio is sensitive to the choice of weights. Figure 5 also shows that Departments

D,F and H have the three smallest efficiency ratios regardless of weights.

Results about efficiency dominance relations can be inferred from Figure 6. Here, the cells contain

minimum lower bounds on how much larger the efficiency ratios of the row-DMUs are in com-

parison with the column-DMUs, based on the minimization problem (13). For example, although

Department K is not efficient (in the CCR-DEA sense), it is dominated by Department L only. An

examination of the K-column also shows that K is not dominated by the efficient Departments A

and J ; thus, for example, there exist some weights for which the efficiency ratio of K is higher than

that of A (and possibly some other weights for which the same is true when comparing K with J).

Out of the three efficient Departments, A dominates the fewest number of other Departments (five,

as opposed to eight for J and nine for L). Even the ‘almost-efficient’ Department K dominates

more other Departments than A; these results could be readily explained by the untypical teaching

and research profile of Department A. The indicated percentages, too, were instructive because

they provided information about the relative efficiency differences among the Departments: for

example, the 36,4 % for the pairwise comparison of A over D indicated that for all feasible weights,

the efficiency ratio of DMUA was at least this much higher than that of DMUD.

During the examination of results, the question was raised if the definition of feasible weights as
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Figure 6 Efficiency dominances among the departments.

convex combinations of the respondents’ individual weights had permitted opportunistic behavior

where some respondents–as representatives of their Departments–would give weights with the aim

of maximizing the relative efficiencies of their own Departments. To discourage such behavior,

the model was extended by putting upper bounds λi ≤ 0.5 on the coefficients λi with which the

respondents’ normalized weights ui were aggregated. This resulted in the reduced feasible weight

set Su = {u | u =
∑

i λiu
i,0 ≤ λi ≤ 0.5,

∑
i λi = 1} where the ‘weight’ of the i-th respondent’s

individual weights ui could not exceed 50 % of the total; however, the efficiency results did not

change noticeably. Yet, there may exist situations where such constraints can be used to ensure

that the preferences of the key DMs are fully accounted for (for example, a minimum of 50 % could

be ascribed to the coefficient of the Rector’s weight vector).

The results catalyzed an informed discussion in the Committee and gave insights into why

some departments were more efficient than others. In considering the limitations of the model,

it was noted that the weighting of outputs can be problematic due to interdependencies between

the different phases in educational processes. Such interdependencies arise, for example, when

some departments produce ‘final’ outputs (e.g., PhD degrees) further down in the ‘value chain’

by building on intermediate outputs produced by other departments (e.g., introductory courses on

mathematics). But because these intermediate outputs may not receive high weights, departments

that produce them may appear less efficient than those that focus on the more highly valued final
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outputs–even if the efficiency of the University as a whole might decline unless sufficient resources

are given to the production of intermediate outputs.

Second, the assignment of equal weights to the outputs of different departments assumes that

these outputs are equally valuable. This assignment can be defended on the grounds that the

departments are then treated in the same way; but this approach does not recognize that the

production of some of the seemingly similar outputs may call for much more resources than others

(e.g., articles in experimental physics vs. theoretical physics). Unless such factors are recognized in

the interpretation of results, the straightforward use of efficiency analysis for resource allocation

may promote the production of outputs that can be generated at a lower cost without ascribing

due value to the diversity of different outputs (see, e.g., Stirling, 2007). To counter such tenden-

cies, efficiency analyses within the university may need to be complemented by efficiency analyses

across universities where the focus is on the comparison of similar enough ‘units of analysis’ (e.g.,

departments in the same scientific discipline at different universities).

Third, universities provide education, produce scientific knowledge and foster innovations

through highly non-linear processes. These processes of knowledge production may be most effi-

cient (say, in terms of articles published per person-year of effort) in fields where there already exist

well-established scientific communities with specialized journals and a broad readership (which is

not the case for new emerging fields that may be struggling to establish new paradigms; Kuhn,

1962). Seen from this perspective, excessive pursuit of demonstrated efficiency may foster “lock-

ins” in existing scientific traditions, thus undermining the broader objectives of generating new

knowledge.

5. Conclusion

We have developed efficiency results (ranking intervals, dominance structures, and efficiency

bounds) which provide comparative information about the DMUs’ relative efficiencies as a func-

tion of different input and output weights. In comparison with conventional DEA efficiency scores,

these efficiency results are more robust, in the sense that they (i) reflect the ranges of DMUs’
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efficiency ratios for all feasible weights, (ii) tend to be insensitive to the introduction/removal of

outlier DMUs, and (iii) do not call for particular returns-to-scale assumptions. These results can

be employed for the specification of performance targets, too, for instance by requiring that a

DMU will increase its output so as to become one of the three most efficient ones for some feasible

weights; or that it will be among the five most efficient DMUs for all feasible weights.

We have also deployed these efficiency results in the comparison of the departments at a major

technical university. The encouraging feedback from this case study suggest that the proposed

efficiency results do provide important management insights and that they can meaningfully com-

plement conventional efficiency scores. The usefulness of these efficiency results, however, is by no

means limited to the context of higher education: rather, they can be deployed across the full range

of decision contexts where DEA-like ratio-based efficiency analyses are being applied, particularly

when it is of interest to explore the robustness and sensitivity of the efficiency results subject to

alternative assumptions about input and output weights.
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Appendix

Proof of Theorem 1. Let the minimum rank of DMUk be attained at (u, v) ∈ (Su, Sv). Then

there exists L = R>
k (u, v)⊂ {1, . . . ,K} so that El(u, v) > Ek(u, v), l ∈L and Ek(u, v)≥El(u, v), l 6∈
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L. Let v′m = vm/[
∑

m vmxmk] and u′n = un/[
∑

n unynk]. Then (u′, v′) ∈ (Su, Sv) and
∑

m v′mxmk =
∑

n u′nynk = 1.

For any l 6= k, let zl = 1 if l ∈L, and zl = 0 if l 6∈L. Then, for any l 6∈L, we have

1≤ Ek(u, v)
El(u, v)

=
Ek(u′, v′)
El(u′, v′)

=
∑

m v′mxmk∑
n u′nynk

∑
m v′mxml∑
n u′nynl

=
∑

m v′mxml∑
n u′nynl

which gives
∑

n u′nynl ≤
∑

m v′mxml. For l ∈ L, multiplying zl = 1 by the large positive constant

C implies that the constraint (5) is satisfied for l ∈ L, too. Because 1 +
∑

l 6=k zl = 1 + |L| = 1 +

|R>
k (u, v)|= r, the solution to the minimization problem is not larger than the minimum rank.

Conversely, let (u, v, z) be a solution to the minimization problem. Let L = {l | l 6= k, zl = 1}.

Then introducing zl = 0, l 6∈L into the first constraint in (5) gives
∑

n unynl ≤
∑

m vmxml so that

Ek(u, v)
El(u, v)

=
∑

m vmxml∑
n unynl

≥ 1,

because Ek(u, v) = 1 due to (6). Thus, any l 6∈L cannot belong to R>
k (u, v). For l ∈L, the inequality

∑
n unynl ≤

∑
m vmxml ⇐⇒ Ek(u, v)≥El(u, v) cannot hold, because z is at optimum (otherwise,

any such zl = 1 could be changed to zl = 0 without violating (5) while reducing the value of the

objective function); hence l ∈L⊆R>
k (u, v). It follows that R>

k (u, v) = L and rmin
k ≤ 1+ |R>

k (u, v)|=

1+ |L|= 1+
∑

l 6=k zl.

Proof of Theorem 2. If the maximum rank of DMUk is attained at (u, v) ∈ (Su, Sv), there

exists a subset L = R≥
k (u, v)⊂ {1, . . . ,K}, k 6∈ L such that El(u, v)≥Ek(u, v), l ∈ L and Ek(u, v) >

El(u, v), l 6∈L. If
∑

j vmxmk 6= 1, let v′m = vm/[
∑

j vmxmk] so that
∑

m v′mxmk = 1; and if
∑

n unynk 6=

1, put u′n = un/[
∑

n unynk] so that
∑

n u′nynk = 1.

For any l 6= k, let zl = 1 if l ∈L and zl = 0 if l 6∈L. Then, for any l ∈L,

1≤ El(u, v)
Ek(u, v)

=
El(u′, v′)
Ek(u′, v′)

=
∑

m u′nynl∑
m v′mxml

⇒
∑
m

v′mxml ≤
∑

n

u′nynl

and thus (8) holds. For l 6∈ L, multiplying (1− zl) = 1 by the positive constant C implies that (8)

is satisfied in this case too. Now, 1 +
∑

l 6=k zl = 1 + |L|= 1 + |R≥
k (u, v)|= rmax

k . Thus, the solution

to maximization problem is at least as large as the maximum rank.
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Conversely, assume that (u, v, z) is a solution to the maximization problem and let L = {l | l 6=

k, zl = 1}. For any l ∈L with zl = 1, the constraint
∑

m vmxml ≤
∑

n unynl implies

El(u, v)
Ek(u, v)

=
∑

n unynl∑
m vmxml

≥ 1,

because u and v satisfy (8)–(9); thus, L ⊆ R≥
k (u, v). Because z is at optimum, the inequality

Ek(u, v) ≤ El(u, v) cannot hold for l 6∈ L (otherwise, any such zl = 0 could be changed to zl = 1

without violating constraints while increasing the objective function). Thus R≥
k (u, v) does not

contain elements that are outside of L. It follows that L = R≥
k (u, v) and rmax

k ≥ 1 + |R≥
k (u, v)| =

1+
∑

l 6=k zl.

Proof of Lemma 1. To prove that u′ ∈ Su, note that u ∈ Su implies Auu≤ 0 and hence Auu′ =

Aucuu = cu(Auu)≤ 0; similarly, v′ ∈ Sv. The last claim follows from

Dk,l(u′, v′) =
Ek(u′, v′)
El(u′, v′)

=
∑

n u′nynk∑
m v′mxmk

∑
m v′mxml∑
n u′nynl

=
cu

∑
n unynk

cv

∑
m vmxmk

cv

∑
m vmxml

cu

∑
n unynl

=
∑

n unynk∑
m vmxmk

∑
m vmxml∑
n unynl

= Dk,l(u, v).

Proof of Theorem 3. Choose (u∗, v∗) ∈ (Su, Sv) such that Dk,l(u∗, v∗) ≥ Dk,l(u, v) ∀(u, v) ∈

(Su, Sv). Define v′ so that v′m = v∗m/[
∑

i v
∗
i xik]. By construction, v′ ∈ Sv and

∑
m v′mxmk = 1. Define

u′ = cuu∗ ∈ Su such that
∑

n u′nynl =
∑

m v′mxml (this is possible, because
∑

n u∗nynl and
∑

m v′mxml

are positive). The weights (u′, v′) satisfy constraints (14)–(16), while the repeated application of

Lemma 1 gives Dk,l(u∗, v∗) = Dk,l(u∗, v′) = Dk,l(u′, v′) =
∑

n u′nynk, proving that the maximum of

(13) over (14)–(16) is at least as high as Dk,l(u∗, v∗).

Assume that the maximum of (13) is attained at (uo, vo). For these weights (uo, vo) ∈ (Su, Sv),

we have

Dk,l(uo, vo) =
Ek(uo, vo)
El(uo, vo)

=
∑

n uo
nynk∑

m vo
mxmk

∑
m vo

mxml∑
n uo

nynl

=
∑

n

uo
nynk,

because the weights (uo, vo) satisfy (14)–(15). Thus, the maximum of Dk,l(u, v) over (Su, Sv) cannot

be smaller than the solution to the maximization problem in Theorem 3. The minimization case

can be shown analogously.
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Proof of Theorem 4. Let the maximum of (17) be ζ∗ so that this optimum is attained at (u∗, v∗).

There then exists some l∗ ∈L such that El∗(u∗, v∗)≥El(u∗, v∗) ∀ l ∈L. Choose v′ = v∗/[
∑

m v∗xmk]

so that
∑

m v′mxmk = 1. Also, choose a constant cu > 0 so that
∑

n u′nynl∗ =
∑

m v′mxml∗ for u′ = cuu∗.

For any l ∈L, we have

1 ≥ Dl,l∗(u∗, v∗) = Dl,l∗∗(u′, v′) =
El(u′, v′)
El∗(u′, v′)

=
∑

n u′nynl∑
m v′mxml

so that the constraint (20) is satisfied by (u′, v′). By construction, ζ∗ = maxu,vDk,L(u, v) =

Dk,l∗(u′, v′) =
∑

n u′nynk, which shows that the maximum of (19) is at least as high as that of (17).

Conversely, assume that the maximum of (19) ζ ′ is attained at (u′, v′) and choose l′ ∈L so that

the constraint in (20) is binding (such l′ exists, for otherwise u′ could be increased to improve the

value of the objective function, which would be in violation of the optimality assumption). Now,

maxu,vDk,L(u, v)≥ Ek(u′, v′)
El′(u′, v′)

= ζ ′

so that the maximum (17) must be at least as high as that of (19).

Proof of Theorem 5. Let the minimum of (18) ζ∗ be attained at (u∗, v∗). There then exists

some l∗ such that El∗(u∗, v∗)≤El(u∗, v∗), l ∈ L and ζ∗ = minu,vDk,L(u, v) = Ek(u∗, v∗)/El∗(u∗, v∗).

As in the proof of Theorem 4, use (u∗, v∗) in defining normalized valuation vectors (u′, v′) such

that
∑

m v′mxmk = 1 and El∗(u′, v′) = 1. The choice of l∗ guarantees that 1≤El(u′, v′) so that first

constraint in constraint (22) holds for all l ∈L. Because

ζ∗ =
Ek(u∗, v∗)
El∗(u∗, v∗)

=
Ek(u′, v′)
El∗(u′, v′)

=
∑

n

u′nynk,

the minimum to (21) is at least as small as the minimum to (18).

Assume that ζ ′, the minimum of (21), is obtained at (u′, v′). Choose l′ such that the constraint in

(22) is binding (such l′ must exist, for otherwise the assumption of optimality would be violated).

Then E′
l(u′, v′) = 1 while constraint (22) implies that El(u′, v′) ≥ 1 for any other l ∈ L; hence

E′
l(u′, v′)≤El(u′, v′). It follows that

minu,vDk,L(u, v)≤Dk,L(u′, v′) =
Ek(u′, v′)

minl∈LEl(u′, v′)
=

Ek(u′, v′)
El′(u′, v′)

= ζ ′,
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proving that the minimum of (18) is at least as small as the optimum to (21).

Proof of Theorem 6. To prove that the optimum exists, first choose any (u◦, v◦) ∈ (Su, Sv), let

ζ◦ = maxl 6=k[
∑

n u◦ynl]/[
∑

m v◦mxml] and define the revised outputs of DMUk by y′nk = ζ◦ynk. Then,

when ynk is replaced by y′nk, all the constraints in Theorem 6 are satisfied with zl = 0, l 6= k. Also,

any feasible solution ζ must be greater than one, because inserting ζ = 1 to (26) would associate an

efficiency ratio of one with DMUk while constraints (24)–(25) would imply that there would be no

more than R∗
k− 1 other DMUs with a strictly better efficiency ratio, thus contradicting the initial

assumption rmin
k ≤R∗

k). We may therefore introduce the constraints 1≤ ζ ≤ ζ◦ which, when stated

as 1≤∑
n unynk ≤ ζ◦, show that the optimum solution is contained in a compact set of weights so

that the optimum ζ∗ exists.

For the revised y′nk = ζ∗ynk, constraints (24)–(25) imply that there will be no more than R∗
k − 1

other DMUs with a strictly better efficiency ratio, and thus the best ranking of the revised DMUk

will be R∗
k or better. Also, for ζ

′′
< ζ∗, the optimality of ζ∗ would require that that constraint (24)

would be violated for any zl, l 6= k such that constraint (25) is satisfied, which in turn would imply

that the ranking R∗
k would not be attained by the revised DMUk with outputs y′nk = ζ

′′
ynk.

Proof of Theorem 7. Analogous to the proof of Theorem 6.
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