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Abstract

A subset X of the vertex set of a graph G is a secure dominating set of G if each vertex of
G which is not in X is adjacent to some vertex in X and if, for each vertex u not in X,
there is a neighbouring vertex v of u in X such that the swap set (X − {v}) ∪ {u} is again
a dominating set of G. The secure domination number of G is the cardinality of a smallest
secure dominating set of G.
The notion of secure graph domination finds applications in the generic setting where the
vertex set of G represents distributed locations in some spatial domain and the edges of G
represent links between these locations. Patrolling guards, each stationed at one of these
locations, may move along the links in order to protect the graph. A minimum secure
dominating set of G then represents a smallest collection of locations at which guards may
be stationed so that the entire location complex modelled by G is protected in the sense
that if a security concern arises at location u, there will either be a guard stationed at that
location who can deal with the problem, or else a guard dealing with the problem from an
adjacent location v will still leave the location complex protected after moving from location
v to location u in order to deal with the problem.
A graph G is q-critical if the smallest arbitrary subset of edges whose removal from G
necessarily increases the secure domination number, has cardinality q. The notion of q-
criticality is important in applications such as the one mentioned above, because it provides
threshold information as to the number of edge failures (perhaps caused by an adversary)
that will necessitate the hiring of additional guards to secure the location complex.
Denote by Ωn the largest value of q for which q-critical graphs of order n exist. It has
previously been established that Ω2 = 1, Ω3 = 2, Ω4 = 4, Ω5 = 6 and Ω6 = 9. In this paper
we present a repository of all q-critical graphs of orders 2, 3, 4, 5 and 6 for all admissible
values of q and we also establish the previously unknown values Ω7 = 12, Ω8 = 17 and
Ω9 = 23. These values support an existing conjecture that Ωn =

(
n
2

)
− 2n+ 5 for all n ≥ 7.
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1 Introduction

A dominating set of a graph G is a subset X of the vertex set of G with the property that
each vertex of G not in X is adjacent to at least one vertex in X. A secure dominating set
of G is a subset Xs of the vertex set of G with the property that Xs forms a dominating
set of G and, additionally, for each vertex u not in Xs, there exists a vertex v ∈ Xs

for which the swap set (Xs − {v}) ∪ {u} is again a dominating set of G. The secure
domination number of G, denoted by γs(G), is the minimum value of |Xs|, taken over all
secure dominating sets Xs of G (i.e. the cardinality of a smallest secure dominating set of
G). A number of general bounds have been established for the parameter γs(G) in [7], and
exact values of γs(G) have also been established for various graph classes, such as paths,
cycles, complete multipartite graphs and products of paths and cycles. Various properties
of secure dominating sets of graphs have also been studied in [1, 2, 4, 5, 6].

Consider, as an example, the graph G1 in Figure 1 for which γs(G1) = 2. A minimum
secure dominating set for G1 is {v1, v2}; vertex v4 is defended by v2 while v3 and v5 are
both defended by v1.

v3 v4

v1

v5v2

G1

Figure 1: A minimum secure dominating set {v1, v2} for a graph G1 of order 5.

The notion of secure graph domination finds applications in the generic setting where the
vertex set of G represents a network of distributed locations in some spatial domain and
the edges of G represent links between these locations. Patrolling guards, each stationed
at one of these locations, may move along the links in order to protect the graph. A
minimum secure dominating set of G then represents a smallest collection of locations
at which guards may be stationed so that the entire location complex modelled by G is
protected in the sense that if a security concern arises at location u, there will either be a
guard stationed at that location who can deal with the problem, or else a guard dealing
with the problem from an adjacent location v will still leave the location complex protected
after moving from location v to location u in order to deal with the problem.

In this setting, the notion of edge removal is important, because one might seek the cost (in
terms of the additional number of guards required to protect a location complex modelled
by G) if a number of edges in G fail (i.e. a number of links are eliminated from the location
complex, thereby disqualifying guards from moving along such disabled links).

A graph G is q-critical if the smallest arbitrary subset of edges whose removal from G
necessarily increases the secure domination number, has cardinality q. Being able to de-
termine the value of q for which a given graph is q-critical is important from an application
point of view, because this value may be seen as a robustness threshold in the sense that
the failure of some subsets of q− 1 edges in G result in graphs that can still be dominated
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securely by γs(G) guards, but this is not true for the failure of q edges in G.

In this paper, we provide empirical evidence in support of a conjecture by Burger et al. [3]
that the largest value of q for which there exists a graph of order n that is q-critical, is(
n
2

)
− 2n+ 5 for all n ≥ 7. We also provide a repository of all q-critical graphs of order n

and size m for all q ∈ {0, 1, . . . ,m} and all m ∈ {1, 2, . . . ,
(
n
2

)
}, where n ∈ {2, . . . , 6}.

2 The concept of q-criticality

We denote the set of all non-isomorphic graphs obtained by removing q ∈ {0, 1, . . . ,m}
edges from a given graph G of size m by G− qe. Furthermore, let γs(G− qe) denote the
set of values of γs(H) as H ∈ G−qe varies (for a fixed value of q). We distinguish between
the graph obtained by removing a specific edge e from a given graph G, by writing G− e,
and the class of graphs obtained by removing any single edge from G, by writing G− 1e.

The cost function

cq(G) = min γs(G− qe)− γs(G) (1)

is nonnegative and bounded from above by q for all q ∈ {0, 1, . . . ,m} [3]. This cost function
measures the smallest possible increase in the secure domination number of a member of
G − qe, relative to the secure domination number of a graph G of size m, when a set of
q ∈ {0, 1, . . . ,m} edges are removed from G.

A graph G is q-critical if cq−1(G) = 0, but cq(G) > 0 (that is, if the smallest arbitrary
subset of edges whose removal from G necessarily increases the secure domination number,
has cardinality q). The notion of q-criticality partitions the set of all non-isomorphic,
nonempty graphs of order n in the sense that any such graph is q-critical for exactly one
value of q ∈ {0, 1, 2, . . . ,

(
n
2

)
}, as demonstrated in the so-called edge-removal metagraph of

the complete graph Kn of order 4 in Figure 2. The edge-removal metagraph of a graph G
of size m is a graph whose nodes represent the non-isomorphic members of G− qe for all
q = 0, 1, . . . ,m. These nodes are arranged in m+1 levels, numbered 0, 1, . . . ,m. The nodes
on level q correspond to the members of G−qe. A node H on level q−1 of this metagraph
is joined to a node H ′ on level q if H ′ can be obtained by removing one edge from H, for
any q ∈ {1, 2, . . . ,m}. The only node on level 0 of the edge-removal metagraph of some
graph G corresponds to G itself, while the only node on level m corresponds to the empty
graph of the same order as G. The edge-removal metagraph of the complete graph Kn is
of particular interest, because it contains nodes corresponding to all the non-isomorphic
graphs of order n.

Let Qq
n be the class of q-critical graphs of order n ≥ 2 for some q ∈ {1, . . . ,

(
n
2

)
}. Grobler

and Mynhardt characterised the graph class Q1
n for all n ∈ N in 2009 [8, Theorem 2] and

used their characterisation to derive a four-step construction process for computing all the
members of the class Q1

n. Because of space constraints we do not give a full description of
this (nontrivial) construction process here, but rather refer the reader to [8, Section 3.1]
for the details. The following characterisation may be used to compute the class Qq

n

inductively from the class Qq−1
n for any integer n ≥ 2 and all permissible values of q ≥ 2,
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using the above-mentioned 4-step construction process by Mynhardt and Grobler [8] for
the class Q1

n as base case.

Proposition 1 ([3]) A graph G of size at least q > 1 is q-critical if and only if
(a) at least one graph H∗ ∈ G− 1e for which γs(H

∗) = γs(G) is (q − 1)-critical, and
(b) each graph H ∈ G− 1e for which γs(H) = γs(G) is q∗-critical for some q∗ ≤ q− 1. �

The inductive process referred to above is formalised in Algorithm 1. The algorithm
commences by considering a graph H ∈ Qq−1

n and proceeding to add a single edge e /∈
E(H) to H in Step 3, upon which the result of Proposition 1 is used to test whether or
not H + e ∈ Qq

n. This process is repeated for each edge e /∈ E(H) and for each graph
H ∈ Qq−1

n .

In Step 3 of Algorithm 1, another algorithm, Algorithm 2, is called to test whether G =
H+e ∈ Qq

n. In Algorithm 2, each member of G−1e is examined. If a member E ∈ G−1e
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Figure 2: The edge-removal metagraph of the complete graph K4 of order 4. The set K4− qe is

shown on level q of the graph for all q = 0, . . . , 6. Minimum secure dominating sets of the resulting

graphs are denoted by solid vertices in each case. An arrow of the form G → H from level q to

level q + 1 means that G is a certificate in Kn − qe showing that H ∈ Kn − (q + 1)e.
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Algorithm 1: Computing the class of Qq
n of q-critical graphs of order n

Input : The graph classes Q1
n, . . . ,Qq−1

n .
Output : The class Qq

n of q critical graphs of order n.
1 for each H ∈ Qq−1

n do
2 for each e /∈ E(H) do
3 if q-Critical(H + e, q) then Qq

n ← Qq
n ∪ {H + e}

is found for which γs(E) = γs(G), then G /∈ Qq
n by Proposition 1. Similarly, if a member

F ∈ Qp
n is found for some p ≥ q, then G /∈ Qq

n by Proposition 1. If, however, no such
graph F is found, then G ∈ Qq

n by Proposition 1, since H ∈ Qq−1
n .

Algorithm 2: q-Critical(G, q)
Input : A graph G and the value of q.
Output : A boolean value stating whether G is q-critical.

1 if G ∈ Qp
n for some p ≤ q − 1 then

2 return [False]

3 for each e ∈ E(G) do
4 if γs(G− e) = γs(G) and G− e /∈ Qp

n for some p ≤ q − 1 then
5 return [False]

6 return [True]

5
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Figure 3: The graph classes Q1
4,Q2

4,Q3
4 and Q4

4. Minimum secure dominating sets are denoted

by solid vertices in each case. An arrow of the form H∗ → G in the figure denotes the relationship

between the graphs G and H∗ in Proposition 1.

The graph classes Q1
4, . . . ,Q4

4 are shown in Figure 3. The classes Q5
4 and Q6

4 are both
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Number of q-critical graphs of order n
n→ 2 3 4 5 6 7 8 9

Ωn → 1 2 4 6 9 12 17 23

|Q1
n| 1 2 4 7 14 26 52 104

|Q2
n| 1 2 6 18 50 141 394

|Q3
n| 3 9 32 111 428 1 514

|Q4
n| 1 8 34 165 910 4 424

|Q5
n| 2 28 199 1 484 10 587

|Q6
n| 1 18 195 1 875 20 144

|Q7
n| 8 153 2 010 30 849

|Q8
n| 2 93 1 847 38 831

|Q9
n| 1 37 1 520 41 620

|Q10
n | 10 1 088 38 341

|Q11
n | 3 627 30 962

|Q12
n | 1 260 22 864

|Q13
n | 76 15 934

|Q14
n | 19 10 053

|Q15
n | 5 5 222

|Q16
n | 2 2 048

|Q17
n | 1 585

|Q18
n | 138

|Q19
n | 34

|Q20
n | 11

|Q21
n | 5

|Q22
n | 2

|Q23
n | 1

Total 1 3 10 33 155 1 043 12 345 274 667
Time � 1 � 1 < 1 2 23 531 27 208 1 069 220

Table 1: Cardinalities of the graph classes Q1
n, . . . ,QΩn

n for n ∈ {2, . . . , 9} as computed on a 3.4

GHz Intel(R) Core(TM) i7-3770 processor with 8 GiB RAM running in Ubuntu 12.04 and using a

C++ implementation of Algorithms 1–2 in conjunction with the Boost graph library [11] for graph

isomorphism testing. The computation times, shown in the last row, are measured in seconds and

represent the time required for determining the graph class Qq
n from the graph class Qq−1

n , for all

q ∈ {2, . . . ,Ωn}.

empty. The 4-step construction of Grobler and Mynhardt [8] was used to compute the
class Q1

n in the first column of the figure as base case. Thereafter, Algorithm 1 was used
to compute the classes Q2

4,Q3
4 and Q4

4 inductively.

Note that it is, in view of Proposition 1 and Algorithms 1–2, not necessary to construct
the entire edge-removal metagraph of the complete graph of order n in order to determine
the graph class Qq

n for a fixed value of q; instead only the classes Q1
n, . . . ,Qq

n need be
constructed inductively which, for values of q that are small compared to

(
n
2

)
, can be

achieved in a fraction of the time required to construct the entire edge removal metagraph
of Kn.
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3 Numerical results

Let Ωn denote the largest value of q for which there exist q-critical graphs of order n.
Values of Ωn have been established for small n. In particular, Burger et al. [3] showed
that Ω2 = 1, Ω3 = 2, Ω4 = 4, Ω5 = 6 and Ω6 = 9. They also conjectured as follows.

Conjecture 1 ([3]) Ωn =
(
n
2

)
− 2n+ 5 for all n ≥ 7.

In this paper we provide further circumstantial evidence in support of Conjecture 1, by
proving the conjecture correct for n ∈ {7, 8, 9}. In particular, using a C++ implementa-
tion of Algorithms 1–2, we confirmed the values of Ωn for n ≤ 6 mentioned above, and
additionally showed that Ω7 = 12, Ω8 = 17 and Ω9 = 23. The results thus obtained are
summarized in Table 1, which contains listings of the cardinalities of the graph classes Qq

n

for n ∈ {2, . . . , 9} and q ∈ {1, . . . ,Ωn}. The classes Q1
2, . . . ,Q1

9 were determined by the
4-step construction process of Mynhardt and Grobler [8], referred to above.

A repository of the members of the graph classes Q1
n, . . . ,QΩn

n is provided in Table 2 for
n ∈ {2, 3, 4, 5, 6}. The graphs in this table are presented in the well-known graph6 for-
mat [9], which is ideal for storing class representatives of isomorphism classes of undirected
graphs in a compact manner, using only printable ASCII characters. These graphs may
be converted to adjacency matrices and other formats using the reader showg, which is
available online [9]. The reader showg package is part of nauty, originally designed by
McKay and Piperno [10] for graph isomorphism testing.

4 Further work

In addition to attempting a general proof or refutation of Conjecture 1, another interesting
problem for future research would be to investigate the largest number of arbitrary edges
whose removal from a graph necessarily does not increase the secure domination number.
In this context the cost function

Cp(G) = max γs(G− pe)− γs(G)

is applicable instead of (1), and a graph G may be defined to be p-stable if Cp(G) = 0,
but Cp+1(G) > 0. This problem finds application in cases where one seeks threshold
information in terms of the largest set of edges whose removal from G does not increase
the secure domination number of the resulting graph.
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Class Class members

Q1
2 A

Q1
3 Bw B

Q2
3 Bg

Q1
4 C~ CJ CK C@

Q2
4 CL CB

Q3
4 CN C] CF

Q4
4 C^

Q1
5 D~{ DJ[ DBw DJ_ D@K D@O D?C

Q2
5 DB{ DFw DJc D@S D@o D?K

Q3
5 DF{ DJk DK{ DLs D@[ DBW D@s DBg D?[

Q4
5 DJ{ DL{ DNw DB[ D@{ DBk DLo D?{
Q5

5 DN{ D]{
Q6

5 D^{

Q1
6 E~~w EJ\w EB^ E?^o EJ]? E@ro E@Kw EJaG E?Lo E@L? E?CW E@Q?

E?C E??G

Q2
6 E?^w E@^o EJ]G E?~o E@rw E@vo EBjg EJaW E?Lw E?\o E?No E?]o

E@LG E@N? E@QG E?Cg E?D E??W

Q3
6 E@^w EB^g EJ]W E?~w E@vw E@~o EBjw EBng EBzg EBzo EJfo EJnO

EJeW EJeg E?\w E?Nw E?]w E@LW E@Pw E@Tg E@NG E@QW E@Qo E@U

EBY? E?Cw E?Ko E?Dg E?LO E?F E?N? E??w

Q4
6 EB^w EJ]w E@~w EBnw EBzw EB~o EJno EFzg ELrw EJew EJbw EJfg

ELv E@Lw E@Tw E@\o E@NW E@UW E@Qw E@Ug E@Uo E@V E@^? EBYG

EB]? EBj? E?Kw E?Dw E?LW E@T E?Fg E?NG E?NO E?@w

Q5
6 EJ^w EB~w EJ~o EFzw EJmw EJfw EJnW EK~o ELvg E@\w EBXw E@Nw

E@Uw E@]o E@Rw E@Vg E@^G E@^O EBYW EB]G EBYg EB] E@v EBjG

EBj E?Fw E?NW E?Bw

Q6
6 EF~w EJnw EK~w ELvw El~o ENzg EB\w E@]w E@Vw E@^W EB]W EBYw

EB]g E@vg EBjW EBn EBz EJf

Q7
6 EJ~w EL~w ENzw E]~o EB]w EBZw EBnW EFz

Q8
6 EN~w E]~w

Q9
6 E^~w

Table 2: The graph classes Q1
n, . . . ,QΩn

n for n ∈ {2, . . . , 6}. Class members are presented in

the well-known graph6 format, which is ideal for storing undirected graphs in a compact manner,

using only printable ASCII characters. These graph representations may be converted to adjacency

matrices (or other formats) using the reader showg which is available online [9].
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