
Generic Process Framework for

Developing High-Integrity Software1

Binazir BIGLARI and Raman RAMSIN

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Abstract. In high-integrity systems, certain quality requirements have gained

utmost significance in such a way that failing to satisfy them at a particular level
may result in the loss of the entire system, endangerment of human life, peril to the

organization’s existence, or serious damage to the environment. High-integrity

computer systems should incorporate top-quality software in order to adequately
address their stringent quality requirements. The methodologies used for

developing high-integrity software must possess special characteristics in order to
ensure successful realization of the requirements.

Software Process patterns represent empirically proven methods of software

development that can be exploited as reusable chunks to produce bespoke

methodologies, tailored to fit specific project situations and requirements. The

authors provide a set of process patterns extracted from methodologies and

standards which are specifically intended for developing high-integrity systems.
The methodologies and standards which were used as resources for extracting

these patterns were selected based on their history of successful application. The

patterns have been organized into a generic High Integrity Software Development
Process (HISDP); this process framework can be instantiated by method engineers

to produce tailored-to-fit methodologies for developing high-integrity software.

Keywords. high-integrity system, process pattern, software development
methodology, process framework

Introduction

Software is used for governing a wide variety of systems, including medical equipment,

air traffic control systems, and nuclear plants; the failure of these systems may have

different outcomes, thus indicating their level of criticality. High-integrity computer

systems are critical systems in which addressing certain quality requirements is of

utmost importance, as their failure may have dire consequences. Therefore, the

development of high-integrity systems requires the application of stringent quality-

assurance measures. Software is an integral part of high-integrity computer systems,

and is closely linked to other parts; it should therefore be adaptable, so that it maintains

its integrity at a desirable level when other parts have to be changed due to

deterioration or the emergence of new technologies. The identification of system and

software requirements is an important factor in quality assurance; other factors, such as

the need for new technologies, the importance of the system’s mission, and project size,

can also affect the required level of quality assurance, albeit to a lesser degree [1].

1 Biglari, B., and Ramsin, R., "Generic Process Framework for Developing High-Integrity Software", in

Proceedings of SoMeT’12, 2012, pp. 73-88, DOI : 10.3233/978-1-61499-125-0-73.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357381666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://books.google.com/books?hl=en&lr=&id=xGUnADBmGOYC&oi=fnd&pg=PA73&dq=ramsin+biglari&ots=o0BG1IZPY2&sig=h61nlmgJHLlPqEP47g8WvyZijkM#v=onepage&q=ramsin%20biglari&f=false

High integrity systems are divided into three main categories, according to the

classification proposed in [2]: safety-critical, mission-critical, and business-critical. The

highest level of criticality is attributed to cases where human life is at stake, thus

requiring the strictest of standards and activities. Other levels of severity are taken into

account depending on the degree of seriousness of the errors made when implementing

system functions, and the consequences of breakdown in terms of the damage inflicted.

There are numerous methodologies for developing high-integrity software, and

they have been in use for a long time. Because of the importance of nonfunctional

requirements in these systems, the dependency of software on non-software

components, and the severe consequences of software failures, the software

development processes used for constructing these systems must possess certain

characteristics such as reliability, traceability to requirements, consistency, and

production of special intermediate products. In most cases, compliance with specific

standards (military standards such as MIL-STD-498, or domain-specific standards such

as DO 278B(is required [1, 3].

Due to the diversity of the methods involved, there exists no general methodology

for developing high-integrity systems. However, there are frameworks for this purpose,

such as those presented in [4], which deal with the essentials and can be used as

standards. Although the development of these systems is possible with conventional

methodologies, it is highly preferable to use specialized software development

processes which ensure that the final product is of acceptable quality.

Successful solutions to recurring problems in a given context have long been

captured as “patterns”. A software pattern is an abstraction of a proven solution for a

common problem in the context of software development. Software process patterns

have emerged through the abstraction of recurring software development process

solutions. They were first introduced by Coplien [5], who focused on organizational

and managerial processes. The notion was later refined by Ambler, who provided a

more precise definition aiming at software development processes [6]. A process

pattern can be employed in all aspects of software development: From a high-level

viewpoint which accentuates the general approach to software development and the

lifecycle employed, to a specific view of a particular part of the software development

process. In addition, different levels of granularity have been defined for process

patterns; according to Ambler, process patterns are of three types, in descending order

of granularity: phase, stage, and task [6, 7]. Tasks are the key components, whereas

phases and stages are important for organizing and using the tasks effectively. Phase

process patterns refer to the high-level activities in a software development project,

usually executed sequentially. Stage process patterns include the tasks related to a

particular stage of the software development process, and can in turn consist of finer-

grained stages. Stages are usually performed iteratively. Task process patterns refer to

the details of the steps that should be performed in a fine-grained stage.

Process patterns can constitute software development methodologies, especially in

the context of Situational Method Engineering (SME), where a methodology is

produced from scratch in accordance with situational requirements, or a preexisting

methodology is extended by adding process chunks based on past defects and new

requirements [8, 9]. Process patterns can thus be used as method chunks. An example is

the OPEN Process Framework (OPF), which is based on a library of reusable

components, many of which are process patterns [10, 11]. Two other examples are the

sets of process patterns suggested in [12] and [13] for Web engineering and

component-based software development, respectively.

In this paper, the authors propose a set of process patterns for developing high-

integrity software systems, extracted from the methodologies and standards related to

this domain. The patterns have been organized into a generic process framework for

producing high-integrity software systems (called herein as: High-Integrity Software

Development Process—HISDP). This framework and its constituent patterns can be

employed to produce and evaluate processes for developing high-integrity software.

The rest of this paper is organized as follows: Section 2 provides a brief review of

ten methodologies and two standards which have been used as sources for extracting

process patterns; Section 3 contains the general framework proposed (HISDP); the

proposed process patterns are briefly described in Section 4; Section 5 deals with the

validation of the patterns by showing how they are mapped to the source processes; and

Section 6 contains the conclusions as well as recommendations for future research.

1. Pattern Sources: High-integrity Software Development Methodologies and

Standards

From the multitude of methodologies and standards that were studied, ten

methodologies and two standards (NIST and MIL-STD-498) were used for extracting

the relevant process patterns. The selected methodologies include: ASPECS, Extended

MaSE, HOOD, PBSE, XFun, AOM, MASTER, BUCS, AUP, and Agile+. These

methodologies were selected from among those studied based on the following criteria:

 Availability of adequate resources on the specifications of the methodology;

 Existence of reports on the practical usage of the methodology;

 Support for different paradigms, including agile, agent-oriented, object-

oriented, aspect-oriented, and model-driven development;

 Adequate coverage of the generic software development lifecycle; and

 Relevance to the high-integrity domain and adequate support for its three

criticality levels (safety, mission, and business).

A brief overview of these methodologies and standards will be provided

throughout the rest of this section.

ASPECS is an agent-oriented methodology which relies on holonic organizational

metamodels and which is based on the PASSI methodology [14]. All stages are carried

out seamlessly and smoothly by focusing on agents. The process includes four phases:

system requirements analysis, agent society design, implementation, and deployment.

The original version of MaSE was a general purpose methodology for developing

homogenous multiagent systems [15]. In order to adapt this methodology to embedded

and real-time contexts, an extended version was provided which supports requirements

engineering, system environment analysis, and time-dimensional modeling of the

agents’ behavior [16]. This method covers three phases: requirements engineering,

analysis, and design.

The HOOD methodology was developed by the European Space Agency to

support architectural and detailed design of high-integrity, real-time systems [8,3]. It is

an iterative top-down design method [17], suitable for developing large systems with a

long lifespan in which reusability, reliability, and maintainability are essential [18].

The PBSE methodology aims to help develop embedded systems, or their building

blocks, by using formal methods [19]. PBSE was employed in project ASSERT, also

conducted by the European Space Agency [20]. By giving precedence to requirements

elicitation, PBSE provides a formal and appropriate description of the problem which

can be used as a reliable basis for quality assurance.

Due to the need for higher levels of accuracy and reliability on the one hand, and

the mutability of user requirements on the other, formal variants of Agile development

methodologies have emerged. XFun is a prominent example: XFun is the result of

adapting UP and combining it with the X-Machine formal method [21].

Based on aspect-oriented modeling (AOM) techniques, Georg et al. have proposed

an aspect-oriented design method for developing high-integrity applications with strict

security requirements [22].

The MASTER methodology is a model-driven approach developed as part of a

European information project of the same name. This methodology includes a process

and a set of systems engineering methods to adapt the process to customer

requirements [23, 24]. The process consists of eight phases, spanning requirements

capture to deployment, and provides prescribed model transformation methods.

BUCS was a research project initiated by the Norwegian Research Council and

Norwegian University of Science and Technology in order to study the methods of

component-based development and also the development, support, and maintenance of

business-critical software. The important characteristics and cases specific to this field

were extracted in order to extend existing methodologies to make them suitable for

developing business-critical software [25]. A special variant of RUP was produced for

this purpose which incorporates specialized hazard analysis methods [26].

The AUP methodology was introduced as a simplified agile version of RUP. AUP

has been successfully used for developing high-integrity software, such as banking

systems [27] and online reservation systems [28].

Agile+ is an agile methodology inspired by XP which has been used by various

companies for developing large high-integrity systems [29, 30]. The Agile+ process

provides support for dynamic and variable requirements [31].

The American National Institute of Standards and Technology (NIST) has

provided certain quality assurance guidelines for the safety systems used in nuclear

plants [1]. It has also proposed a framework for developing and assuring the quality of

critical software [4], in which the requirements and characteristics of a high-integrity

system are defined and guidelines are provided for developers, testers, and researchers.

The military standard MIL-STD-498 is an American military standard which

outlines the prerequisites to software development and documentation for high-

integrity systems. This standard provides general and detailed requirements for the

processes utilized and the documents produced [32].

2. Proposed Process Framework for High Integrity Software Development

On the basis of the processes and standards studied, a generic process framework has

been proposed for developing high-integrity software, a detailed description of which

will be provided in this section. This framework, which we have chosen to call High-

Integrity Software Development Process (HISDP), provides a high-level organization

for finer-grained process patterns and highlights the position of software development

in the overall systems development process (as shown in Figure 1). HISDP helps

method engineers choose from among the process patterns and combine them based on

the project requirements. HISDP consists of seven phase process patterns: initiation,

requirements, design, coding and integration, installation, maintenance, and death. The

seven phases are performed sequentially, but their constituent stages are typically

performed iteratively.

The process begins with the Initiation phase which provides the necessary

infrastructure for developing software successfully by performing feasibility study,

determining preliminary estimates of time and cost, and producing an overall plan. In

the Requirements phase, software requirements are identified and documented with

special attention to traceability. In the Design phase, the design of the software is

produced at different levels of detail on the basis of the requirements. The Coding and

Integration phase incorporates development activities such as coding, testing, and

integrating software increments. In the Installation phase, the software produced is

deployed in the user environment and integrated with non-software components of the

system; software tuning is typically necessary at this stage. In the Maintenance phase,

previous phases are iterated to make corrections, or to address the changes occurred in

user requirements or in non-software components. In the Death phase, reusable items

are extracted and the lessons learned from the project are documented for use in future

projects.

Management activities are extremely important in the development of high-

integrity systems; hence, the umbrella activities emphasized in methodologies and

standards have been explicitly considered in HISDP. Vital management activities are

typically captured in stage- or task process patterns of the framework; nevertheless, the

arrow below Figure 1 lists them individually.

3. Proposed HISDP Process Patterns

This section provides detailed descriptions for HISDP’s constituent process patterns (as

shown in Figure 2). Only the stages that are necessary in high-integrity software

development (shown as dark boxes in Figure 2) have been described in detail, each in a

separate subsection.

Figure 1. High-Integrity Software Development Process (HISDP) and its position in the systems

development process

Software Development Life Cycle

Systems

Development Phase

System

Maintenance

System

Integration

System

Requirements
System

Design

Initiation Requirements Design Coding and

Integration
Maintenance Death

Umbrella Activities: Verification & Validation, Safety Analysis, Configuration Management,

Quality Assurance, Project Management, Risk & Hazard Management

Installation

Legend

Software

Development Phase
Umbrella

Activities

Figure 2. HISDP and its constituent Stage process patterns

3.1. Establish Infrastructure (Initiation Phase)

In this stage, individuals are recruited according to organizational positions, and project

teams are formed (Figure 3). Decisions on employment, including staffing plans and

training policies, are documented. Feasibility study is also performed, along with

analyzing and providing different approaches to guiding the project, predicting project

scope and possible undesirable incidents, ascertaining assumptions, making plans, and

foreseeing the results of possible solutions for each action. A software development

Death

Assessment Terminate Project

Maintenance

Support

Remove Defects and Enhance

Hazard Analysis

Remove Defects

Test in the Large Deploy

Interface Hazard Analysis

Installation

Coding and Integration

Verify & Validate Code Hazard Analysis and Review

Analyze and Record Test Results

Integration and Test Implementation

Design

Requirements

Initiation

Detailed Design Architectural Design

Verify & Validate and Revise Design

Analysis Review

Validate Requirements Identify Requirements

Review/Revise

Hazard Analysis Establish Infrastructure

Planning Organizing

P
ro

ject M
an

ag
em

en
t, R

isk
 &

 H
azard

 M
an

ag
em

en
t, Q

u
ality

 A
ssu

ran
ce, S

afety
 A

n
aly

sis,

C
o
n

fig
u

ratio
n

 M
an

ag
em

en
t, V

erificatio
n

 &
 V

alid
atio

n

Legend

Stage

Phase

Critical Stage

Umbrella Activities

process is selected and the relevant standards are determined. Process selection

includes the selection of methods, tools, and techniques for developing and testing the

output products, as well as the provision of project management support. Decisions on

how to reuse preexisting infrastructures are also made in this stage.

Figure 3. Establish Infrastructure (stage process pattern)

3.2. Hazard Analysis (Initiation Phase)

In this stage (Figure 4), software criticality requirements (such as safety) are identified

and the critical components – as well as failure outcomes – are determined, based on

which appropriate plans and methods are determined in the direction of eliminating or

acceptably reducing the identified hazards. This stage delivers the software safety plan,

test plans, and a system description in which hazards are taken into account.

Figure 4. Hazard Analysis – Initiation (stage process pattern)

3.3. Validate Requirements (Requirements Phase)

It is essential to specify explicit measures in order to assess the degree to which

software requirements and system goals can be relied upon. This is performed by the

Validate Requirements stage (Figure 5), which determines the system requirements that

are delegated to software. Software requirements are then checked for

understandability, accuracy, testability, consistency, completeness, and all other

qualitative properties that have been defined according to requirements standards and

testing strategies. It is essential to make sure that critical requirements are well-defined.

Input:

Goals

Organizational Structure

Strategies

Output:

Feasibility Documents

Selected Process

Tools

Required Standards

Filled Organizational Positions

 Legend

 Task

 Critical
Task

Employment Process Selection

Documentation Feasibility Study

Identify Critical Sections

Update Plans

Output:

Software Safety Plan
System Description

Test Plan

Legend

Task

Critical Task

Input:

Organizational Structure
Preliminary Hazard Analysis

System Hazard Analysis

System Requirements

Preliminary Hazard List

Goals

Strategies

Risk Assessment

Figure 5. Validate Requirements (stage process pattern)

3.4. Analysis (Design Phase)

The aim of this stage is to analyze, understand, and model the problem domain based

on the requirements (Figure 6). The boundaries of the software part are determined, and

its interfaces with non-software parts are evaluated for precision, completeness,

consistency, and accuracy. Software requirements are assigned to the interfaces,

including interfaces to other systems, other software, and human users. Requirements

are also assigned to architectural components. Software requirements undergo hazard

analysis as well; if hazards are not at an acceptable level, the above activities are

repeated. The user manual is updated on the basis of detailed requirements.

Figure 6. Analysis (stage process pattern)

3.5. Architectural Design (Design Phase)

This stage includes architectural design activities in which non-functional requirements

and constraints are applied on the design while preserving traceability (Figure 7). Since

high-integrity software is usually a part of a larger system, a logical architecture is first

defined, which is then followed by determining the physical architecture considering

the constraints, preexisting components, and relationships with the system design.

Therefore, one important activity in this stage is the selection and use of preexisting

architectural components.

Input:

Requirements
Documentation

Hazard Analysis

Design Standards

System Design

Output:

Detailed Requirements

Requirements Hazard Analysis

Software Architecture

User Manual

 Legend

Task

Critical Task

Allocate

Requirements

Requirements

Hazard Analysis

Model
Detail

Requirements

Evaluate Software Interface

Documentation

Hazard

Analysis

Evaluate

Requirements

Output:

Risk Reports

Updated Requirements Doc.

Legend

Task

Critical Task

Input:

Requirements Standards

Requirements Documentation

Testing Strategies

Figure 7. Architectural Design (stage process pattern)

3.6. Detailed Design (Design Phase)

This stage uses the analysis models and architectural design to develop the detailed

design (Figure 8). Each component is decomposed into finer-grained constituents in

order to develop the detailed design of the code components. For each component,

external and internal interfaces are described and modeled, and general and domain-

specific design patterns are applied. Components related to safety, security, or other

criticality requirements are determined with special attention to software-hardware co-

design. Formal methods are used for determining how accurately the design meets the

requirements, with the results carefully recorded. Tracking mechanisms are

implemented by establishing the relationships among requirements, design, and

documentation. An integration test plan is produced according to the standards and

goals, and test cases, test procedures, and test data are prepared.

Figure 8. Detailed Design (stage process pattern)

3.7. Verify & Validate and Revise Design (Design Phase)

In this stage, design documents are verified and validated (Figure 9). If the identified

hazards and risks are not at a desirable level, the design must be changed along with the

integration test plan. Software design is evaluated and analyzed for understandability,

accuracy, testability, consistency, completeness, and other properties defined in the

requirements process. In addition, solution accuracy is verified by considering

feasibility conditions, analysis results, and decision justifications. The traceability of

Input:

System Design

Requirements Documentation

Requirements Hazard Analysis

Design Standards

Output:

Software Architecture

Selected Components

 Legend

 Task

 Critical Task

Trace to System

Architecture

Apply Critical

Constraints

Define Logical

Architecture

Define Physical

Architecture

Select Reusable Components

Input:

System Design

Software Architecture

Requirements Documentation
Design Standards

User Manual

Describe and

Generate Interfaces

Prove and Document

Design Correctness

Decompose and

Design Components

Implement Tracking

Mechanisms

Generate Test Cases

Output:

Software Architecture
Integration Test Cases

Detailed Design

Decisions Justification Doc.

User Manual

Code/Test Standards

Design Timing

Constraints

 Legend

Task

Critical Task

the software design to software requirements is verified. Certain measures are applied

to assess whether the requirements and qualitative properties have been realized in the

software design. Risks are identified and mitigated by performing static analysis and

hazard analysis. The critical software components and the test program are also

scrutinized for problems. Interfaces are analyzed for precision, completeness,

consistency, and accuracy of design. Changes are made to the design in order to resolve

the problems and address the hazards that have not been properly mitigated or

controlled. Changes are accordingly made to the software integration test plan.

Figure 9. Verify & Validate, and Revise Design (stage process pattern)

3.8. Review (Design Phase)

Considering the results of the previous stage, project plans are reviewed in this stage;

also, methods and standards are improved on the basis of the problems reported (Figure

10). Based on the results of quality assurance, software verification and validation, and

software hazard analysis, the necessary changes are applied to the software

development process and its outputs. Unit tests are also planned. The standards of

coding and design are selected or improved, as well as the activities, methods, and tools.

Major problems are reported and fed back to the design process. If necessary, the

requirements descriptions, user manual, and software development plan are modified.

Figure 10. Review (stage process pattern)

 Legend

Task

Critical Task

Plan Unit Tests Analyze Problems

Record Important

Problems

Update

Development Plan

Improve Standards and Methods

Output:

Problems Report

Development Plan

Requirements Document

User Manual

Standards

Test Plan

Input:

Software Development Plan

Standards

Hazard Analysis Reports

Requirement Documentation

User Manual

Input:

Software Architecture

Requirements Documentation

Decisions Justification Doc.

Detailed Design

Design Standards

Analyze Design

Traceability

Identify and

Mitigate Risks

Coordinate with

Integration Test

Verify Design

Output:

Software Architecture

Detailed Design

Hazard Analysis Report

Decisions Justification Doc.

 Legend

Task

Critical Task

Analyze Design

Interfaces

Validate Design

3.9. Analyze and Record Test Results (Coding and Integration Phase)

In this stage, analysis is performed on the basis of the results of the Verify and Validate

Code stage, based on which a part of the Verify and Validate Code stage may be re-

executed (Figure 11). The aim of this stage is to raise the code to the quality level

indicated in the quality assurance plan. Code is evaluated based on qualitative

properties, and the relevant documentation (such as the user manual and the comments

added to the code) is evaluated to assess completeness, consistency, and correctness.

Code interface analysis (including evaluation based on hardware-, user-, and software

interfaces) is conducted to ensure the precision, completeness, consistency, and

correctness of the code produced. Coverage of unit tests is assessed as part of the

analysis of test results. Completed test cases are reviewed, and if necessary, re-

executed; this trend continues until quality reaches the level indicated in the software

quality assurance plan and test plan. The results obtained are rigorously recorded.

Figure 11. Analyze and Record Test Results (stage process pattern)

3.10. Hazard Analysis and Review (Coding and Integration Phase)

In this stage, hazard analysis is carried out on the basis of the results of unit and

integration tests, resulting in modifications to the process or products. This analysis

includes code hazard analysis and software safety tests (Figure 12). To perform code-

level software hazard analysis, the code, system interfaces, and software

documentations are analyzed in order to ensure that they meet the requirements; also,

recommendations are offered to make changes to the design, code, and tests. For

software safety testing, components which are critical in terms of safety are tested

under normal and abnormal conditions of inputs and environment. Testing will be

iterated under the same conditions after applying corrective measures.

Figure 12. Hazard Analysis and Review (stage process pattern)

Record Activities and Change

Analysis Results

Analyze Propose Changes

Output:

Modified Process/Product

Modification/Analysis Report

Test Facilities

Input:

Unit/Integration Test Results

Code Verification/Validation Results

Documentation

System Interfaces

Legend

Task

Critical Task

Input:

Code

Code Standards

Unit/Integration Test Results

Code Documentation

Test Plan

Output:

Analysis Documents

Development Plan

Documentation
Measure Test Case

Coverage

Analyze Timing
Constraints

Review/Execute
Test

Legend

Task

Critical Task

Based on the results of quality assurance, software verification and validation and

software hazard analysis, necessary changes are applied to the software development

process and its products. Results are fed back to the design process.

3.11. Deploy (Installation Phase)

In this stage, the integrated software is deployed after the required infrastructures have

been prepared (Figure 13). To install the software, it is necessary to first prepare the

destination environment. The deployment method should be specified and described in

a diagram. If a deployment plan does not already exist, it will also be developed, and

the feasibility of software installation is evaluated. The deployment plan will be

reviewed and revised to ensure correctness and completeness. A plan regarding the

maintenance activities is developed after the system has been installed. Manuals are

produced/updated for all users and operators (in particular, the end users and the

maintenance and support teams), and. The software support and maintenance manuals

are completed, with special attention to maintenance standards. Training of users and

maintenance/support personnel is also conducted at this stage.

Figure 13. Deploy (stage process pattern)

3.12. Interface Hazard Analysis (Installation Phase)

In this stage, software hazards are reevaluated and mitigated based on the overall

interface of the software (Figure 14). The software interface is tested along with non-

software parts, in line with the general testing strategies. Interface hazard analysis

manages hazards that have not been eliminated or controlled in the design phase.

Figure 14. Interface Hazard Analysis (stage process pattern)

Input:

Organizational Structure

System Requirements

Preliminary Hazard Analysis

Preliminary Hazard List

System Hazard Analysis

Strategies

Goals Output:

Interface Hazard Analysis

Software Safety Plan

Test Plan

System Description

Test Interface Update Test Plan

Produce Software

Safety Plan

Update System

Documents

 Legend

Task Critical

Task

Input:

Executable Software

Software Installation Plan

System Design

User Manual

 Legend

Task

Critical Task

Deployment

Prepare

Environment

Documentation Training

Prepare and Deliver Manuals

Output:

Software Installation Report

User Manual

Support/Maintenance Manual

Maintenance Standards

Testing activities encompass developing and recording test cases, test procedures,

and test data, as well as test execution and analysis of test results. By applying

modifications to the design, which help identify hazards, methods are suggested for

recovering from the situations caused by hazards. The software safety plan is adapted,

test plans are updated, and system documentation and design are modified based on the

results of interface evaluations.

3.13. Hazard Analysis (Maintenance Phase)

This stage evaluates the modifications made during maintenance along with their

effects, and analyzes and manages the hazards caused by these modifications (Figure

15); in addition, quality assurance processes are specified, and new quality assurance

plans are produced accordingly. All the changes applied to the software should be

analyzed in order to determine their effects on safety and other critical properties. For

each change, hazards and test results are analyzed to ensure that modification have

created no new hazards and have had no exacerbating effect on existing hazards.

Changes to software requirements are also analyzed. If hazard management is required,

quality assurance activities are planned and executed accordingly.

Figure 15. Hazard Analysis – Maintenance (stage process pattern)

3.14. Assessment (Death Phase)

This stage reviews the project plans and management documentation on project

progress and measurement of the quality of processes and products, in order to collect

and record the significant cases as the lessons learned, to be used in future projects

(Figure 16). All project entities are studied, including test reports, hazard analysis

reports, standards, change documents, manuals, software, methods, tools, and the

personnel/roles involved. Management documents such as the project management

plan, configuration management plan, quality assurance plan, and organizational

documents are also important resources. Successful/unsuccessful experiences and any

reusable assets are extracted and documented. The following can be mentioned as

examples of significant quality assurance cases that should be considered for

documentation: project control deviations, significant user feedback, reports on the

capabilities of software vendors, and reports on the compliance of the process and

products with standards and plans. It should be noted that inefficient methods and

techniques must be recorded as unsuccessful experiences that should be avoided in the

future. The management methods applied and the strategic decisions made are also

Input:

Code

Manuals

Requirements Documents

Design Documents

Maintenance Standards

Hazard Analysis Reports

Software Safety Plan

System Documents

Change Requests

Test Reports

Identify Affected

Parts
Make Change and

Re-test

Analyze Change

Assess Next Change

Output:

Change Hazard Analysis

Updated Plans

Updated Documents Critical Task

 Legend

Task

Update V&V Plan

significant in this context; examples include communication/coordination mechanisms,

and decisions on recruitment, including employment plans and training policies.

Figure 16. Assessment (stage process pattern)

4. Mapping of Proposed Process Patterns to Source Methodologies

Completeness and proper coverage of the proposed process patterns needs to be

evaluated in order to show that these process patterns adequately cover the phases of

the source methodologies. Correspondence of the proposed process patterns to the main

methodologies used as pattern sources is shown in Table 1. Comparison suggests that

the proposed framework and patterns do indeed cover the activities of high-integrity

software development; in other words, it demonstrates that these methodologies can be

engineered by using the proposed process patterns and framework. Moreover, it shows

how the phases of these methodologies have been used as sources for eliciting the

proposed process patterns. Thus, it can be deduced that the proposed framework is

valid, although new patterns can be added to further enrich it.

5. Conclusions and Future Work

We propose a generic process framework along with a set of process patterns to

develop high integrity software systems. To produce these patterns, we have selected

prominent methodologies from the most commonly used processes of this domain, and

have extracted their common sub-processes as process patterns. These patterns have

been organized into a generic process framework which can be instantiated to yield

specialized processes for developing high-integrity software.

This research can be further specialized for each of the three types of high-integrity

systems. Task process patterns can be defined so that the use of the framework in SME

projects is facilitated. Also, essential patterns can be mapped to critical contexts so that

the selection of method chunks is further enhanced. Research can also focus on

providing an expansion framework to tailor existing patterns for use in critical contexts.

ACKNOWLEDGMENT

We wish to thank the Iranian Research Institute for Information and Communication

Technology for sponsoring this research.

Produce and Collect

Information

Analyze

Information

Documentation
Input:

Test Reports

Managerial Documents

Hazard Analysis Reports

Change Documents

Software Criticality

Manuals

Standards

Software
Output:

Successful/Unsuccessful Experiences

(Lessons Learned)

Methods Assessment Document

 Legend

Task

Critical Task

Table 1. Mapping of Proposed Process Patterns to Source Methodologies

Methodology Methodology Phase
Corresponding Process Patterns

Phase Stages

ASPECS

System Requirements

Analysis

2 Requirements Identification, Requirements Validation, Review/Revise

3 Analysis

Agent Society Design 3
Architectural Design, Detailed Design, Verify & Validate and Revise

Design, Review

Implementation 4
Implementation, Verify and Validate Code, Integration and Test, Analyze

and Record Test Results

Deployment
4 Integration and Test, Analyze and Record Test Results

5 Deploy, Test in the Large, Interface Hazard Analysis

MaSE

Requirements

Engineering
2 Requirements Identification, Requirements Validation, Review/Revise

Analysis 3 Analysis

Design
3

Architectural Design, Detailed Design, Verify & Validate and Revise

Design, Review

5 Deploy

HOOD

Requirements Analysis 3 Analysis

Design 3
Architectural Design, Detailed Design, Verify & Validate and Revise

Design, Review

Implementation 4 Implementation, Hazard Analysis and Review, Integration and Test

Test 4 Verify and Validate Code, Integration and Test

PBSE

Requirements Capture
2 Requirements Identification, Requirements Validation

3 Analysis

System Design and

Validation
3

Architectural Design, Detailed Design, Verify & Validate and Revise

Design

Feasibility and

Dimensioning

3 Verify & Validate and Revise Design

4 Hazard Analysis and Review

Integration Testing 4 Integration and Test, Analyze and Record Test Results

XFUN

Planning 1 Planning, Hazard Analysis

Requirements 2 Requirements Identification, Requirements Validation, Review/Revise

Design 3 Architectural Design, Detailed Design, Verify&Validate and Revise Design

Implementation & Test 4
Implementation, Verify and Validate Code, Hazard Analysis and Review,

Integration and Test, Analyze and Record Test Results

Deployment
5 Deploy

6 Remove Defects and Enhance

AOM Design 3
Architectural Design, Analysis, Detailed Design, Verify & Validate and

Revise Design, Review

MASTER

Capture User

Requirements
2 Requirements Identification

PIM Context Definition 2 Requirements Validation, Review/Revise

PIM Requirements

Specification
3 Analysis

PIM Analysis 3 Architectural Design, Analysis, Detailed Design

Design 3 Architectural Design, Detailed Design, Verify&Validate and Revise Design

Coding & Integration 4
Implementation, Verify and Validate Code, Hazard Analysis and Review,

Integration and Test

Testing

3 Verify & Validate and Revise Design

4
Verify and Validate Code, Hazard Analysis and Review, Integration and

Test, Analyze and Record Test Results

5 Test in Large, Remove Defects

Deployment
5 Deploy, Test in the Large

6 Remove Defects and Enhance

AUP

Inception

1 Planning, Organizing, Establish Infrastructure

2 Requirements Identification, Requirements Validation, Review/Revise

3 Architectural Design

Elaboration 3 Architectural Design, Verify & Validate and Revise Design, Review

Construction

3 Detailed Design, Verify & Validate and Revise Design, Review

4
Implementation, Verify and Validate Code, Hazard Analysis and Review,

Integration and Test, Analyze and Record Test Results

5 Deploy, Test in the Large

Transition

5 Deploy, Test in the Large, Remove Defects

6 Support, Remove Defects and Enhance

7 Assessment

REFERENCES

[1] D. Wallace, L. Ippolito, and D. Kuhn, High Integrity Software Standards and Guidelines, National

Institute of Standards and Technology (NIST Special Publication 500-204), 1992.

[2] J. Rushby, Critical System Properties: Survey and Taxonomy, Reliability Eng. and System Safety 43
(1994), 189–219.

[3] D. Ström, Purposes of Software Architecture Design and How They Are Supported by Software

Architecture Design Methods, Master's Thesis, Blekinge Institute of Technology, Sweden, 2005.
[4] D. Wallace, L. Ippolito, and D. Kuhn, High Integrity Software Standards and Guidelines, National

Institute of Standards and Technology (NIST Special Publication 500-223), 1994.

[5] J. Coplien, A Generative Development Process Pattern Language, In: Pattern Languages of Program
Design, ACM Press/Addison-Wesley, 1995, 187–196.

[6] S. Ambler, Process Patterns: Building Large-Scale Systems Using Object Technology, Cambridge

University Press, 1998.
[7] S. Ambler, More Process Patterns: Delivering Large-Scale Systems Using Object Technology,

Cambridge University Press, 1999.

[8] J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers (Eds.), Situational Method Engineering:
Fundamentals and Experiences, Springer, 2007.

[9] J. Ralyté, R. Deneckere, and C. Rolland, Towards a generic model for situational method engineering, In:

Proc. CAiSE’03 (2003), 95–110.
[10] B. Henderson-Sellers, Method Engineering for OO Systems Development, CACM 46 (2003), 73–78.

[11] D. Firesmith and B. Henderson-Sellers, The OPEN Process Framework: An Introduction, Addison-

Wesley, 2001.
[12] R. Babanezhad and R. Ramsin, Process Patterns for Web Engineering, In: Proc. COMPSAC’10, 2010,

477–486.

[13] E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin, Process Patterns for Component-Based Software
Development, In: Proc. CBSE’09, 2009, 54–68.

[14] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam, ASPECS: An agent-oriented software

process for engineering complex systems, J. Autonom. Agents and Multiagent Sys. 20 (2010), 260–304.
[15] S.A. Deloach, M.F. Wood, and C.H. Sparkman, Multiagent Systems, Int’l J. Software Eng. and

Knowledge Eng. 11 (2001), 231–258.

[16] I. Badr, H. Mubarak, and P. Göhner, Extending the MaSE Methodology for the Development of
Embedded Real-Time Systems, Lecture Notes in Computer Science 5118 (2008), 106–122.

[17] J. Rosen, HOOD: An Industrial Approach to Software Design, HOOD Technical Group, 1997.

[18] Software Engineering and Standardisation- HOOD, European Space Agency, 2006.
[19] F. Hesling, A. Schyn, R. Sezestre, and J.F. Tilman, Engineering with AADL, 2005, Available online at:

http://aadl.sei.cmu.edu/aadlinfosite/LinkedDocuments/d2_1000_PBSE_with_AADL.pdf.

[20] Software Engineering and Standardisation- Proven by design: Computer systems for aerospace
applications, European Space Agency, 2008.

[21] G. Eleftherakis and A. Cowling, An Agile Formal Development Methodology, In: Proc. SEEFM'03,
2003, 36–47.

[22] G. Georg, I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee, and S. Houmb, An Aspect-Oriented

Methodology for Designing Secure Applications, Inform. and Software Technology 51 (2009), 846–864.
[23] X. Larrucea, A. Diez, and J. Mansell, Practical Model Driven Development Process, In: Proc. MDA’04,

2004, 99–108.

[24] X. Larrucea, A. Diez, and A. Belen, Process Engineering and Project Management for the Model
Driven Approach, In: Proc. MDA-IA’04, 2004, 63–69.

[25] O. Vindegg, BUCS Implementing Safety: An Approach as to How to Implement Safety Concerns,

Master’s Thesis, Norwegian University of Science and Technology, 2006.
[26] T. Hermansen, Creating more Reliable Business Critical Enterprise Systems Using RUP and System

Safety, Depth Study, Department of Computer and Information Science, NTNU, 2005.

[27] I. Christou, S. Ponis, and E. Palaiologou, Using the Agile Unified Process in Banking, Software 27
(2010), 72–79.

[28] S. Finch, M. Bukowy, L. Wilder, and D. Nunn, Agile Software Development at Sabre Holdings, In:

Software Engineering: Evolution and Emerging Technologies, IOS Press, 2005, 27–38.
[29] D. Opperthauser, Defect Management in an Agile Development Environment, J. Defense Software Eng.

16 (2003), 21–24.

[30] J. Dutton and R. McCabe, Agile/Lean Development and CMMI, SEPG, 2006.

[31] Developing Business-Critical Software: Methodology, AgileTek, 2011.

[32] MIL-STD-498: Military Standard for Software Development and Documentation, US-DoD, 1994.

